首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Environmental pressures may vary over the geographic range of a species, exposing subpopulations to divergent functional demands. How does exposure to competing demands shape the morphology of species and influence the divergence of populations? We explored these questions by performing selection experiments on juveniles of the Hawaiian goby Sicyopterus stimpsoni, an amphidromous fish that exhibits morphological differences across portions of its geographic range where different environmental pressures predominate. Juvenile S. stimpsoni face two primary and potentially opposing selective pressures on body shape as they return from the ocean to freshwater streams on islands: (1) avoiding predators in the lower reaches of a stream; and (2) climbing waterfalls to reach the habitats occupied by adults. These pressures differ in importance across the Hawaiian Islands. On the youngest island, Hawai'i, waterfalls are close to shore, thereby minimizing exposure to predators and placing a premium on climbing performance. In contrast, on the oldest major island, Kaua'i, waterfalls have eroded further inland, lengthening the exposure of juveniles to predators before migrating juveniles begin climbing. Both juvenile and adult fish show differences in body shape between these islands that would be predicted to improve evasion of predators by fish from Kaua'i (e.g., taller bodies that improve thrust) and climbing performance for fish from Hawai'i (e.g., narrower bodies that reduce drag), matching the prevailing environmental demand on each island. To evaluate how competing selection pressures and functional tradeoffs contribute to the divergence in body shape observed in S. stimpsoni, we compared selection imposed on juvenile body shape by (1) predation by the native fish Eleotris sandwicensis versus (2) climbing an artificial waterfall (~100 body lengths). Some variables showed opposing patterns of selection that matched predictions: for example, survivors of predation had lower fineness ratios than did control fish (i.e., greater body depth for a given length), whereas successful climbers had higher fineness ratios (reducing drag) than did fish that failed. However, most morphological variables showed significant selection in only one treatment rather than opposing selection across both. Thus, functional tradeoffs between evasion of predators and minimizing drag during climbing might influence divergence in body shape across subpopulations, but even when selection is an important contributing mechanism, directly opposite patterns of selection across environmental demands are not required to generate morphological divergence.  相似文献   

2.
Synopsis The ecological role of Sicyopterus stimpsoni as a nearly exclusive algal grazer in Hawaiian streams is established through gut content analysis of 192 fish from Wainiha River on the northern island of Kaua'i. Algae in three phyla (Chlorophyta, Cyanophyta, and Chrysophyta) were found to be the primary components of the fish's diet (94.62% of dry biomass). Aquatic insect immatures (primarily Chironomidae) accounted for most of the remaining food biomass (5.37%). Poorly developed gill rakers and high gut-to-length ratios provide evidence for adaptation to herbivory and morphological separation of S. stimpsoni from sympatric gobiods. Interspecific competition for the green alga, Cladophora sp., is suggested as an important feature of biotic interactions among native stream fishes but is mitigated by interspecific differences in food preference and utilization. A Category V hurricane which devastated the island in September 1992 provided a fortuitous opportunity to study disturbance influences on benthic food resources in the stream. Disturbance regimes influenced food selection of S. stimpsoni by altering the abundance and composition of stream algae. Rapid adjustment of S. stimpsoni to changes occurring in algal resource abundance illustrates its superb adaptation to life in a swift-water environment subjected to periodic flood-induced disturbance.  相似文献   

