首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two hypotheses were tested: (a) stroke frequency is predictable from the amplitudes of bodyroll and the turning effect around the body's long-axis generated by the non-propulsive fluid forces (that is, the torque driving bodyroll), and (b) swimmers exhibit at least one alteration in the factors influencing the bodyroll cycle as they increase the stroke frequency for faster swimming, so that they can reduce the fluid forces "wasted" in non-propulsive directions. The mechanical formula that links stroke frequency and the kinetics of bodyroll was derived on the basis of Euler's equation of motion. Experimental data were collected from competitive swimmers to validate the derived mechanical relations and to examine the strategy that skilled swimmers would use to change the stroke frequency as they swam faster. A strong correlation (slow: r = 0.70 and fast: r = 0.85) and a non-significant difference between the observed stroke frequency and the formula-based estimates supported the first hypothesis. As the subjects increased stroke frequency (38%) for faster swimming, bodyroll decreased (19%) and the trunk twist increased (40%). The combined alterations resulted in a small reduction in the shoulder roll (12%), enabling the swimmers to gain the benefits associated with a large rolling action of the upper trunk, while limiting the amount of increase in the turning effect of fluid forces in non-propulsive directions (40%). The second hypothesis was, therefore, supported. The derived mechanical formula provides a theoretical basis to explore mechanisms underlying the interrelations among stroke frequency, stroke length and swimming speed, and sheds light on a possible reason that swimmers generally adopt six-beat kicks.  相似文献   

2.
Allometry and curvature in the long bones of quadrupedal mammals   总被引:1,自引:0,他引:1  
The allometric relationships between basic structural proportions in long bones are examined in the humerus, radius, femur and tibia for a diverse group of 42 terrestrial quadrupedal mammals that span a size range from 0.02–6000 kg. Non-linear scaling is found for length vs. diameter in the tibia and radius, suggesting that the mechanical constraints on the skeleton differ within large and small body-size mammals. Curvature normalized to mid-shaft radius scales differently in the different long bones. Curvature is poorly related to size in the proximal limb bones (humerus and femur) while it decreases systematically with size in the tibia (mass exponent −0.13). The scaling of normalized curvature in the radius is unique among long bones. Variability of curvature in the radius is reduced at any size in comparison to that found in the other long bones. Normalized curvature is constant within the small body size group (0.02 to approximately 100 kg) while it decreases sharply with size within animals over 100 kg body mass. The unusual scaling found in the radius is probably the result of this bone's close alignment with the extrinsic forces which act on it during locomotion. The change in scaling within the radius for animals of different size may be indicative of more general size-dependent mechanical trade-offs which are masked by the complex loading circumstances of the other long bones.  相似文献   

3.
The paper presents a multi-scale modelling approach for simulating macromolecules in fluid flows. Macromolecule transport at low number densities is frequently encountered in biomedical devices, such as separators, detection and analysis systems. Accurate modelling of this process is challenging due to the wide range of physical scales involved. The continuum approach is not valid for low solute concentrations, but the large timescales of the fluid flow make purely molecular simulations prohibitively expensive. A promising multi-scale modelling strategy is provided by the meta-modelling approach considered in this paper. Meta-models are based on the coupled solution of fluid flow equations and equations of motion for a simplified mechanical model of macromolecules. The approach enables simulation of individual macromolecules at macroscopic time scales. Meta-models often rely on particle-corrector algorithms, which impose length constraints on the mechanical model. Lack of robustness of the particle-corrector algorithm employed can lead to slow convergence and numerical instability. A new FAst Linear COrrector (FALCO) algorithm is introduced in this paper, which significantly improves computational efficiency in comparison with the widely used SHAKE algorithm. Validation of the new particle corrector against a simple analytic solution is performed and improved convergence is demonstrated for ssDNA motion in a lid-driven micro-cavity.  相似文献   

4.
Birds encompass a large range of body sizes, yet the importance of body size on feather morphology and mechanical properties has not been characterized. In this study, I examined the scaling relationships of primary flight feathers within a phylogenetically diverse sample of avian species varying in body size by nearly three orders of magnitude. I measured the scaling relationships between body mass and feather linear dimensions as well as feather flexural stiffness. The resnlts of an independent contrasts analysis to test the effects of phylogenetic history on the characters measured had no effect on the scaling relationships observed. There was slight, but not significant, positive allometry in the scaling of shaft diameter with respect to feather length across a range of body masses. The scaling of feather length and diameter against body mass was not significantly different from isometry. Flexural stiffness, however, exhibited strong negative allometry. Therefore, larger birds have relatively more flexible feathers than smaller birds. The more flexible primary feathers of large birds may reduce stresses on the wing skeleton during take-off and landing and also make these feathers less susceptible to mechanical failure. Conversely, the greater flexibility of these feathers may also reduce their capacity to generate aerodynamic lift.  相似文献   

