首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The low-molecular-weight heat-shock protein HSP27 is made in the absence of heat shock during Drosophila melanogaster development. An analysis of the accumulation of HSP27 during specific stages of development is presented using an antiserum recognizing this protein. Whereas HSP27 is abundant during embryogenesis, the level of this protein begins to decrease in the 20-h old embryo and is no longer detectable in second instar larvae. A high level of HSP27 is again observed in third instar larvae and reaches a maximal level in late pupae. While still abundant in young adult flies of both sexes, a greater amount of HSP27 is found in females with the protein being highly concentrated within the ovaries. Following lysis of whole pupae, about 60% of HSP27 is found in the soluble lysate fraction in a form which sediments between 5 and 20 S. Anti-HSP27 serum also recognizes three other developmentally regulated polypeptides with apparent MW of 33, 85 and 120 kDa. The 33 kDa protein accumulates in pupae while those of 85 and 120 kDa are more abundant in third instar larvae. Unlike HSP27, these proteins are not detected in embryos or ovaries. Immunoblot analysis of V8 proteolytic fragments suggests that HSP 27 and 33 kDa are related polypeptides. Exposure of the developing insect to heat-shock treatment results in increased level of HSP27. In larvae, a small amount of the 33 kDa protein accumulates following heat shock, while in pupae and adult flies a decrease in the concentration of this protein is observed after heat shock. Finally, different cellular localizations and distributions within the pupal body have been found for these developmentally regulated polypeptides.  相似文献   

2.
Nuclear accumulation of heat shock protein (HSP) 72 occurs after cardiac ischemia. This nuclear accumulation of HSP72 with stress occurs in other tissues and species. We postulated that nuclear accumulation of HSP72 was important for the protective effect of HSP72 and that phosphorylation of a single tyrosine (Y(524)) regulated nuclear accumulation of HSP72. Western blots of immunoprecipitated HSP72 from Cos-1 cells demonstrated that tyrosine becomes phosphorylated after heat shock. Treatment with the tyrosine kinase inhibitor geldanamycin blocked nuclear accumulation of HSP72 with heat shock. Two epitope-tagged constructs were made: M17 converting Y(524) to aspartic acid (pseudophosphorylation) and M18 converting Y(524) to phenylalanine. When transfected into Cos-1 cells, M17 accumulates more rapidly and M18 less rapidly than wild-type (WT) HSP72 in the nucleus following heat shock. Cells expressing M18 had less viability after heat shock at 43.5 degrees C than other constructs. After heat shock at 45 degrees C, cells expressing M17 had superior survival compared with WT and M18. These data suggest that phosphorylation at Y(524) facilitates nuclear accumulation of HSP72 following heat stress, and substitution of aspartic acid at Y(524) enhances resistance to heat-shock injury.  相似文献   

3.
We analyzed, with respect to heat shock proteins (HSPs), systemically reacting tobacco leaves inoculated with Tobacco mosaic virus (TMV), wild-type vulgare, and temperature-sensitive coat protein (CP) mutants Ni 118 (P20L) and flavum (D19A), kept at 23 or 30 degrees C. HSP18 and HSP70 mRNAs and proteins were induced with temperature-sensitive CP mutants after 1 to 2 days at 30 degrees C. After 4 to 6 days, HSP70 was also induced at 23 degrees C. The induction of HSPs paralleled the amount of insoluble TMV CP in leaf extracts, indicating that denatured TMV CP by itself induces a heat-shock response.  相似文献   