3.
Environmental heterogeneity can promote the emergence of locally adapted phenotypes among subpopulations of a species, whereas gene flow can result in phenotypic and genotypic homogenization. For organisms like amphidromous fishes that change habitats during their life history, the balance between selection and migration can shift through ontogeny, making the likelihood of local adaptation difficult to predict. In Hawaiian waterfall‐climbing gobies, it has been hypothesized that larval mixing during oceanic dispersal counters local adaptation to contrasting topographic features of streams, like slope gradient, that can select for predator avoidance or climbing ability in juvenile recruits. To test this hypothesis, we used morphological traits and neutral genetic markers to compare phenotypic and genotypic distributions in recruiting juveniles and adult subpopulations of the waterfall‐climbing amphidromous goby, Sicyopterus stimpsoni, from the islands of Hawai'i and Kaua'i. We found that body shape is significantly different between adult subpopulations from streams with contrasting slopes and that trait divergence in recruiting juveniles tracked stream topography more so than morphological measures of adult subpopulation differentiation. Although no evidence of population genetic differentiation was observed among adult subpopulations, we observed low but significant levels of spatially and temporally variable genetic differentiation among juvenile cohorts, which correlated with morphological divergence. Such a pattern of genetic differentiation is consistent with chaotic genetic patchiness arising from variable sources of recruits to different streams. Thus, at least in S. stimpsoni, the combination of variation in settlement cohorts in space and time coupled with strong postsettlement selection on juveniles as they migrate upstream to adult habitats provides the opportunity for morphological adaptation to local stream environments despite high gene flow.  相似文献   

4.
A series of waterfall-climbing trials were conducted to identify cues that direct the climbing of juvenile Sicyopterus stimpsoni. In the first experiment, whether climbing juveniles preferentially ascend water sources with conspecifics or whether the presence of just stream water is sufficient to attract fish to ascend a climbing path were assessed. In the second experiment, whether climbing juveniles create a trail of mucus that facilitates the ability of conspecifics to follow their lead was determined. The results indicate that juvenile S. stimpsoni are less likely to climb in waters devoid of organic cues but are strongly attracted to stream water with or without the odour of conspecifics. Once climbing, performance did not differ for juveniles climbing in differing water choices, suggesting an all-or-nothing commitment once climbing commences. Climbing S. stimpsoni did produce a mucous trail while climbing that was associated with a mucous gland that dramatically increases in size just prior to juveniles gaining the ability to climb. The trail was not followed closely by subsequent juveniles traversing the same channel, however, suggesting only weak trail-following in waterfall climbing S. stimpsoni. Previous genetic studies suggest that juvenile S. stimpsoni do not home to natal streams in the face of strong near-shore oceanic currents. Instead, these fish appear primarily to rely on cues that suggest the presence of organic growth in streams, a factor that may indicate suitable habitat in an ever-changing stream environment but which may also be vulnerable to interference through human activity.  相似文献   

5.
Natural selection drives adaptive evolution, but contrasting environmental pressures may lead to trade-offs between phenotypes that confer different performances. Such trade-offs may weaken the strength of selection and/or generate complex fitness surfaces with multiple local optima that correspond to different selection regimes. We evaluated how differences in patterns of phenotypic selection might promote morphological differences between subpopulations of the amphidromous Hawaiian waterfall-climbing goby, Sicyopterus stimpsoni. We conducted laboratory experiments on fish from the islands of Kaua‘i and Hawai‘i (the “Big Island”) to compare patterns of linear and nonlinear selection, and the opportunity for selection, that result from two contrasting pressures, predator evasion and waterfall climbing, which vary in intensity between islands. We found directional and nonlinear selection were strongest when individuals were exposed to their primary selective pressures (predator evasion on Kaua‘i, waterfall climbing on the Big Island). However, the opportunity for selection was greater for the non-primary pressure: climbing on Kaua‘i, predator evasion on the Big Island. Canonical rotation of the nonlinear gamma matrix demonstrated that individuals from Kaua‘i and the Big Island occupy regions near their local fitness peaks for some traits. Therefore, selection for predator evasion on Kaua‘i and climbing on the Big Island may be less effective in promoting morphological changes in this species, because variation of functionally important traits in their respective environments may have been reduced by directional or stabilizing selection. These results demonstrate that despite constraints on the opportunities for selection, population differences in phenotypic traits can arise due to differences in selective regimes. For S. stimpsoni, sufficient variation exists in other locomotor traits, allowing for necessary levels of performance in the contrasting selective regime (i.e., climbing on Kaua‘i and predator evasion on the Big Island) through many-to-one-mapping, which may be essential for the survival of local populations in an evanescent island environment.  相似文献   

