首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein aggregation is correlated with the onset and progression of protein misfolding diseases (PMDs). Inhibiting the generation of toxic aggregates of misfolded proteins has been proposed as a therapeutic approach for PMDs. Due to their unique properties, nanomaterials have been extensively investigated for their ability to inhibit protein aggregation and have shown great potential in the diagnosis and treatment of PMDs. However, the precise mechanisms by which nanomaterials interact with amyloidogenic proteins and the factors influencing these interactions remain poorly understood. Consequently, developing a rational design strategy for nanomaterials that target specific proteins in PMDs has been challenging. In this review, we elucidate the effects of nanomaterials on protein aggregation and describe the mechanisms through which nanomaterials interfere with protein aggregation. The major factors impacting protein-nanomaterial interaction such as size, charge, concentration, surface modification and morphology that can be rationally addressed to achieve the desired effects of nanomaterials on protein aggregation are summarized. The prospects and challenges to the clinical application of nanomaterials for the treatment of PMDs are also discussed.  相似文献   

2.
Yadav SC  Kumari A  Yadav R 《Peptides》2011,32(1):173-187
The targeted delivery of therapeutic peptide by nanocarriers systems requires the knowledge of interactions of nanomaterials with the biological environment, peptide release, and stability of therapeutic peptides. Therapeutic application of nanoencapsulated peptides are increasing exponentially and >1000 peptides in nanoencapsulated form are in different clinical/trial phase. This review covers current scenario of therapeutic protein and peptides encapsulation on polymer to metallic nanocarriers including methods of protein encapsulation, peptide bioconjugation on nanoparticles, stability enhancement of encapsulated proteins and its biomedical applications.  相似文献   

3.
The interactions of biological macromolecules with nanoparticles underlie a wide variety of current and future applications in the fields of biotechnology, medicine and bioremediation. The same interactions are also responsible for mediating potential biohazards of nanomaterials. Some applications require that proteins adsorb to the nanomaterial and that the protein resists or undergoes structural rearrangements. This article presents a screening method for detecting nanoparticle-protein partners and conformational changes on time scales ranging from milliseconds to days. Mobile fluorophores are used as reporters to study the interaction between proteins and nanoparticles in a high-throughput manner in multi-well format. Furthermore, the screening method may reveal changes in colloidal stability of nanomaterials depending on the physicochemical conditions.  相似文献   

4.
Bio-nano interactions can be defined as the study of interactions between nanoscale entities and biological systems such as, but not limited to, peptides, proteins, lipids, DNA and other biomolecules, cells and cellular receptors and organisms including humans. Studying bio-nano interactions is particularly useful for understanding engineered materials that have at least one dimension in the nanoscale. Such materials may consist of discrete particles or nanostructured surfaces. Much of biology functions at the nanoscale; therefore, our ability to manipulate materials such that they are taken up at the nanoscale, and engage biological machinery in a designed and purposeful manner, opens new vistas for more efficient diagnostics, therapeutics (treatments) and tissue regeneration, so-called nanomedicine. Additionally, this ability of nanomaterials to interact with and be taken up by cells allows nanomaterials to be used as probes and tools to advance our understanding of cellular functioning. Yet, as a new technology, assessment of the safety of nanomaterials, and the applicability of existing regulatory frameworks for nanomaterials must be investigated in parallel with development of novel applications. The Royal Society meeting ‘Bio-nano interactions: new tools, insights and impacts'' provided an important platform for open dialogue on the current state of knowledge on these issues, bringing together scientists, industry, regulatory and legal experts to concretize existing discourse in science law and policy. This paper summarizes these discussions and the insights that emerged.  相似文献   

