首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vitamin A derivative retinoic acid (RA) is a morphogen that patterns the anterior-posterior axis of the vertebrate hindbrain. Cellular retinoic acid-binding proteins (Crabps) transport RA within cells to both its nuclear receptors (RARs) and degrading enzymes (Cyp26s). However, mice lacking Crabps are viable, suggesting that Crabp functions are redundant with those of other fatty acid-binding proteins. Here we show that Crabps in zebrafish are essential for posterior patterning of the hindbrain and that they provide a key feedback mechanism that makes signaling robust as they are able to compensate for changes in RA production. Of the four zebrafish Crabps, Crabp2a is uniquely RA inducible and depletion or overexpression of Crabp2a makes embryos hypersensitive to exogenous RA. Computational models confirm that Crabp2a improves robustness within a narrow concentration range that optimizes a 'robustness index', integrating spatial information along the RA morphogen gradient. Exploration of signaling parameters in our models suggests that the ability of Crabp2a to transport RA to Cyp26 enzymes for degradation is a major factor in promoting robustness. These results demonstrate a previously unrecognized requirement for Crabps in RA signaling and hindbrain development, as well as a novel mechanism for stabilizing morphogen gradients despite genetic or environmental fluctuations in morphogen availability.  相似文献   

2.
Morphogen gradients are well known to play several important roles in development; however the mechanisms underlying the formation and maintenance of these gradients are often not well understood. In this work, we investigate whether the presence of a secondary morphogen can increase the robustness of the primary morphogen gradient to perturbation, thereby providing a more stable mechanism for development. We base our model around the interactions of Fibroblast Growth Factor 8 and retinoic acid, which have been shown to act as morphogens in many developmental systems. In particular, we investigate the formation of opposing gradients of these morphogens along the antero-posterior axis of vertebrate embryos, thereby controlling temporal and spatial aspects of axis segmentation and neuronal differentiation.  相似文献   

3.
The appropriate regulation of retinoic acid signaling is indispensable for patterning of the vertebrate central nervous system along the anteroposterior (A-P) axis. Although both CYP26A1 and CYP26C1, retinoic acid-degrading enzymes that are expressed at the anterior end of the gastrulating mouse embryo, have been thought to play an important role in central nervous system patterning, the detailed mechanism of their contribution has remained largely unknown. We have now analyzed CYP26A1 and CYP26C1 function by generating knockout mice. Loss of CYP26C1 did not appear to affect embryonic development, suggesting that CYP26A1 and CYP26C1 are functionally redundant. In contrast, mice lacking both CYP26A1 and CYP26C1 were found to manifest a pronounced anterior truncation of the brain associated with A-P patterning defects that reflect expansion of posterior identity at the expense of anterior identity. Furthermore, Cyp26a1-/-Cyp26c1-/- mice fail to produce migratory cranial neural crest cells in the forebrain and midbrain. These observations, together with a reevaluation of Cyp26a1 mutant mice, suggest that the activity of CYP26A1 and CYP26C1 is required for correct A-P patterning and production of migratory cranial neural crest cells in the developing mammalian brain.  相似文献   

4.
Somites are the mesodermal segments of vertebrate embryos that become the vertebral column, skeletal muscle and dermis. Somites arise within the paraxial mesoderm by the periodic, bilaterally symmetric process of somitogenesis. However, specification of left–right asymmetry occurs in close spatial and temporal proximity to somitogenesis and involves some of the same cell signaling pathways that govern segmentation. Here, we review recent evidence that identifies cross-talk between these processes and that demonstrates a role for retinoic acid in maintaining symmetrical somitogenesis by preventing impingement of left–right patterning signals upon the paraxial mesoderm.  相似文献   

5.
6.
Retinoic acid has been linked to pattern formation in the vertebrate anteroposterior axis. This report describes the spatial and temporal distributions of both endogenous retinoic acid and retinoic acid synthase activity along the anteroposterior axis of neurulating zebrafish embryos, as detected by a transient transgenic assay and by a zymography bioassay. Both retinoic acid levels and synthase activity were found to be highest in anterior regions of the trunk at all of the stages which were analysed. The drug disulfiram inhibited retinoic acid synthase activity in the zebrafish trunk both in vitro and in vivo, and reduced retinoic acid levels in vivo. Disulfiram treatment of neurulating embryos resulted in larvae with hypertrophic wavy notochords, shortened spinal cords and deformed pectoral fins. The results support the hypothesis that retinoic acid plays a role in the coordination of axial patterning at the developing node/zone of involution, as well as in the subsequent development of anterior trunk structures such as the fins.  相似文献   