5.
Some recent modelling papers projecting smaller fish sizes and catches in a warmer future are based on erroneous assumptions regarding (i) the scaling of gills with body mass and (ii) the energetic cost of ‘maintenance’. Assumption (i) posits that insurmountable geometric constraints prevent respiratory surface areas from growing as fast as body volume. It is argued that these constraints explain allometric scaling of energy metabolism, whereby larger fishes have relatively lower mass‐specific metabolic rates. Assumption (ii) concludes that when fishes reach a certain size, basal oxygen demands will not be met, because of assumption (i). We here demonstrate unequivocally, by applying accepted physiological principles with reference to the existing literature, that these assumptions are not valid. Gills are folded surfaces, where the scaling of surface area to volume is not constrained by spherical geometry. The gill surface area can, in fact, increase linearly in proportion to gill volume and body mass. We cite the large body of evidence demonstrating that respiratory surface areas in fishes reflect metabolic needs, not vice versa, which explains the large interspecific variation in scaling of gill surface areas. Finally, we point out that future studies basing their predictions on models should incorporate factors for scaling of metabolic rate and for temperature effects on metabolism, which agree with measured values, and should account for interspecific variation in scaling and temperature effects. It is possible that some fishes will become smaller in the future, but to make reliable predictions the underlying mechanisms need to be identified and sought elsewhere than in geometric constraints on gill surface area. Furthermore, to ensure that useful information is conveyed to the public and policymakers about the possible effects of climate change, it is necessary to improve communication and congruity between fish physiologists and fisheries scientists.  相似文献   

6.
Developmental constraints and selective pressures interact to determine the strength of allometric scaling relationships between body size and the size of morphological traits among related species. Different traits are expected to relate to body size with different scaling exponents, depending on how their function changes disproportionately with increasing body size. For trematodes parasitic in vertebrate guts, the risk of being dislodged should increase disproportionately with body size, whereas basic physiological functions are more likely to increase in proportion to changes in body size. Allometric scaling exponents for attachment structures should thus be higher than those for other structures and should be higher for trematode families using endothermic hosts than for those using ectotherms, given the feeding and digestive characteristics of these hosts. These predictions are tested with data on 363 species from 13 trematode families. Sizes of four morphological structures were investigated, two associated with attachment (oral and ventral suckers) and the other two with feeding and reproduction (pharynx and cirrus sac). The scaling exponents obtained were generally low, the majority falling between 0.2 and 0.5. There were no consistent differences within families between the magnitude of scaling exponents for different structures. Also, there was no difference in the values of scaling exponents between families exploiting endothermic hosts and those using ectotherms. There were strong correlations across families between the values of the scaling exponents for the oral sucker, the ventral sucker and the pharynx: in families where the size of one trait increases relatively steeply as a function of body size, the same is generally true of the other traits. These results suggest either that developmental constraints link several morphological features independently of their specific roles or that similar selection pressures operate on different structures, leading to covariation of scaling exponents. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 96 , 533–540.  相似文献   

7.
Meng Xu 《Oikos》2016,125(3):288-299
Scaling research has seen remarkable progress in the past several decades. Many scaling relationships were discovered within and across individual and population levels, such as species–abundance relationship, Taylor's law, and density mass allometry. However none of these established patterns incorporate individual variation in the formulation. Individual body size variation is a key evolutionary phenomenon and closely related to ecological diversity and species adaptation. Using a macroecological approach, I test 57 Long‐Term Ecological Research data sets and show that a power‐law and a generalized power‐law function describe well the mean‐variance scaling of individual body mass. This relationship connects Taylor's law and density mass allometry, and leads to a new scaling pattern between the individual body size variation and population abundance fluctuation, which is confirmed using freshwater fish and forest tree data. Underlying mechanisms and implications of the proposed scaling relationships are discussed. This synthesis shows that integration and extension of existing ecological laws can lead to the discovery of new scaling patterns and complete our understanding of the relation between individual trait and population abundance. Synthesis Scaling relationships are useful for community ecology as they reveal ubiquitous patterns across different levels of biological organizations. This work extends and integrates two existing scaling laws: Taylor's law and density‐mass allometry, and derives a new variance allometry between individual body mass and population abundance. The result shows that diverse individual body size is associated with stable population fluctuation, reflecting the effect of individual traits on population characteristics. Confirmed by several empirical data sets, these scaling relationships suggest new ways to study the underlying mechanisms of Taylor's law and have profound implications for fisheries and other applied sciences.  相似文献   