6.
7.
8.
Studying recent adaptive radiations in isolated insular systems avoids complicating causal events and thus may offer clearer insight into mechanisms generating biological diversity. Here, we investigate evolutionary relationships and genomic differentiation within the recent radiation of Alcolapia cichlid fish that exhibit extensive phenotypic diversification, and which are confined to the extreme soda lakes Magadi and Natron in East Africa. We generated an extensive RAD data set of 96 individuals from multiple sampling sites and found evidence for genetic admixture between species within Lake Natron, with the highest levels of admixture between sympatric populations of the most recently diverged species. Despite considerable environmental separation, populations within Lake Natron do not exhibit isolation by distance, indicating panmixia within the lake, although individuals within lineages clustered by population in phylogenomic analysis. Our results indicate exceptionally low genetic differentiation across the radiation despite considerable phenotypic trophic variation, supporting previous findings from smaller data sets; however, with the increased power of densely sampled SNPs, we identify genomic peaks of differentiation (FST outliers) between Alcolapia species. While evidence of ongoing gene flow and interspecies hybridization in certain populations suggests that Alcolapia species are incompletely reproductively isolated, the identification of outlier SNPs under diversifying selection indicates the radiation is undergoing adaptive divergence.  相似文献   

9.
Adaptive phenotypic divergence can arise when environments vary in ways favoring alternative phenotypic optima. In aquatic habitats, the costs of locomotion are expected to increase with water velocity, generally favoring a more streamlined body and the reduction of traits that produce drag. However, because streamlining in fish may come at the cost of maneuverability, the net benefits of drag reduction can differ not only among habitats, but also among individuals (or classes of individuals) that rely on locomotion for different uses (e.g., males vs. females or adults vs. juveniles). We tested these predictions by exploring relationships among river velocity, body streamlining, ornamental fin size, and male reproductive condition in the steelcolor shiner (Cyprinella whipplei), a small-bodied North American cyprinid. Overall, males in peak reproductive condition (defined by the development of sexually dimorphic tubercles) had less streamlined bodies and larger ornamental fins than males in lower reproductive condition or individuals lacking these secondary sexual characters (females and immature males). There was a relationship between river velocity and body streamlining only for males in peak reproductive condition, but it was in the opposite direction of our predictions: these males were less streamlined in faster rivers. We found only weak support for the prediction that ornamental fin size would be negatively associated with river velocity. Overall, these results suggest either that drag is not an important selective pressure in these habitats, or that the sexual selection advantages of a deep body and large fin compensate any natural selection costs for C. whipplei males. This study highlights the often overlooked diversity of selective pressures acting on streamlining in fishes, and can offer novel insights and predictions allowing a more nuanced understanding of fish ecomorphology.  相似文献   

10.
The current paradigm of fish community distribution is one of a downstream increase in species richness by addition, but this concept is based on a small number of streams from the mid-west and southern United States, which are dominated by cyprinids. Further, the measure of species richness traditionally used, without including evenness, may not be providing an accurate reflection of the fish community. We hypothesize that in streams dominated by anadromous salmonids, fish community diversity will be affected by the presence of the anadromous species, and therefore be influenced by those factors affecting the salmonid population. Catamaran Brook, New Brunswick, Canada, provides a long-term data set to evaluate fish community diversity upstream and downstream of an obstruction (North American beaver Castor canadensis dam complex), which affects distribution of Atlantic salmon Salmo salar. The Shannon Weiner diversity index and community evenness were calculated for sample sites distributed throughout the brook and over 15 years. Fish community diversity was greatest upstream of the beaver dams and in the absence of Atlantic salmon. The salmon appear to depress the evenness of the community but do not affect species richness. The community upstream of the beaver dams changes due to replacement of slimy sculpin Cottus cognatus by salmon, rather than addition, when access is provided. Within Catamaran Brook, location of beaver dams and autumn streamflow interact to govern adult Atlantic salmon spawner distribution, which then dictates juvenile production and effects on fish community. These communities in an anadromous Atlantic salmon dominated stream do not follow the species richness gradient pattern shown in cyprinid-dominated streams and an alternative model for stream fish community distribution in streams dominated by anadromous salmonids is presented. This alternative model suggests that community distribution may be a function of semipermeable obstructions, streamflow and the distribution of the anadromous species affecting resident stream fish species richness, evenness, biomass and production.  相似文献   