5.
In the last 15?years, the exploitation of biological systems (i.e. plants, bacteria, mycelial fungi, yeasts, and algae) to produce metal(loid) (Me)-based nanomaterials has been evaluated as eco-friendly and a cost-effective alternative to the chemical synthesis processes. Although the biological mechanisms of biogenic Me-nanomaterial (Bio-Me-nanomaterials) production are not yet completely elucidated, a key advantage of such bio-nanostructures over those chemically synthesized is related to their natural thermodynamic stability, with several studies ascribed to the presence of an organic layer surrounding these Bio-Me-nanostructures. Different macromolecules (e.g. proteins, peptides, lipids, DNA, and polysaccharides) or secondary metabolites (e.g. flavonoids, terpenoids, glycosides, organic acids, and alkaloids) naturally produced by organisms have been indicated as main contributors to the stabilization of Bio-Me-nanostructures. Nevertheless, the chemical–physical mechanisms behind the ability of these molecules in providing stability to Bio-Me-nanomaterials are unknown. In this context, transposing the stabilization theory of chemically synthesized Me-nanomaterials (Ch-Me-nanomaterials) to biogenic materials can be used towards a better comprehension of macromolecules and secondary metabolites role as stabilizing agents of Bio-Me-nanomaterials. According to this theory, nanomaterials are generally featured by high thermodynamic instability in suspension, due to their high surface area and surface energy. This feature leads to the necessity to stabilize chemical nanostructures, even during or directly after their synthesis, through the development of (i) electrostatic, (ii) steric, or (iii) electrosteric interactions occurring between molecules and nanomaterials in suspension. Based on these three mechanisms, this review is focused on parallels between the stabilization of biogenic or chemical nanomaterials, suggesting which chemical–physical mechanisms may be involved in the natural stability of Bio-Me-nanomaterials. As a result, macromolecules such as DNA, polyphosphates and proteins may electrostatically interact with Bio-Me-nanomaterials in suspension through their charged moieties, showing the same properties of counterions in Ch-Me-nanostructure suspensions. Since several biomolecules (e.g. neutral lipids, nonionic biosurfactants, polysaccharides, and secondary metabolites) produced by metal(loid)-grown organisms can develop similar steric hindrance as compared to nonionic amphiphilic surfactants and block co-polymers generally used to sterically stabilize Ch-Me-nanomaterials. These biomolecules, most likely, are involved in the development of steric stabilization, because of their bulky structures. Finally, charged lipids and polysaccharides, ionic biosurfactants or proteins with amphiphilic properties can exert a dual effect (i.e. electrostatic and steric repulsion interactions) in the contest of Bio-Me-nanomaterials, leading to the high degree of stability observed.  相似文献   

6.
Methods for the detection and analysis of protein-protein interactions   总被引:1,自引:0,他引:1  
Berggård T  Linse S  James P 《Proteomics》2007,7(16):2833-2842
A large number of methods have been developed over the years to study protein-protein interactions. Many of these techniques are now available to the nonspecialist researcher thanks to new affordable instruments and/or resource centres. A typical protein-protein interaction study usually starts with an initial screen for novel binding partners. We start this review by describing three techniques that can be used for this purpose: (i) affinity-tagged proteins (ii) the two-hybrid system and (iii) some quantitative proteomic techniques that can be used in combination with, e.g., affinity chromatography and coimmunoprecipitation for screening of protein-protein interactions. We then describe some public protein-protein interaction databases that can be searched to identify previously reported interactions for a given bait protein. Four strategies for validation of protein-protein interactions are presented: confocal microscopy for intracellular colocalization of proteins, coimmunoprecipitation, surface plasmon resonance (SPR) and spectroscopic studies. Throughout the review we focus particularly on the advantages and limitations of each method.  相似文献   

7.
从植物中提取蛋白质包括机械破碎和离心等一系列步骤,蛋白质在提取液中的溶解度直接影响蛋白提取率和产量.结果表明,用纳米器件处理过的提取液能显著提高叶蛋白的提取率,提升幅度为10%-30%.利用正交试验研究不同提取条件下纳米器件对蛋白可溶性的影响,结果显示浸泡时长(纳米器件浸泡在提取液中的时长)是最关键的已测因素.此外,植物样品的破碎程度也是影响叶蛋白提取率的关键因素之一.  相似文献   