7.
8.
Bone morphogenetic proteins (BMPs) act as morphogens to control patterning and growth in a variety of developing tissues in different species. How BMP morphogen gradients are established and interpreted in the target tissues has been extensively studied in Drosophila melanogaster. In Drosophila, Decapentaplegic (Dpp), a homologue of vertebrate BMP2/4, acts as a morphogen to control dorsal–ventral patterning of the early embryo and anterior–posterior patterning and growth of the wing imaginal disc. Despite intensive efforts over the last twenty years, how the Dpp morphogen gradient in the wing imaginal disc forms remains controversial, while gradient formation in the early embryo is well understood. In this review, we first focus on the current models of Dpp morphogen gradient formation in these two tissues, and then discuss new strategies using genome engineering and nanobodies to tackle open questions.  相似文献   

9.
Construction of the trunk/caudal region of the vertebrate embryo involves a set of distinct molecules and processes whose relationships are just coming into focus. In addition to the subdivision of the embryo into head and trunk domains, this "caudalisation" process requires the establishment and maintenance of a stem zone. This sequentially generates caudal tissues over a long period which then undergo differentiation and patterning in the extending body axis. Here we review recent studies that show that changes in the signalling properties of the paraxial mesoderm act as a switch that controls onset of differentiation and pattern in the spinal cord. These findings identify distinct roles for different caudalising factors; in particular, Fibroblast Growth Factor (FGF) inhibits differentiation in the caudal stem zone, while Retinoic acid (RA) provided rostrally by somitic mesoderm is required for neuronal differentiation and establishment of ventral neural pattern. Furthermore, the mutual opposition of FGF and RA pathways controls not only neural differentiation but also mesoderm segmentation and might also underlie the progressive assignment of rostrocaudal identity by regulating Hox gene availability and activation.  相似文献   

10.
The earliest models for how morphogen gradients guide embryonic patterning failed to account for experimental observations of temporal refinement in gene expression domains. Following theoretical and experimental work in this area, dynamic positional information has emerged as a conceptual framework to discuss how cells process spatiotemporal inputs into downstream patterns. Here, we show that diffusion determines the mathematical means by which bistable gene expression boundaries shift over time, and therefore how cells interpret positional information conferred from morphogen concentration. First, we introduce a metric for assessing reproducibility in boundary placement or precision in systems where gene products do not diffuse, but where morphogen concentrations are permitted to change in time. We show that the dynamics of the gradient affect the sensitivity of the final pattern to variation in initial conditions, with slower gradients reducing the sensitivity. Second, we allow gene products to diffuse and consider gene expression boundaries as propagating wavefronts with velocity modulated by local morphogen concentration. We harness this perspective to approximate a PDE model as an ODE that captures the position of the boundary in time, and demonstrate the approach with a preexisting model for Hunchback patterning in fruit fly embryos. We then propose a design that employs antiparallel morphogen gradients to achieve accurate boundary placement that is robust to scaling. Throughout our work we draw attention to tradeoffs among initial conditions, boundary positioning, and the relative timescales of network and gradient evolution. We conclude by suggesting that mathematical theory should serve to clarify not just our quantitative, but also our intuitive understanding of patterning processes.  相似文献   

11.
Morphogens have been linked to numerous developmental processes, including organ patterning and the control of organ size. Here we review how different experimental approaches have led to an unprecedented level of molecular knowledge about the patterning role of the Drosophila melanogaster morphogen Decapentaplegic (DPP, the homologue of vertebrate bone morphogenetic protein, or BMP), the first validated secreted morphogen. In addition, we discuss how little is known about the role of the DPP morphogen in the control of organ growth and organ size. Continued efforts to elucidate the role of DPP in D. melanogaster is likely to shed light on this fundamental question in the near future.  相似文献   