11.
Performance‐related variation in fitness can manifest as morphological responses to ecological and evolutionary pressures. Eco‐morphological studies often utilize stark binary comparisons, such as lentic to lotic populations of freshwater fishes, to characterize relationships between form and function despite possible complications from confounding factors. In the present study, we compared body shape variation among lotic populations of a stream fish (Cyprinella venusta Girard) to disentangle the influence of ecological and evolutionary drivers of phenotypic change. We assessed the extent to which body shape corresponded to three key environmental factors (mean channel velocity, mean discharge, and mean annual run‐off), phylogeny (mitochondrial DNA divergence), and body size (centroid size). We also examined relationships between these parameters and a fineness index, which is a measure of streamlining and morphological optimization for steady swimming performance. All three environmental variables had some explanatory power, although morphological characteristics were predominantly associated with variation in mean annual run‐off. Phylogeny was also a strong predictor of morphological variation, whereas body size had little predictive power. Populations experiencing higher mean annual run‐off exhibited a shorter base of the dorsal fin, a more slender body and caudal peduncle, a smaller head in both horizontal and vertical dimensions, and a more anterior placement of the eye. With some exceptions, such as variation in jaw length, differences in body shape associated with phylogenetic history were similar to those associated with run‐off. Notably, all clades exhibited parallel responses to variation in run‐off. Populations experiencing high mean annual run‐off approached a hydrodynamic optimum, suggesting a morphology optimized for steady swimming performance. In contrast to previous studies that emphasize the importance of average water velocity, the findings of the present study indicate that morphological variation among populations of stream fishes is tightly linked to more complex aspects of hydrology and evolutionary history. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, ●● , ●●–●●.  相似文献   

12.
Sexual dimorphism is widespread in lizards, with the most consistently dimorphic traits being head size (males have larger heads) and trunk length (the distance between the front and hind legs is greater in females). These dimorphisms have generally been interpreted as follows: (1) large heads in males evolve through male-male rivalry (sexual selection); and (2) larger interlimb lengths in females provide space for more eggs (fecundity selection). In an Australian lizard (the snow skink, Niveoscincus microlepidotus), we found no evidence for ongoing selection on head size. Trunk length, however, was under positive fecundity selection in females and under negative sexual selection in males. Thus, fecundity selection and sexual selection work in concert to drive the evolution of sexual dimorphism in trunk length in snow skinks.  相似文献   

13.
Rincón PA  Bastir M  Grossman GD 《Oecologia》2007,152(2):345-355
Identifying links between morphology and performance for ecologically relevant tasks will help elucidate the relationships between organismal design and fitness. We conducted a laboratory study to quantify the relationship between variation in body shape and prey-capture success in four drift-feeding minnow species. We offered drifting prey to individual fish in a test flume, counted successful strikes to measure prey-capture success and recorded the position (X, Y coordinates) of ten landmarks on each fish’s outline to delineate the specimen’s form. We then quantified shape variation among species and related it to capture performance through thin-plate spline analysis. Body shape varied significantly among species and with specimen size and was the major determinant of capture success, explaining 45–47% of its variability. Prey-capture success at differing velocities differed among species, but once the effects of shape and size were accounted for, those differences were no longer significant. Allometric shape changes appeared responsible for most of the ontogenetic variation in capture performance, although other size-related, non-shape factors also seemed relevant. Fishes with deeper, shorter bodies, more caudally placed median fins and larger, more upward-pointing mouths exhibited greater capture success than more fusiform fish, suggesting that streamlining, which is energetically advantageous for sustained swimming, entails a cost in terms of prey-capture ability. Our findings demonstrate a strong connection between organismal shape and performance and provide empirical evidence of the cost of morphological specialization for fishes in the drift-feeding functional guild.  相似文献   