8.
Spatially heterogeneous environments are generally characterized by nested landscape patterns with resource aggregations on several scales. Empirical studies indicate that such nested landscape patterns impose selection constraints on the perceptive scales of animals, but the underlying selection mechanisms are unclear. We investigated the selection dynamics of perceptive scale within a spatial resource utilization model, where the environment is characterized by its resource distribution and species differ in their perceptive scales and resource preemption capabilities. Using three model landscapes with various resource distributions, we found that the optimal perceptive scale is determined by scale-specific attributes of the landscape pattern and that the number of coexisting species increases with the number of characteristic scales. Based on the results of this model, we argue that resource aggregations on different scales act as distinct resources and that animal species of particular perceptive scales are superior in utilizing resource aggregations of comparable spatial extent. Due to the allometric relationship between body size and perceptive scale, such fitness difference might result in discontinuous body mass distributions.  相似文献   

9.
Labriform locomotion is the primary swimming mode for many fishesthat use the pectoral fins to generate thrust across a broadrange of speeds. A review of the literature on hydrodynamics,kinematics, and morphology of pectoral fin mechanisms in fishesreveals that we lack several kinds of morphological and kinematicdata that are critical for understanding thrust generation inthis mode, particularly at higher velocities. Several needsinclude detailed three-dimensional kinematic data on speciesthat are pectoral fin swimmers across a broad range of speeds,data on the motor patterns of pectoral fin muscles, and thedevelopment of a mechanical model of pectoral fin functionalmorphology. New data are presented here on pectoral fin locomotionin Gomphosus varius, a labrid fish that uses the pectoral finsat speeds of 1 –6 total body lengths per second. Three-dimensionalkinematic data for the pectoral fins of G. varius show thata typical "drag-based" mechanism is not used in this species.Instead, the thrust mechanics of this fish are dominated bylift forces and acceleration reaction forces. The fin is twistedlike a propeller during the fin stroke, so that angles of attackare variable along the fin length. Electromyographic data onsix fin muscles indicate the sequence of muscle activity thatproduces antagonistic fin abduction and adduction and controlsthe leading edge of the fin. EMG activity in abductors and adductorsis synchronous with the start of abduction and adduction, respectively,so that muscle mechanics actuate the fin with positive work.A mechanical model of the pectoral fin is proposed in whichfin morphometrics and computer simulations allow predictionsof fin kinematics in three dimensions. The transmission of forceand motion to the leading edge of the fin depends on the mechanicaladvantage of fin ray levers. An integrative program of researchis suggested that will synthesize data on morphology, physiology,kinematics, and hydrodynamics to understand the mechanics ofpectoral fin swimming.  相似文献   

10.
Reproducing females can allocate energy between the production of eggs or offspring of different size or number, both of which can strongly influence fitness. The physical capacity to store developing offspring imposes constraints on maximum clutch volume, but individual females and populations can trade off whether more or fewer eggs or offspring are produced, and their relative sizes. Harsh environments are likely to select for larger egg or offspring size, and many vertebrate populations compensate for this reproductive investment through an increase in female body size. We report a different trade‐off in a frog endemic to the Tibetan Plateau, Rana kukunoris. Females living at higher altitudes (n = 11 populations, 2000–3500 m) produce larger eggs, but without a concomitant increase in female body size or clutch size. The reduced diel and seasonal activity at high altitudes may impose constraints on the maximum body size of adult frogs, by limiting the opportunity for energy accumulation. Simultaneously, producing larger eggs likely helps to increase the rate of embryonic development, causing tadpoles to hatch earlier. The gelatinous matrix surrounding eggs, more of which is produced by large females, may help buffer developing embryos from temperature fluctuations or offer protection from ultraviolet radiation. High‐altitude frogs on the Tibetan Plateau employ a reproductive strategy that favours large egg size independent of body size, which is unusual in amphibians. The harsh and unpredictable environmental conditions at high altitudes can thus impose strong and opposing selection pressures on adult and embryonic life stages, both of which can simultaneously influence fitness.  相似文献   

