首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maintaining the Ran GTPase at a proper concentration in the nucleus is important for nucleocytoplasmic transport. Previously we found that nuclear levels of Ran are reduced in cells from patients with Hutchinson–Gilford progeria syndrome (HGPS), a disease caused by constitutive attachment of a mutant form of lamin A (termed progerin) to the nuclear membrane. Here we explore the relationship between progerin, the Ran GTPase, and oxidative stress. Stable attachment of progerin to the nuclear membrane disrupts the Ran gradient and results in cytoplasmic localization of Ubc9, a Ran-dependent import cargo. Ran and Ubc9 disruption can be induced reversibly with H2O2. CHO cells preadapted to oxidative stress resist the effects of progerin on Ran and Ubc9. Given that HGPS-patient fibroblasts display elevated ROS, these data suggest that progerin inhibits nuclear transport via oxidative stress. A drug that inhibits pre–lamin A cleavage mimics the effects of progerin by disrupting the Ran gradient, but the effects on Ran are observed before a substantial ROS increase. Moreover, reducing the nuclear concentration of Ran is sufficient to induce ROS irrespective of progerin. We speculate that oxidative stress caused by progerin may occur upstream or downstream of Ran, depending on the cell type and physiological setting.  相似文献   

2.
The Ran GTPase regulates nuclear import and export by controlling the assembly state of transport complexes. This involves the direct action of RanGTP, which is generated in the nucleus by the chromatin‐associated nucleotide exchange factor, RCC1. Ran interactions with RCC1 contribute to formation of a nuclear:cytoplasmic (N:C) Ran protein gradient in interphase cells. In previous work, we showed that the Ran protein gradient is disrupted in fibroblasts from Hutchinson–Gilford progeria syndrome (HGPS) patients. The Ran gradient disruption in these cells is caused by nuclear membrane association of a mutant form of Lamin A, which induces a global reduction in heterochromatin marked with Histone H3K9me3 and Histone H3K27me3. Here, we have tested the hypothesis that heterochromatin controls the Ran gradient. Chemical inhibition and depletion of the histone methyltransferases (HMTs) G9a and GLP in normal human fibroblasts reduced heterochromatin levels and caused disruption of the Ran gradient, comparable to that observed previously in HGPS fibroblasts. HMT inhibition caused a defect in nuclear localization of TPR, a high molecular weight protein that, owing to its large size, displays a Ran‐dependent import defect in HGPS. We reasoned that pathways dependent on nuclear import of large proteins might be compromised in HGPS. We found that nuclear import of ATM requires the Ran gradient, and disruption of the Ran gradient in HGPS causes a defect in generating nuclear γ‐H2AX in response to ionizing radiation. Our data suggest a lamina–chromatin–Ran axis is important for nuclear transport regulation and contributes to the DNA damage response.  相似文献   

3.
Lamin A, a protein component of the nuclear lamina, is synthesized as a precursor named prelamin A, whose multi-step maturation process involves different protein intermediates. As demonstrated in laminopathies such as familial partial lipodystrophy, mandibuloacral dysplasia, Werner syndrome, Hutchinson-Gilford progeria syndrome and restrictive dermopathy, failure of prelamin A processing results in the accumulation of lamin A protein precursors inside the nucleus which dominantly produces aberrant chromatin structure. To understand if nuclear lamina components may be involved in prelamin A chromatin remodeling effects, we investigated barrier-to-autointegration factor (BAF) localization and expression in prelamin A accumulating cells. BAF is a DNA-binding protein that interacts directly with histones, lamins and LEM-domain proteins and has roles in chromatin structure, mitosis and gene regulation.In this study, we show that the BAF heterogeneous localization between nucleus and cytoplasm observed in HEK293 cycling cells changes in response to prelamin A accumulation. In particular, we observed that the accumulation of lamin A, non-farnesylated prelamin A and farnesylated carboxymethylated lamin A precursors induce BAF nuclear translocation. Moreover, we show that the treatment of human fibroblasts with prelamin A interfering drugs results in similar changes. Finally, we report that the accumulation of progerin, a truncated form of farnesylated and carboxymethylated prelamin A identified in Hutchinson-Gilford progeria syndrome cells, induces BAF recruitment in the nucleus. These findings are supported by coimmunoprecipitation of prelamin A or progerin with BAF in vivo and suggest that BAF could mediate prelamin A-induced chromatin effects.  相似文献   