14.
Horses, like many domesticated species, have been selected for broad variation in skeletal size. This variation is not only an interesting model of rapid evolutionary change during domestication, but is also directly applicable to the horse industry. Breeders select for complex traits like body size and skeletal conformation to improve marketability, function, soundness and performance in the show ring. Using a well-defined set of 35 measurements, we have identified and quantified skeletal variation in the horse species. We collected measurements from 1215 horses representing 65 breeds of diverse conformation such as the American Miniature, Shetland Pony, Arabian Horse, Thoroughbred, Shire and Clydesdale. Principal components analysis has identified two key dimensions of skeletal variation in the horse. Principal component 1 is positively correlated with every measurement and quantifies overall body size. Principal component 2 captures a pattern of bone widths vs. lengths and thus quantifies variation in overall bone thickness. By defining these complex skeletal traits, we have created a framework for whole genome association studies to identify quantitative trait loci that contribute to this variation.  相似文献   

15.
Selective forces shape sexes differently, with male body proportions facing strong selection to enhance mate searching and male-to-male combat traits, and female fitness being influenced by the ability to assimilate large amounts of nutrients necessary for vitellogenesis (and/or gestation), and their ability to carry the eggs or embryos. We evaluated the sexual dimorphism of body proportion of more than 800 wild steppe tortoises (Testudo horsfieldii) in Uzbekistan. The thick, well-developed shell offers protection from predators but pronounced digging habits probably also constrain body shape (e.g. a shell that is dorso-ventrally flattened, although round from a dorsal view helps to penetrate into, and move within the soil). Thus, in this species, natural selection might favour a heavy and flat shell that is 'closed' with small openings for appendages. In males, these environmental influences appear to be countered by sexual selection. Compared to females, they weigh less (absolutely and relative to shell dimensions), have longer legs, have shell structure allowing wider movements for their legs, and they walk faster. Males were also able to right themselves more quickly than females did in experimental tests. This quick righting ability is critical because intra-sexual combats frequently result in males being flipped onto their backs and becoming prone to hyperthermia or predation. Females are heavily built, with wide shells (relative to male shells), which may provide space for carrying eggs. From our results, a number of simple hypotheses can be tested on a wide range of chelonian species.  相似文献   

16.
Harvesting wild animals may exert size‐independent selection pressures on a range of morphological, life history, and behavioral traits. Most work so far has focused on selection pressures on life history traits and body size as morphological trait. We studied here how recreational fishing selects for morphological traits related to body shape, which may correlate with underlying swimming behavior. Using landmark‐based geometric morphometrics, we found consistent recreational fishing‐induced selection pressures on body shape in two recreationally exploited marine fish species. We show that individuals with larger‐sized mouths and more streamlined and elongated bodies were more vulnerable to passively operated hook‐and‐line fishing independent of the individual's body size or condition. While the greater vulnerability of individuals with larger mouth gapes can be explained by the direct physical interaction with hooks, selection against streamlined and elongated individuals could either involve a specific foraging mode or relate to underlying elevated swimming behavior. Harvesting using passive gear is common around the globe, and thus, size‐independent selection on body shape is expected to be widespread potentially leaving behind individuals with smaller oral gapes and more compact bodies. This might have repercussions for food webs by altering foraging and predation.  相似文献   