8.
Most current nanotoxicology research is focused on examining the influence of nanomaterials at the tissue and cellular levels. To explore these interactions on the molecular level, new carboxyfullerenes interact with transport proteins at the molecular level. The carboxyfullerenes exhibited an unusual mode of binding outside the calyx of beta-lactoglobulin (a typical representative of lipocalin family of barrier liquid proteins). The complexes were studied by various techniques, including mass spectrometry, UV/vis and circular dichroism spectroscopy, chromatographic methods, gel electrophoresis, and dynamic light scattering. The fullerene ligands were transferred from beta-lactoglobulin to human serum albumin (a representative of a blood transport protein), thus providing a model of how fullerene-based nanomaterials interact with biomolecules and are transported in biological systems.  相似文献   

9.
Invasion of erythrocytes by Plasmodium merozoites is a complex process that is mediated by specific molecular interactions. Here, we review recent studies on interactions between erythrocyte binding antigens (EBA) and PfRH proteins from the parasite and erythrocyte receptors involved in invasion. The timely release of these parasite ligands from internal organelles such as micronemes and rhoptries to the merozoite surface is critical for receptor-engagement leading to successful invasion. We review information on signaling mechanisms that control the regulated secretion of parasite proteins during invasion. Erythrocyte invasion involves the formation and movement of a junction between the invading merozoite and host erythrocyte. We review recent studies on the molecular composition of the junction and the molecular motor that drives movement of the junction.  相似文献   

10.
Protein-based voltammetric biosensors are sensors based on the electric communication between proteins and electrodes. Recently, more and more nanomaterials are utilized to assist the fabrication of such kind of biosensors. In this review, we mainly detail the biosensors constructed with different kinds of nanomaterials depending on their categories in the past two years.  相似文献   

11.
Aptamers (Apts) are synthetic nucleic acid ligands that can be engineered to target various molecules, including amino acids, proteins, and pharmaceuticals. Through a series of adsorption, recovery, and amplification steps, Apts are extracted from combinatorial libraries of synthesized nucleic acids. Using aptasensors in bioanalysis and biomedicine can be improved by combining them with nanomaterials. Moreover, Apt-associated nanomaterials, including liposomes, polymeric, dendrimers, carbon nanomaterials, silica, nanorods, magnetic NPs, and quantum dots (QDs), have been widely used as promising nanotools in biomedicine. Following surface modifications and conjugation with appropriate functional groups, these nanomaterials can be successfully used in aptasensing. Advanced biological assays can use Apts immobilized on QD surfaces through physical interaction and chemical bonding. Accordingly, modern QD aptasensing platforms rely on interactions between QDs, Apts, and targets to detect them. QD-Apt conjugates can be used to directly detect prostate, ovarian, colorectal, and lung cancers or simultaneously detect biomarkers associated with these malignancies. Tenascin-C, mucin 1, prostate-specific antigen, prostate-specific membrane antigen, nucleolin, growth factors, and exosomes are among the cancer biomarkers that can be sensitively detected using such bioconjugates. Furthermore, Apt-conjugated QDs have shown great potential for controlling bacterial infections such as Bacillus thuringiensis, Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Campylobacter jejuni, Staphylococcus aureus, and Salmonella typhimurium. This comprehensive review discusses recent advancements in the design of QD-Apt bioconjugates and their applications in cancer and bacterial theranostics.  相似文献   

12.
AK Jana  N Sengupta 《Biophysical journal》2012,102(8):1889-1896
Though nanomaterials such as carbon nanotubes have gained recent attention in biology and medicine, there are few studies at the single-molecule level that explore their interactions with disease-causing proteins. Using atomistic molecular-dynamics simulations, we have investigated the interactions of the monomeric Aβ(1-42) peptide with a single-walled carbon nanotube of small diameter. Starting with peptide-nanotube complexes that delineate the interactions of different segments of the peptide, we find rapid convergence in the peptide's adsorption behavior on the nanotube surface, manifested in its arrested movement, the convergence of peptide-nanotube contact areas and approach distances, and in increased peptide wrapping around the nanotube. In systems where the N-terminal domain is initially distal from nanotube, the adsorption phenomena are initiated by interactions arising from the central hydrophobic core, and precipitated by those arising from the N-terminal residues. Our simulations and free energy calculations together demonstrate that the presence of the nanotube increases the energetic favorability of the open state. We note that the observation of peptide localization could be leveraged for site-specific drug delivery, while the decreased propensity of collapse appears promising for altering kinetics of the peptide's self-assembly.  相似文献   