4.
基因组不稳定(genomic instability)是机体衰老的标志之一,也是儿童早老症(Hutchinson Gilford progeria syndrome, HGPS)患者细胞的典型特征。HGPS的发生与早老素(progerin)堆积密切相关,但早老素如何引起基因组不稳定尚缺乏系统性的阐述。基因组的结构稳定与DNA的正确复制、DNA损伤修复、端粒的维持和稳定以及表观遗传学修饰密切相关。本文主要讨论早老素在改变正常核纤层结构的基础上,通过影响相关通路关键蛋白质的水平或者定位,引起细胞内氧化应激增强、DNA复制应激和DNA损伤修复障碍,细胞DNA损伤增多和端粒的加速缩短,并在改变组蛋白甲基化和乙酰化方面导致基因组不稳定的机制。  相似文献   

5.
《Biophysical journal》2020,118(9):2319-2332
The nuclear morphology of eukaryotic cells is determined by the interplay between the lamina forming the nuclear skeleton, the chromatin inside the nucleus, and the coupling with the cytoskeleton. Nuclear alterations are often associated with pathological conditions as in Hutchinson-Gilford progeria syndrome, in which a mutation in the lamin A gene yields an altered form of the protein, named progerin, and an aberrant nuclear shape. Here, we introduce an inducible cellular model of Hutchinson-Gilford progeria syndrome in HeLa cells in which increased progerin expression leads to alterations in the coupling of the lamin shell with cytoskeletal or chromatin tethers as well as with polycomb group proteins. Furthermore, our experiments show that progerin expression leads to enhanced nuclear shape fluctuations in response to cytoskeletal activity. To interpret the experimental results, we introduce a computational model of the cell nucleus that explicitly includes chromatin fibers, the nuclear shell, and coupling with the cytoskeleton. The model allows us to investigate how the geometrical organization of the chromatin-lamin tether affects nuclear morphology and shape fluctuations. In sum, our findings highlight the crucial role played by lamin-chromatin and lamin-cytoskeletal alterations in determining nuclear shape morphology and in affecting cellular functions and gene regulation.  相似文献   

6.
Hutchinson-Gilford progeria syndrome is caused by the synthesis of a mutant form of prelamin A, which is generally called progerin. Progerin is targeted to the nuclear rim, where it interferes with the integrity of the nuclear lamina, causes misshapen cell nuclei, and leads to multiple aging-like disease phenotypes. We created a gene-targeted allele yielding exclusively progerin (Lmna HG) and found that heterozygous mice (Lmna HG/+) exhibit many phenotypes of progeria. In this study, we tested the hypothesis that the phenotypes elicited by the Lmna HG allele might be modulated by compositional changes in the nuclear lamina. To explore this hypothesis, we bred mice harboring one Lmna HG allele and one Lmna LCO allele (a mutant allele that produces lamin C but no lamin A). We then compared the phenotypes of Lmna HG/LCO mice (which produce progerin and lamin C) with littermate Lmna HG/+ mice (which produce lamin A, lamin C, and progerin). Lmna HG/LCO mice exhibited improved HG/LCO fibroblasts had fewer misshapen nuclei than Lmna HG/+ fibroblasts (p < 0.0001). A likely explanation for these differences was uncovered; the amount of progerin in Lmna HG/LCO fibroblasts and tissues was lower than in Lmna HG/+ fibroblasts and tissues. These studies suggest that compositional changes in the nuclear lamina can influence both the steady-state levels of progerin and the severity of progeria-like disease phenotypes.  相似文献   