11.
Variable environments impose constraints on adaptation by modifying selection gradients unpredictably. Optimal bird development requires an adequate thermal range, outside which temperatures can alter nestling physiology, condition and survival. We studied the effect of temperature and nest heat exposure on the reproductive success of a population of double‐brooded Spotless Starlings Sturnus unicolor breeding in a nestbox colony in central Spain with a marked intra‐seasonal variation in temperature. We assessed whether the effect of temperature differed between first and second broods, thus constraining optimal nest‐site choice. Ambient temperature changed greatly during the chick‐rearing period and had a strong influence on nestling mass and all body size measures we recorded, although patterns of clutch size or nestling mortality were not influenced. This effect differed between first and second broods: nestlings were found to have longer wings and bills with increasing temperature in first broods, whereas the effect was the opposite in second broods. Ambient temperature was not related to nestling body mass or tarsus‐length in first broods, but in second broods, nestlings were lighter and had smaller tarsi with higher ambient temperatures. The exposure of nestboxes to heat influenced nestling morphology: heat exposure index was negatively related to nestling body mass and wing‐length in second broods, but not in first broods. Furthermore, there was a positive relationship between nest heat exposure and nestling dehydration. Our results suggest that optimal nest choice is constrained by varying environmental conditions in birds breeding over prolonged periods, and that there should be selection for parents to switch from sun‐exposed to sun‐protected nest‐sites as the season progresses. However, nest‐site availability and competition for sites are likely to impose constraints on this choice.  相似文献   

12.
Based on correlations between the cranial base angle (CBA) and the index of relative encephalization (IRE, calculated as the cubed root of brain volume divided by basicranial length), several recent studies have identified relative brain size as the factor most responsible for determining basicranial flexion in primates. IRE, however, scales with positive allometry relative to body mass, unlike the negatively allometric relationship between brain volume and body mass. This poses new questions concerning the factors underlying the correlation between IRE and CBA. Specifically, if basicranial flexion represents a spatial solution to the problem of housing a large brain within a neurocranium of limited size, then why is it that the problem is greatest in those species whose brains are smallest relative to body mass? To address this question, the scaling relationships of IRE and the measurements used to calculate it were examined in 87 primate species. It was found that the positive allometry of IRE is due to the fact that its denominator, basicranial length (BL), scales with very strong negative allometry relative to body mass. The scaling relationship of BL may reflect the fact that the noncortical components of the brain (i.e., diencephalon, mesencephalon, medulla) also scale with strong negative allometry relative to body mass, perhaps because of energetic constraints. Importantly, BL and these three brain components scale isometrically against each other. Thus, although cranial base flexion may be an adaptation to accommodate the size of the brain relative to basicranial length, the reason why that adaptation is necessary is not the evolution of a large brain, but rather the evolution of a short cranial base. In so far as basicranial length is affected by the strong negative allometry of the diencephalon, mesencephalon and medulla, the scaling relationships of these brain components are therefore indirectly responsible for the evolution of basicranial flexion.  相似文献   

13.
Only a limited amount of research has gone into evaluating the contribution made by the upper arm to the propulsion of elite swimmers with an amputation at elbow level. With assistance of computational fluid dynamics (CFD) modelling, the swimming technique of competitive arm amputee swimmers can be assessed through numerical simulations which test the effect of various parameters on the effectiveness of the swimming propulsion.This numerical study investigates the effect of body roll amplitude and of upper arm rotation speed on the propulsion of an arm amputee swimmer, at different mean swimming speeds. Various test cases are simulated resulting in a thorough analysis of the complex body/fluid interaction with a detailed quantitative assessment of the effect of the variation of each parameter on the arm propulsion. It is found that a body roll movement with an amplitude of 45° enhances greatly the propulsive contribution from the upper arm with an increase of about 70% in the propulsive force compared to the no roll condition. An increase in the angular velocity of the upper arm also leads to a concomitant increase in the propulsive forces produced by the arm.Such results have direct implications for competitive arm amputee front crawl swimmers and for those who coach them. One important message that emerges in this present work is that there exists, for any given swimming speed, a minimum angular velocity at which the upper arm must be rotated to generate effective propulsion. Below this velocity, the upper arm will experience a net resistive drag force which adversely affects swimming performance.  相似文献   