13.
A wide variety of nanomaterials are currently being developed for use in the detection and treatment of human diseases. However, there is no systematic way to measure and predict the action of such materials in biological contexts. Lipid-encapsulated nanoparticles (NPs) are a class of nanomaterials that includes the liposomes, the most widely used and clinically proven type of NPs. Liposomes can, however, activate the complement system, an important branch of innate immunity, resulting in undesirable consequences. Here, we describe the complement response to lipid-encapsulated NPs that are functionalized on the surface with various lipid-anchored gadolinium chelates. We developed a quantitative approach to examine the interaction of NPs with the complement system using in vitro assays and correlating these results with those obtained in an in vivo mouse model. Our results indicate that surface functionalization of NPs with certain chemical structures elicits swift complement activation that is initiated by a natural IgM antibody and propagated via the classical pathway. The intensity of the response is dependent on the chemical structures of the lipid-anchored chelates and not zeta potential effects alone. Moreover, the extent of complement activation may be tempered by complement inhibiting regulatory proteins that bind to the surface of NPs. These findings represent a step forward in the understanding of the interactions between nanomaterials and the host innate immune response and provide the basis for a systematic structure-activity relationship study to establish guidelines that are critical to the future development of biocompatible nanotherapeutics.  相似文献   

14.
This review briefly emphasizes the different detection approaches (electrochemical sensors, chemiluminescence, surface-enhanced Raman scattering), functional nanostructure materials (quantum dots, metal nanoparticles, metal nanoclusters, magnetic nanomaterials, metal oxide nanoparticles, polymer-based nanomaterials, and carbonaceous nanomaterials) and detection mechanisms. Furthermore, the emphasis of this review is on the integration of functional nanomaterials with optical spectroscopic techniques for the identification of various biomarkers (nucleic acids, glucose, uric acid, oxytocin, dopamine, ascorbic acid, bilirubin, spermine, serotonin, thiocyanate, Pb2+, Cu2+, Hg2+, F, peptides), and cancer biomarkers (mucin 1, prostate specific antigen, carcinoembryonic antigen, CA15-3, human epidermal growth factor receptor 2, C-reactive protein, and interleukin-6). Analytical characteristics of nanomaterials-based optical sensors are summarized in the tables, providing the insights of nanomaterials-based optical sensors for biomarkers detection. Finally, the opportunities and challenges of nanomaterials-based optical analytical approaches for the detection of various biomarkers (inorganic, organic, biomolecules, peptides and proteins) are discussed.  相似文献   

15.
Due to their many advantageous properties, nanomaterials(NMs) have been utilized in diverse consumer goods, industrial products, and for therapeutic purposes. This situation leads to a constant risk of exposure and uptake by the human body, which are highly dependent on nanomaterial size. Consequently, an improved understanding of the interactions between different sizes of nanomaterials and biological systems is needed to design safer and more clinically relevant nano systems. We discuss the sizedependent effects of nanomaterials in living organisms. Upon entry into biological systems, nanomaterials can translocate biological barriers, distribute to various tissues and elicit different toxic effects on organs, based on their size and location. The association of nanomaterial size with physiological structures within organs determines the site of accumulation of nanoparticles.In general, nanomaterials smaller than 20 nm tend to accumulate in the kidney while nanomaterials between 20 and 100 nm preferentially deposit in the liver. After accumulating in organs, nanomaterials can induce inflammation, damage structural integrity and ultimately result in organ dysfunction, which helps better understand the size-dependent dynamic processes and toxicity of nanomaterials in organisms. The enhanced permeability and retention effect of nanomaterials and the utility of this phenomenon in tumor therapy are also highlighted.  相似文献   