7.
The GTPase Ran regulates multiple cellular functions throughout the cell cycle, including nucleocytoplasmic transport, nuclear membrane assembly, and spindle assembly. Ran mediates spindle assembly by affecting multiple spindle assembly pathways: microtubule dynamics, microtubule motor activity, and spindle pole assembly. Ran is predicted to facilitate spindle assembly by remaining in the GTP-bound state around the chromatin in mitosis. Here, we directly test the central tenet of this hypothesis in vivo by determining the cellular localization of Ran pathway components in Drosophila embryos. We find that, during mitosis, RCC1, the nucleotide exchange factor for Ran, is associated with chromatin, while Ran and RanL43E, an allele locked in the GTP-bound state, localize around the spindle. In contrast, nuclear proteins redistribute throughout the embryo upon nuclear envelope breakdown (NEB). Thus, in vivo RanGTP has the correct spatial localization within the cell to modulate spindle assembly.  相似文献   

8.
Mechanisms of receptor-mediated nuclear import and nuclear export   总被引:24,自引:4,他引:20  
Nuclear transport of proteins and RNA occurs through the nuclear pore complex and is mediated by a superfamily of transport receptors known collectively as karyopherins. Karyopherins bind to their cargoes by recognition of specific nuclear localization signals or nuclear export signals. Transport through the nuclear pore complex is facilitated by transient interactions between the karyopherins and the nuclear pore complex. The interactions of karyopherins with their cargoes are regulated by the Ras-related GTPase Ran. Ran is assisted in this process by proteins that regulate its GTPase cycle and subcellular localization. In this review, we describe several of the major transport pathways that are conserved in higher and lower eukaryotes, with particular emphasis on the role of Ran. We highlight the latest advances in the structure and function of transport receptors and discuss recent examples of steroid hormone receptor import and regulation by signal transduction pathways. Understanding the molecular basis of nuclear transport may provide insight into human diseases by revealing how nucleocytoplasmic trafficking regulates protein activity.  相似文献   

9.
A‐lamins, encoded by the LMNA gene, are major structural components of the nuclear lamina coordinating essential cellular processes. Mutations in the LMNA gene and/or alterations in its expression levels have been linked to a distinct subset of human disorders, collectively known as laminopathies, and to cancer. Mechanisms regulating A‐lamins are mostly obscure. Here, we identified E3 ubiquitin ligase Smurf2 as a physiological regulator of lamin A and its disease‐associated mutant form progerin (LAΔ50), whose expression underlies the development of Hutchinson‐Gilford progeria syndrome (HGPS), a devastating premature aging syndrome. We show that Smurf2 directly binds, ubiquitinates, and negatively regulates the expression of lamin A and progerin in Smurf2 dose‐ and E3 ligase‐dependent manners. Overexpression of catalytically active Smurf2 promotes the autophagic–lysosomal breakdown of lamin A and progerin, whereas Smurf2 depletion increases lamin A levels. Remarkably, acute overexpression of Smurf2 in progeria fibroblasts was able to significantly reduce the nuclear deformability. Furthermore, we demonstrate that the reciprocal relationship between Smurf2 and A‐lamins is preserved in different types of mouse and human normal and cancer tissues. These findings establish Smurf2 as an essential regulator of lamin A and progerin and lay a foundation for evaluating the efficiency of progerin clearance by Smurf2 in HGPS, and targeting of the Smurf2–lamin A axis in age‐related diseases such as cancer.  相似文献   