14.
The scaling of body parts is central to the evolution of morphology and shape. Most traits scale proportionally with each other and body size such that larger adults are essentially magnified versions of smaller ones. This pattern is so ubiquitous that departures from it – disproportionate scaling between trait and body size – pique interest because it can generate dramatically exaggerated traits. These extreme morphologies are frequently hypothesized to result from sexual selection and their study has a long history, with several hypotheses seeking to explain their evolution. Despite this effort, surprisingly little progress has been made in demonstrating the forms of selection that produce different scaling patterns or in identifying the mechanisms that underlie the expression and evolution of scaling relationships. Here we review recent insights regarding the proximate mechanisms that regulate and integrate trait growth and that offer a new framework for studying the evolution of morphological scaling.  相似文献   

15.
Elaborate horns or horn‐like structures in male scarab beetles commonly scale with body size either (a) in a linear fashion with horn size increasing relatively faster than body size or (b) in a threshold‐dependent, sigmoid fashion; that is, males smaller than a certain critical body size develop no or only rudimentary horns, whereas males larger than the threshold size express fully developed horns. The development of linear vs. sigmoid scaling relationships is thought to require fundamentally different regulatory mechanisms. Here we show that such disparate regulatory mechanisms may co‐occur in the same individual. Large males of the south‐east Asian Onthophagus (Proagoderus) watanabei (Ochi & Kon) (Scarabaeidae, Onthophagini) develop a pair of long, curved head horns as well as a single thoracic horn. We show that unlike paired head horns in a large number of Onthophagus species, in O. watanabei the relationship between head horns and body size is best explained by a linear model. Large males develop disproportionately longer horns than small males, but the difference in relative horn sizes across the range of body sizes is small compared to other Onthophagus species. However, the scaling relationship between the thoracic horn and body size is best explained by a strongly sigmoid model. Only males above a certain body size threshold express a thoracic horn and males smaller than this threshold express no horn at all. We found a significant positive correlation between head and thoracic horn length residuals, contrary to what would be expected if a resource allocation tradeoff during larval development would influence the length of both horn types. Our results suggest that the scaling relationship between body size and horn length, and the developmental regulation underlying these scaling relationships, may be quite different for different horns, even though these horns may develop in the same individual. We discuss our results in the context of the developmental biology of secondary sexual traits in beetles. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 83 , 473–480.  相似文献   

16.
Understanding the factors that constrain and drive changes in food chain length represents an open challenge in ecology. Although several explanatory hypotheses have been proposed, no synthesis has yet been achieved. The role of body size has been well-studied in recent years because the hierarchy of trophic connections – in which large animals consume small ones – suggests a positive relationship between trophic position and body size. Empirical evidence, however, supports the existence of both positive and negative associations, and some studies have even reported no significant relationship between trophic position and body size. These results suggest that the relationship may be non-monotonic and driven by several interacting mechanisms. Here, we analyze the effects of energetic limitations and structural constraints on species' trophic positions. We show that the trophic position of small-bodied animals can be limited by their ability to consume large prey, whereas energetic limitations strongly constrain trophic positions for large-bodied animals, with the intensity of this constraint depending on the amount of energy available to top predators. These differences in limiting mechanisms can account for the observed variability in the association between the trophic position of top predators and size. Furthermore, our derivation makes use of the Metabolic theory of ecology and predicts a negative relationship between temperature and the maximum achievable food chain length, providing a mechanistic foundation for the observed reductions in food chain length with temperature.  相似文献   

17.
BACKGROUND: In swimmers, the effects of the anthropometric factors, upper extremity length, hand length and body height, on performance over 100 m have been shown, but no data exist about the influence of anthropometric factors on performance in ultra-endurance swimmers. SUBJECTS AND METHODS: Twelve male Caucasian ultra-swimmers participated in our study at the 9th edition in 2007 of the 12-hours-swim in Zurich, Switzerland. We determined body mass, length of arms and legs, body height, circumferences of extremities, skeletal muscle mass and fat mass in order to correlate with the covered distance and to find an effect on race performance. RESULTS: The 12 swimmers achieved an average distance of 29.4 +/- 5.1 km, varying from 22.8 km to 39.1 km during these 12 hours. There was no correlation between body mass, length of arms and legs, body height, circumferences of extremities, skeletal muscle mass and fat mass to race performance. CONCLUSION: In these 12 male ultra-endurance swimmers no effect of the anthropometric parameters body mass, body height, BMI, circumferences of extremities, length of arms and legs, skeletal muscle mass and fat mass, on performance in a 12-hours-swim has been found.  相似文献   