17.
18.
Resource seasonality and fish diets in an Illinois stream   总被引:3,自引:0,他引:3  
Synopsis The purpose of this study was to evaluate the intensity of competition for food among 9 species of stream fishes that primarily eat aquatic invertebrates. The taxonomic and size composition, and numerical abundance of aquatic invertebrates were monitored for one year using drift and benthic samples. Diet data were obtained from stomachs of fishes captured at the same time and place that invertebrate sampling was done. Diet characteristics examined included taxonomic and size composition, number of prey per fish, and diet breadth. Drifting invertebrates were more abundant early in the year (March–June) than later (July–January). The summer-early fall scarcity of invertebrates was especially notable among those>3.6 mm long, which comprised the bulk of prey found in fish stomachs. Average prey size eaten by a fish species was positively correlated with fish mouth size, but interspecific overlap in prey size was extensive. Cyprinids as a group (5 species) ate proportionally fewer small (< 3.6 mm long) prey from July to January than did the centrarchids and stonecat. Taxonomic compositions of available invertebrates and fish diets varied markedly among sampling dates, but the use of prey taxa by fishes was not correlated with the availability of those taxa. Use of aquatic prey taxa was generally similar among fish species, but cyprinids as a group ate proportionally more terrestrial prey from July to January than did the centrarchids and stonecat. Diet breadths for all species increased as food levels declined, indicating that these fishes experienced resource depression. Food scarcity was evidently more severe for cyprinids since their stomachs contained few prey through the summer and fall relative to the centrarchids and stonecat. Though the fish species studied probably compete for food in the summer and fall, this competition did not account for the community structure observed.  相似文献   

19.
Maternal provisioning of animal embryos may be entirely through yolk deposited in the unfertilized egg (lecithotrophy) or may include post-fertilization nutrient transfer (matrotrophy) in varying degrees. Current theory suggests that the extent of post-fertilization provisioning is resource-dependent, with higher levels of matrotrophy being advantageous in more productive environments. In this study, we investigated post-fertilization embryo provisioning in a livebearing fish, Poecilia mexicana, from two different habitats (a toxic cave and a non-toxic surface habitat) that impose different energetic demands and therefore differ in resources available for reproduction. We predicted that fish in the benign habitat would be more matrotrophic than those from the toxic cave. We used two different techniques for this assay: (1) the matrotrophy-index analysis (MI) for field-collected fish and (2) both MI and radio-tracer assay for laboratory-reared females. According to the interpretation of the matrotrophy index, both populations are purely lecithotrophic, while the radio-tracer assay found females from both populations to actively transfer nutrients to developing embryos at approximately the same rate. Our results suggest that P. mexicana, which was traditionally classified as lecithotrophic, is capable of incipient matrotrophy, and that matrotrophy can contribute to embryo provisioning even in populations from resource-limited environments. Furthermore, the analysis of laboratory-reared animals provides evidence for a genetic component to the large offspring size in cave mollies, which had so far only been described from the field. Specifically, our results suggest matrotrophy occurs in species interpreted as lecithotrophic using the MI approach. Hence, to avoid misclassification, both techniques should ideally be employed in concert, rather than individually. Finally, our results provide further insights into the possible evolutionary pathway from lecithotrophic oviparity to matrotrophic viviparity.  相似文献   

20.
Proteins from halophiles have adapted to challenging environmental conditions and require salt for their structure and function. How halophilic proteins adapted to a hypersaline environment is still an intriguing question. It is important to mimic the physiological conditions of the archae extreme halophiles when characterizing their enzymes, including structural characterization. The NMR derived structure of Haloferax volcanii dihydrofolate reductase in 3.5 M NaCl is presented, and represents the first high salt structure calculated using NMR data. Structure calculations show that this protein has a solution structure which is similar to the previously determined crystal structure with a difference at the N terminus of beta3 and the type of beta-turn connection beta7 and beta8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号