10.
Hutchinson-Gilford progeria syndrome (HGPS) is caused by the synthesis of a truncated prelamin A, commonly called progerin, that contains a carboxyl-terminal farnesyl lipid anchor. The farnesyl lipid anchor helps to target progerin to membrane surfaces at the nuclear rim, where it disrupts the integrity of the nuclear lamina and causes misshapen nuclei. Several lines of evidence have suggested that progerin's farnesyl lipid anchor is crucial for the emergence of disease phenotypes. Because a geranylgeranyl lipid is approximately 45-fold more potent than a farnesyl lipid in anchoring proteins to lipid membranes, we hypothesized that a geranylgeranylated version of progerin might be more potent in eliciting disease phenotypes. To test this hypothesis, we used gene targeting to create mice expressing geranylgeranylated progerin (Lmna(ggHG/+)). We then compared Lmna(ggHG/+) mice, side-by-side, with otherwise identical mice expressing farnesylated progerin (Lmna(HG/+)). Geranylgeranylation of progerin in Lmna(ggHG/+) cells and farnesylation of progerin in Lmna(HG/+) cells was confirmed by metabolic labeling. Contrary to our expectations, Lmna(ggHG/+) mice survived longer than Lmna(HG/+) mice. The Lmna(ggHG/+) mice also exhibited milder bone disease. The steady-state levels of progerin, relative to lamin C, were lower in Lmna(ggHG/+) mice than in Lmna(HG/+) mice, providing a potential explanation for the milder disease in Lmna(ggHG/+) mice.  相似文献   

11.
Nuclear envelope (NE) formation can be studied in a cell-free system made from Xenopus eggs. In this system, NE formation involves the small GTPase Ran. Ran associates with chromatin early in nuclear assembly and concentration of Ran on inert beads is sufficient to induce NE formation. Here, we show that Ran binds to chromatin prior to NE formation and recruits RCC1, the nucleotide exchange factor that generates Ran-GTP. In extracts prepared by high-speed centrifugation, increased concentrations of Ran are sufficient to induce chromatin decondensation and NE assembly. Using field emission in-lens scanning electron microscopy (FEISEM), we show that Ran promotes the formation of smoothed membranes and the assembly of nuclear pore complexes (NPCs). In contrast, RanT24N, a mutant that fails to bind GTP and inhibits RCC1, does not support efficient NE assembly, whereas RanQ69L, a mutant locked in a GTP-bound state, permits some membrane vesicle recruitment to chromatin, but inhibits vesicle fusion and NPC assembly. Thus, binding of Ran to chromatin, followed by local generation of Ran-GTP and GTP hydrolysis by Ran, induces chromatin decondensation, membrane vesicle recruitment, membrane formation and NPC assembly. We propose that the biological activity of Ran is determined by its targeting to structures such as chromatin as well as its guanine nucleotide bound state.  相似文献   

12.
Ran/TC4, first identified as a well-conserved gene distantly related to H-RAS, encodes a protein which has recently been shown in yeast and mammalian systems to interact with RCC1, a protein whose function is required for the normal coupling of the completion of DNA synthesis and the initiation of mitosis. Here, we present data indicating that the nuclear localization of Ran/TC4 requires the presence of RCC1. Transient expression of a Ran/TC4 protein with mutations expected to perturb GTP hydrolysis disrupts host cell DNA synthesis. These results suggest that Ran/TC4 and RCC1 are components of a GTPase switch that monitors the progress of DNA synthesis and couples the completion of DNA synthesis to the onset of mitosis.  相似文献   

13.
Nuclear formation in Xenopus egg extracts requires cytosol and is inhibited by GTP gamma S, indicating a requirement for GTPase activity. Nuclear envelope (NE) vesicle fusion is extensively inhibited by GTP gamma S and two mutant forms of the Ran GTPase, Q69L and T24N. Depletion of either Ran or RCC1, the exchange factor for Ran, from the assembly reaction also inhibits this step of NE formation. Ran depletion can be complemented by the addition of Ran loaded with either GTP or GDP but not with GTP gamma S. RCC1 depletion is only complemented by RCC1 itself or by RanGTP. Thus, generation of RanGTP by RCC1 and GTP hydrolysis by Ran are both required for the extensive membrane fusion events that lead to NE formation.  相似文献   