12.
The question of how the vertebrate embryo gives rise to a nervous system is of paramount interest in developmental biology. Neural induction constitutes the earliest step in this process and is tightly connected with development of the embryonic body axes. In the Xenopus embryo, perpendicular gradients of BMP and Wnt signals pattern the dorsoventral and anteroposterior body axes. Both pathways need to be inhibited to allow anterior neural induction to occur. FGF8 and IGF are active neural inducers that together with BMP and Wnt signals are integrated at the level of Smad 1/5/8 phosphorylation. Hedgehog (Hh) also contributes to anterior neural induction. Suppressor-of-fused plays an important role in intertwining the Hh and Wnt pathways. Distinct mechanisms are discussed that establish morphogen gradients and integrate retinoic acid and FGF signals during posterior development. These findings not only improve our understanding of regional specification in neural induction, but have profound implications for mammalian stem cell research and regenerative medicine.  相似文献   

13.
One of the major regulatory challenges of animal development is to precisely coordinate in space and time the formation, specification, and patterning of cells that underlie elaboration of the basic body plan. How does the vertebrate plan for the nervous and hematopoietic systems, heart, limbs, digestive, and reproductive organs derive from seemingly similar population of cells? These systems are initially established and patterned along the anteroposterior axis (AP) by opposing signaling gradients that lead to the activation of gene regulatory networks involved in axial specification, including the Hox genes. The retinoid signaling pathway is one of the key signaling gradients coupled to the establishment of axial patterning. The nested domains of Hox gene expression, which provide a combinatorial code for axial patterning, arise in part through a differential response to retinoic acid (RA) diffusing from anabolic centers established within the embryo during development. Hence, Hox genes are important direct effectors of retinoid signaling in embryogenesis. This review focuses on describing current knowledge on the complex mechanisms and regulatory processes, which govern the response of Hox genes to RA in several tissue contexts including the nervous system during vertebrate development.  相似文献   

14.
15.
A characteristic feature of the vertebrate body is its segmentation along the anteroposterior axis, as illustrated by the repetition of vertebrae that form the vertebral column. The vertebrae and their associated muscles derive from metameric structures of mesodermal origin, the somites. The segmentation of the body is established by somitogenesis, during which somites form sequentially in a rhythmic fashion from the presomitic mesoderm. This review highlights recent findings that show how dynamic gradients of morphogens and retinoic acid, coupled to a molecular oscillator, drive the formation of somites and link somitogenesis to the elongation of the anteroposterior axis.  相似文献   

16.
Amphioxus is the closest relative to vertebrates but lacks key vertebrate characters, like rhombomeres, neural crest cells, and the cartilaginous endoskeleton. This reflects major differences in the developmental patterning of neural and mesodermal structures between basal chordates and vertebrates. Here, we analyse the expression pattern of an amphioxus FoxB ortholog and an amphioxus single-minded ortholog to gain insight into the evolution of vertebrate neural segmentation. AmphiFoxB expression shows cryptic segmentation of the cerebral vesicle and hindbrain, suggesting that neuromeric segmentation of the chordate neural tube arose before the origin of the vertebrates. In the forebrain, AmphiFoxB expression combined with AmphiSim and other amphioxus gene expression patterns shows that the cerebral vesicle is divided into several distinct domains: we propose homology between these domains and the subdivided diencephalon and midbrain of vertebrates. In the Hox-expressing region of the amphioxus neural tube that is homologous to the vertebrate hindbrain, AmphiFoxB shows the presence of repeated blocks of cells along the anterior-posterior axis, each aligned with a somite. This and other data lead us to propose a model for the evolution of vertebrate rhombomeric segmentation, in which rhombomere evolution involved the transfer of mechanisms regulating neural segmentation from vertical induction by underlying segmented mesoderm to horizontal induction by graded retinoic acid signalling. A consequence of this would have been that segmentation of vertebrate head mesoderm would no longer have been required, paving the way for the evolution of the unsegmented head mesoderm seen in living vertebrates.  相似文献   