18.
To identify behaviorally significant differences in bone structure it is first necessary to control for the effects of body size and body shape. Here the scaling of cross-sectional geometric properties of long bone diaphyses with different "size" measures (bone length, body mass, and the product of bone length and body mass) are compared in two modern human populations with very different body proportions: Pecos Pueblo Amerindians and East Africans. All five major long bones (excluding the fibula) were examined. Mechanical predictions are that cortical area (axial strength) should scale with body mass, while section modulus (bending/torsional strength) should scale with the product of body mass and moment arm length. These predictions are borne out for section moduli, when moment arm length is taken to be proportional to bone length, except in the proximal femoral diaphysis, where moment arm length is proportional to mediolateral body breadth (as would be expected given the predominance of M-L bending loads in this region). Mechanical scaling of long bone bending/torsional strength is similar in the upper and lower limbs despite the fact that the upper limb is not weight-bearing. Results for cortical area are more variable, possibly due to a less direct dependence on mechanical factors. Use of unadjusted bone length alone as a "size" measure produces misleading results when body shape varies significantly, as is the case between many modern and fossil hominid samples. In such cases a correction factor for body shape should be incorporated into any "size" standardization.  相似文献   

19.
In this study, we developed a curve-fit model of countermovement dynamics and examined whether the characteristics of a countermovement jump can be quantified using the model parameter and its scaling; we expected that the model-based analysis would facilitate an understanding of the basic mechanisms of force reduction and propulsion with a simplified framework of the center of mass (CoM) mechanics. Ten healthy young subjects jumped straight up to five different levels ranging from approximately 10% to 35% of their body heights. The kinematic and kinetic data on the CoM were measured using a force plate system synchronized with motion capture cameras. All subjects generated larger vertical forces compared with their body weights from the countermovement and sufficiently lowered their CoM position to support the work performed by push-off as the vertical elevations became more challenging. The model simulation reasonably reproduced the trajectories of vertical force during the countermovement, and the model parameters were replaced by linear and polynomial regression functions in terms of the vertical jump height. Gradual scaling trends of the individual model parameters were observed as a function of the vertical jump height with different degrees of scaling, depending on the subject. The results imply that the subjects may be aware of the jumping dynamics when subjected to various vertical jump heights and may select their countermovement strategies to effectively accommodate biomechanical constraints, i.e., limited force generation for the standing vertical jump.  相似文献   

20.
Size and scaling of sexually-selected traits in the lizard, Uta palmeri   总被引:1,自引:0,他引:1  
Differences between the sexes in overall body size and in the size of other morphological traits, relative to overall body size, are common in many animals. In this study, patterns of growth and scaling of sexually dimorphic tratis are assessedin a lilzard and then used to sugest general developmental mechanisms responsible for sexual size dimorphism (SSD). Adult make Uta palmeri lizards are larger than adult females inoverall body size (snout-vent length, SVL), body mass, jaw length head width, and head depth. Two general growth processes produce this adult SSD. First, juvenile males have greater annual SVL growth rates than do juvenile females, contributing to adult SSD because males will be larger than females in any trait positively correlated with SVL. Secondly, males and females differ in age-related changes in growth of the three head size traits, relative to growth in SVL. Comparing slopes from reduced major axis regressions of each trait on SVL reveals that the sexes do not differ in the scaling of these traits as juveniles, but as adults males have greater slopes than adult females, indicating ontogenetic differences in scaling of these traits in males. Two other topics in SSD are addressed with these data. First, comparing these data on scaling to those of an earlier analysis that used ordinary least squares regression reveals that conclusions about underlying mechanisms in an analysis of scaling can be altered by the choice of a regression model. Secondly, these data indicate that postmaturational differences in scaling contribute to adult sexual size differences, contrary to an earlier study. Shine (1990) found that for many ectotherms, which continue to grow after sexual maturation, post-maturational events contribute little to sexual differences in overall body size. Results for U. palmeri suggest that these findings may only hold for measures of overall body size (e.g. SVL) and may not generalize to traits that exhibit sex difference in scaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号