4.
Continuous exposure of a Xenopus laevis kidney epithelial cell line, A6, to either heat shock (33 degrees C) or sodium arsenite (50 microM) resulted in transient but markedly different temporal patterns of heat-shock protein (HSP) synthesis and HSP 70 and 30 mRNA accumulation. Heat-shock-induced synthesis of HSPs was detectable within 1 h and reached maximum levels by 2-3 h. While sodium arsenite induced the synthesis of some HSPs within 1 h, maximal HSP synthesis did not occur until 12 h. The pattern of HSP 70 and 30 mRNA accumulation was similar to the response observed at the protein level. During recovery from heat shock, a coordinate decline in HSPs and HSP 70 and 30 mRNA was observed. During recovery from sodium arsenite, a similar phenomenon occurred during the initial stages. However, after 6 h of recovery, HSP 70 mRNA levels persisted in contrast to the declining HSP 30 mRNA levels. Two-dimensional polyacrylamide gel electrophoresis revealed the presence of 5 HSPs in the HSP 70 family, of which two were constitutive, and 16 different stress-inducible proteins in the HSP 30 family. In conclusion, heat shock and sodium arsenite induce a similar set of HSPs but maximum synthesis of the HSP is temporally separated by 12-24 h.  相似文献   

5.
6.
Effect of heat stress on the synthesis of soluble heat shock proteins (HSPs) and the regrowth in seminal roots of three cultivated and three wild wheat genotypes was examined. In regrowth experiments, 2-d-old etiolated seedlings were exposed to 23 (control), 32, 35, 37 and 38 degrees C for 24 h, and 35 and 37 degrees C (24 h) followed by 50 degrees C (1 h). The lengths of the seminal roots generally decreased significantly at the end of 48 and 72 h recovery growth periods at 35, 37 and 38 degrees C temperature treatments compared with control. Genotypic variability was significant level at all temperature treatments for the seminal root length. Also, genotypic differences for the number of seminal roots were determined among the wheat cultivars and between the wild wheat species and the wheat cultivars at all temperature treatments; but genotypic differences among wild wheat species were only detected at 37-->50 degrees C treatment. Acquired thermotolerance for the seminal root length is over 50% at 37-->50 degrees C treatment. The genotypic variability of soluble heat shock proteins in seminal root tissues were analyzed by two-dimensional electrophoresis (2-DE). Total number of low molecular weight (LMW) HSPs was more than intermediate-(IMW) and high- (HMW) HSPs at high temperature treatments. The most of LMW HSPs which were generally of acidic character ranged between 14.2-30.7 kDa. The genotypes had both common (43 HSP spots between at least two genotypes and 23 HSP spots between 37 and 37-->50 degrees C) and genotype-specific (72 HSP spots) LMW HSPs.  相似文献   

7.
Gakhar SK  Shandilya H 《Cytobios》1999,99(392):173-182
The pattern of synthesis of heat shock proteins (HSP) and thermotolerance to elevated temperatures during the development of the malaria vector Anopheles stephensi normally reared at 28 +/- 2 degrees C was studied using SDS-PAGE. In total twelve heat shock proteins (i.e. 31, 33, 38, 43, 44, 51, 57, 62, 69, 71, 113 and 121 kD were induced by heat shock during various stages of development. Eight polypeptides (HSP during one or other of the instars) appeared during normal development of the adult, which showed very little response towards heat shock. Only two polypeptides (57 and 69 kD) were induced while the 22.5 kD protein disappeared during adult life. The HSP 62 and 71 kD induced during the larval stages showed a sharp decline in quantity in male and female adults upon heat shock. Three HSP (31, 43 and 44 kD) were induced in pupae due to heat shock. The synthesis of HSP in A. stephensi was correlated with the various morphological and physiological events occurring during development.  相似文献   