14.
Aging and nuclear organization: lamins and progeria   总被引:12,自引:0,他引:12  
The discoveries of at least eight human diseases arising from mutations in LMNA, which encodes the nuclear A-type lamins, have revealed the nuclear envelope as an organelle associated with a variety of fundamental cellular processes. The most recently discovered diseases associated with LMNA mutations are the premature aging disorders Hutchinson-Gilford progeria syndrome (HGPS) and atypical Werner's syndrome. The phenotypes of both HGPS patients and a mouse model of progeria suggest diverse compromised tissue functions leading to defects reminiscent of aging. Aspects of the diseases associated with disrupted nuclear envelope/lamin functions may be explained by decreased cellular proliferation, loss of tissue repair capability and a decline in the ability to maintain a differentiated state.  相似文献   

15.
Although A-type lamins are ubiquitously expressed, their role in the tissue-specificity of human laminopathies remains enigmatic. In this study, we generate a series of transfection constructs encoding missense lamin A mutant proteins fused to green fluorescent protein and investigate their subnuclear localization using quantitative live cell imaging. The mutant constructs used included the laminopathy-inducing lamin A rod domain mutants N195K, E358K, M371K, R386K, the tail domain mutants G465D, R482L, and R527P, and the Hutchinson-Gilford progeria syndrome-causing deletion mutant, progerin (LaA delta50). All mutant derivatives induced nuclear aggregates, except for progerin, which caused a more lobulated phenotype of the nucleus. Quantitative analysis revealed that the frequency of nuclear aggregate formation was significantly higher (two to four times) for the mutants compared to the wild type, although the level of lamin fusion proteins within nuclear aggregates was not. The distribution of endogenous A-type lamins was altered by overexpression of the lamin A mutants, coexpression experiments revealing that aberrant localization of the N195K and R386K mutants had no effect on the subnuclear distribution of histones H2A or H2B, or on nuclear accumulation of H2A overexpressed as a DsRed2 fusion protein. The GFP-lamin fusion protein-expressing constructs will have important applications in the future, enabling live cell imaging of nuclear processes involving lamins and how this may relate to the pathogenesis of laminopathies.  相似文献   

16.
Several human progerias, including Hutchinson-Gilford progeria syndrome (HGPS), are caused by the accumulation at the nuclear envelope of farnesylated forms of truncated prelamin A, a protein that is also altered during normal aging. Previous studies in cells from individuals with HGPS have shown that farnesyltransferase inhibitors (FTIs) improve nuclear abnormalities associated with prelamin A accumulation, suggesting that these compounds could represent a therapeutic approach for this devastating progeroid syndrome. We show herein that both prelamin A and its truncated form progerin/LADelta50 undergo alternative prenylation by geranylgeranyltransferase in the setting of farnesyltransferase inhibition, which could explain the low efficiency of FTIs in ameliorating the phenotypes of progeroid mouse models. We also show that a combination of statins and aminobisphosphonates efficiently inhibits both farnesylation and geranylgeranylation of progerin and prelamin A and markedly improves the aging-like phenotypes of mice deficient in the metalloproteinase Zmpste24, including growth retardation, loss of weight, lipodystrophy, hair loss and bone defects. Likewise, the longevity of these mice is substantially extended. These findings open a new therapeutic approach for human progeroid syndromes associated with nuclear-envelope abnormalities.  相似文献   