17.
During development, the vertebrate hindbrain is subdivided along its anteroposterior axis into a series of segmental bulges called rhombomeres. These segments in turn generate a repeated pattern of rhombomere-specific neurons, including reticular and branchiomotor neurons. In amphioxus (Cephalochordata), the sister group of the vertebrates, a bona fide segmented hindbrain is lacking, although the embryonic brain vesicle shows molecular anteroposterior regionalization. Therefore, evaluation of the segmental patterning of the central nervous system of agnathan embryos is relevant to our understanding of the origin of the developmental plan of the vertebrate hindbrain. To investigate the neuronal organization of the hindbrain of the Japanese lamprey, Lethenteron japonicum, we retrogradely labeled the reticulospinal and branchial motoneurons. By combining this analysis with a study of the expression patterns of genes identifying specific rhombomeric territories such as LjKrox20, LjPax6, LjEphC and LjHox3, we found that the reticular neurons in the lamprey hindbrain, including isthmic, bulbar and Mauthner cells, develop in conserved rhombomere-specific positions, similar to those in the zebrafish. By contrast, lamprey trigeminal and facial motor nuclei are not in register with rhombomere boundaries, unlike those of gnathostomes. The trigeminal-facial boundary corresponds to the rostral border of LjHox3 expression in the middle of rhombomere 4. Exogenous application of retinoic acid (RA) induced a rostral shift of both the LjHox3 expression domain and branchiomotor nuclei with no obvious repatterning of rhombomeric segmentation and reticular neurons. Therefore, whereas subtype variations of motoneuron identity along the anteroposterior axis may rely on Hox-dependent positional values, as in gnathostomes, such variations in the lamprey are not constrained by hindbrain segmentation. We hypothesize that the registering of hindbrain segmentation and neuronal patterning may have been acquired through successive and independent stepwise patterning changes during evolution.  相似文献   

18.
During development, secreted morphogens such as Wnt, Hedgehog (Hh), and BMP emit from their producing cells in a morphogenetic field, and specify different cell fates in a direct concentration-dependent manner. Understanding how morphogens form their concentration gradients to pattern tissues has been a central issue in developmental biology. Various experimental studies from Drosophila have led to several models to explain the formation of morphogen gradients. Over the past decade, one of the main findings in this field is the characterization of heparan sulfate proteoglycan (HSPG) as an essential regulator for morphogen gradient formation. Genetic and cell biological studies have showed that HSPGs can regulate morphogen activities at various steps including control of morphogen movement, signaling, and intracellular trafficking. Here, we review these data, highlighting recent findings that reveal mechanistic roles of HSPGs in controlling morphogen gradient formation.Embryonic development involves many spatial and temporal patterns of cell and tissue organization. These patterning processes are controlled by gradients of morphogens, the “form-generating substances” (Tabata and Takei 2004; Lander 2007). Secreted morphogen molecules, including members of Wnt, Hedgehog (Hh), and transforming growth factor-β (TGF-β) families, are generated from organizing centers and form concentration gradients to specify distinct cell fates in a concentration-dependent manner. Understanding how morphogen gradients are established during development has been a central question in developmental biology. Over the past decade, studies in both Drosophila and vertebrates have yielded important insights in this field. One of the important findings is the characterization of heparan sulfate proteoglycan (HSPG) as an essential regulator for morphogen gradient formation. In this review, we first discuss various models for morphogen movement. Then, we focus on the functions of HSPGs in morphogen movement, signaling, and trafficking.  相似文献   

19.
Morphogenesis of vertebrate limb, specifically that of the chick wing, has been recognized as a suitable model to study the cellular and molecular mechanisms of pattern formation. The importance of cellular inductive phenomena and the relevance of the processes such as cell division and cell death in the above model are discussed. These studies have revealed the retinoic acid (RA) and retinols as convincing candidates for vertebrate morphogens. The recent discovery that the RA receptors belong to the steroid hormone receptor superfamily might indicate the universality of the RA morphogen and might enlighten the possible mode of its action. Identification and characterization of the 1d locus genes associated with the mouse limb morphogenesis and the possible involvement of the homeobox proteins in chick wing development have opened new prospects in understanding the molecular mechanisms of vertebrate morphogenesis.  相似文献   

20.
Morphogen gradients pattern tissues and organs during development. When morphogen production is spatially restricted, diffusion and degradation are sufficient to generate sharp concentration gradients. It is less clear how sharp gradients can arise within the source of a broadly expressed morphogen. A recent solution relies on localized production of an inhibitor outside the domain of morphogen production, which effectively redistributes (shuttles) and concentrates the morphogen within its expression domain. Here, we study how a sharp gradient is established without a localized inhibitor, focusing on early dorsoventral patterning of the Drosophila embryo, where an active ligand and its inhibitor are concomitantly generated in a broad ventral domain. Using theory and experiments, we show that?a sharp?Toll activation gradient is produced through "self-organized shuttling," which dynamically relocalizes inhibitor production to lateral regions, followed by inhibitor-dependent ventral shuttling of the activating ligand Sp?tzle. Shuttling may represent?a general paradigm for patterning early embryos. PAPERFLICK:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号