16.
Xu Z  Zhang YL  Song C  Wu LL  Gao HW 《PloS one》2012,7(4):e32818
The increased application of nanomaterials has raised the level of public concern regarding possible toxicities caused by exposure to nanostructures. The interactions of nanosized hydroxyapatite (HA) with cytochrome c and hemoglobin were investigated by zeta-potential, UV-vis, fluorescence and circular dichroism. The experimental results indicated that the interactions were formed via charge attraction and hydrogen bond and obeyed Langmuir adsorption isotherm. The two functional proteins bridged between HA particles to aggregate into the coralloid form, where change of the secondary structure of proteins occurred. From effects of nanosized HA, SiO(2) and TiO(2) particles on the zebrafish embryos development, they were adsorbed on the membrane surface confirmed by the electronic scanning microscopy. Nano-HA aggregated into the biggest particles around the membrane protein and then caused a little toxicity to development of zebrafish embryos. The SiO(2) particles were distributed throughout the outer surface and caused jam of membrane passage, delay of the hatching time and axial malformation. Maybe owing to the oxygen free radical activity, TiO(2) caused some serious deformity characters in the cardiovascular system.  相似文献   

17.
Macromolecular interactions are central to most cellular processes. Experimental methods generate diverse data on these interactions ranging from high throughput protein-protein interactions (PPIs) to the crystallised structures of complexes. Despite this, only a fraction of interactions have been identified and therefore predictive methods are essential to fill in the numerous gaps. Many predictive methods use information from related proteins. Accordingly, we review the conservation of interface and ligand binding sites within protein families and their association with conserved residues and Specificity Determining Positions. We then review recent developments in predictive methods for the identification of PPIs, protein interface sites and small molecule ligand binding sites. The challenges that are still faced by the community in these areas are discussed.  相似文献   

18.
Development of nanoparticle libraries for biosensing   总被引:6,自引:0,他引:6  
Magnetic and magnetofluorescent nanoparticles have become important materials for biological applications especially for sensing, separation, and imaging. To achieve target specificity, these nanomaterials are often covalently modified with binding proteins such as antibodies or proteins. Here we report on the creation of nanoparticle libraries that achieve specificity through multivalent modification with small molecules. We explore different synthetic routes to attach small molecules with anhydride, amine, hydroxyl carboxyl, thiol, and epoxy handles. We show that the derived nanomaterials have unique biological functions, possess different behaviors in cell screens, and can be used as substrates for biological screens.  相似文献   

19.
This review article summarizes the preparation of polymers imprinted with proteins that exhibit antibody-like specificity due to the presence of well-defined recognition sites. We present the newest developments concerned with use of nanomaterials, such as magnetic and silica nanoparticles, nanowires, carbon nanotubes, and quantum dots as supports enabling the preparation of protein-imprinted polymers via surface imprinting techniques. As an alternative receptor-like synthetic materials, these conjugates are attracting a great deal of interest in various fields including proteomics, genomics, and fabrication of selective sensors. However, imprinting of large biomacromolecules such as proteins still remains a challenge due to the inherent limitations related to protein properties. In the text below, we also describe examples of applications focused on selective recognition of biomacromolecules.  相似文献   

20.
All proteins require physical interactions with other proteins in order to perform their functions. Most of them oligomerize into homomers, and a vast majority of these homomers interact with other proteins, at least part of the time, forming transient or obligate heteromers. In the present paper, we review the structural, biophysical and evolutionary aspects of these protein interactions. We discuss how protein function and stability benefit from oligomerization, as well as evolutionary pathways by which oligomers emerge, mostly from the perspective of homomers. Finally, we emphasize the specificities of heteromeric complexes and their structure and evolution. We also discuss two analytical approaches increasingly being used to study protein structures as well as their interactions. First, we review the use of the biological networks and graph theory for analysis of protein interactions and structure. Secondly, we discuss recent advances in techniques for detecting correlated mutations, with the emphasis on their role in identifying pathways of allosteric communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号