17.
The small GTPase Ran coordinates retrograde axonal transport in neurons, spindle assembly during mitosis, and the nucleo-cytoplasmic transport of mRNA. Its localization is tightly regulated by the GTPase-activating protein RanGAP1 and the nuclear guanosine exchange factor (GEF) RCC1. We show that loss of the neuronal E3 ubiquitin ligase MYCBP2 caused the up-regulation of Ran and RanGAP1 in dorsal root ganglia (DRG) under basal conditions and during inflammatory hyperalgesia. SUMOylated RanGAP1 physically interacted with MYCBP2 and inhibited its E3 ubiquitin ligase activity. Stimulation of neurons induced a RanGAP1-dependent translocation of MYCBP2 to the nucleus. In the nucleus of DRG neurons MYCBP2 co-localized with Ran and facilitated through its RCC1-like domain the GDP/GTP exchange of Ran. In accordance with the necessity of a GEF to promote GTP-binding and nuclear export of Ran, the nuclear localization of Ran was strongly increased in MYCBP2-deficient DRGs. The finding that other GEFs for Ran besides RCC1 exist gives new insights in the complexity of the regulation of the Ran signaling pathway.  相似文献   

18.
The small GTPase Ran has multiple roles during the cell division cycle, including nuclear transport, mitotic spindle assembly, and nuclear envelope formation. However, regulation of Ran during cell division is poorly understood. Ran-GTP is generated by the guanine nucleotide exchange factor RCC1, the localization of which to chromosomes is necessary for the fidelity of mitosis in human cells. Using photobleaching techniques, we show that the chromosomal interaction of human RCC1 fused to green fluorescent protein (GFP) changes during progression through mitosis by being highly dynamic during metaphase and more stable toward the end of mitosis. The interaction of RCC1 with chromosomes involves the interface of RCC1 with Ran and requires an N-terminal region containing a nuclear localization signal. We show that this region contains sites phosphorylated by mitotic protein kinases. One site, serine 11, is targeted by CDK1/cyclin B and is phosphorylated in mitotic human cells. Phosphorylation of the N-terminal region of RCC1 inhibits its binding to importin alpha/beta and maintains the mobility of RCC1 during metaphase. This mechanism may be important for the localized generation of Ran-GTP on chromatin after nuclear envelope breakdown and may play a role in the coordination of progression through mitosis.  相似文献   

19.
Progeria, also known as HGPS (Hutchinson-Gilford progeria syndrome), is a rare fatal genetic disease characterized by an appearance of accelerated aging in children. This syndrome is typically caused by mutations in codon 608 (C1804T) of the gene encoding lamins A and C, LMNA, leading to the production of a truncated form of the protein called progerin. Owing to their unique potential to self-renew and to differentiate into any cell types of the organism, pluripotent stem cells offer a unique tool to study molecular and cellular mechanisms related to this global and systemic disease. Recent studies have exploited this potential by generating human induced pluripotent stem cells from HGPS patients' fibroblasts displaying several phenotypic defects characteristic of HGPS such as nuclear abnormalities, progerin expression, altered DNA-repair mechanisms and premature senescence. Altogether, these findings provide new insights on the use of pluripotent stem cells for pathological modelling and may open original therapeutic perspectives for diseases that lack pre-clinical in vitro human models, such as HGPS.  相似文献   

20.
RCC1, a guanine nucleotide exchange factor of the small GTPase Ran, plays various roles throughout the cell cycle. However, the functions of RCC1 in biological processes in vivo are still unclear. In particular, although RCC1 has multifunctional domains, the biological significance of each domain is unclear. To examine each domain of RCC1, we established an RCC1 conditional knockout chicken DT40 cell line and introduced various RCC1 mutants into the knockout cells. We found that nuclear reformation did not occur properly in RCC1-deficient cells and examined whether specific RCC1 mutants could rescue this phenotype. Surprisingly, we found that neither the nuclear localization signal nor the chromatin-binding domain of RCC1 is essential for its function. However, codisruption of these domains resulted in defective nuclear reformation, which was rescued by artificial nuclear localization of RCC1. Our data indicate that chromatin association of RCC1 during mitosis is crucial for its proper nuclear localization in the next interphase. Moreover, proper nuclear localization of RCC1 in interphase is essential for its function through its nucleotide exchange activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号