8.
An original method to induce heat stress was used to clarify the time course of changes in heat shock proteins (HSPs) in rat skeletal muscles during recovery after a single bout of heat stress. One hindlimb was inserted into a stainless steel can and directly heated by raising the air temperature inside the can via a flexible heater twisted around the steel can. Muscle temperature was increased gradually and maintained at 42 degrees C for 60 min. Core rectal and contralateral muscle temperatures were increased <1.5 degrees C during the heat stress. HSP60, HSP72, and heat shock cognate (HSC) 73 content in the slow soleus and fast plantaris in both limbs were determined immediately (0 h) and 2, 4, 8, 12, 24, 36, 48, or 60 h after heat stress. Within 0-4 h, all HSPs were approximately 1.5- to 2.2-fold higher in heat-stressed than contralateral soleus. Compared with the contralateral plantaris, the heat-stressed plantaris had a higher (1.5-fold) HSP60 content immediately and 2 h after heat stress and a higher (2.5- to 6.8-fold) HSP72 content between 24 and 48 h after heat stress. Plantaris HSC73 content was not affected by heat stress. This unique heat-stress method provides advantages over existing systems; muscle temperature can be controlled precisely during heating and the HSP response can be compared between muscles in heat-stressed and contralateral limbs of individual rats. Results show a differential response of HSPs in the soleus and plantaris during recovery after heat stress; soleus demonstrated a more rapid and broader HSP response to heat stress than plantaris.  相似文献   

9.
The role of oxidative stress in the induction of heat-shock proteins (HSPs) was studied in Drosophila Kc cells by comparing the effects of two different inducers, temperature stress and reoxygenation following a period of anoxia, on cellular respiration, thiol status, and the accumulation of HSPs. A heat shock from 25 to 37 degrees C caused a 60% increase in the rate of O2 uptake but caused little oxidative stress as indicated by a constant level of reduced glutathione, a slight increase in oxidized glutathione, and no change in protein sulfhydryls. Heat shock resulted in a pronounced accumulation of HSPs which was not inhibited by anoxic conditions. A different HSP inducer, reoxygenation following anoxia, resulted in an overall inhibition of respiration, the appearance of CN -insensitive O2 uptake, a 50% decrease in the level of reduced glutathione and a fourfold increase in the ratio of oxidized to reduced glutathione. Despite these indicators of oxidative stress, HSP synthesis was less pronounced than observed during heat shock and was not affected by antioxidants. Oxidative stress may induce HSP synthesis in some cases but is not responsible for HSP synthesis during a heat shock.  相似文献   

10.
Mammalian cells exhibit increased sensitivity to hyperthermic temperatures of 38-43 degrees C after an acute high-temperature heat shock; this phenomenon is known as the stepdown heating (SDH) effect. We characterized the SDH effect on (1) the synthesis of major heat shock proteins, HSP110, 90, 72/70, 60 (35S-amino acids label), (2) on heat-induced protein glycosylation (3H-D-mannose label), and (3) on thermotolerance expression, using cell survival as an endpoint. Partitioning of label between soluble and insoluble cell fractions was separately examined. Synthesis of high molecular weight HSPs (HSP110, 90, and 72/70) was increased both by acute (10 min, 45 degrees C) and chronic (1-6 h, 41.5 degrees C) hyperthermia, primarily in the soluble cytosol fraction. SDH (10 min, 45 degrees C + 1 to 6 h, 41.5 degrees C) completely inhibited labeling of HSP110, partially inhibited HSP90 labeling, and had virtually no effect on HSP72/70 synthesis, when compared with chronic hyperthermia alone. At the cell survival level, SDH increased sevenfold the rate of cell killing at 41.5 degrees C, but reduced the expression of thermotolerance by only a factor of two. This suggests that SDH sensitization did not result from changes in HSP72/70 synthesis, nor solely from inhibition of thermotolerance. 35S-labeled HSP60 and HSP50 were found primarily in the cellular pellet fraction after both acute and chronic hyperthermia. SDH completely inhibited 35S-labeling of both HSP60 and HSP50. Labeling of GP50 with 3H-D-mannose was also completely inhibited by SDH. Moreover, SDH progressively reduced N-acetylgalactosaminyl-transferase activity. The data demonstrate that heat sensitization by SDH is accompanied by complex and selectively inhibitory patterns of HSP synthesis and protein glycosylation. Profound inhibition of HSP110, HSP60, and HSP50/GP50 labeling suggests that these may be associated with mechanisms of SDH sensitization.  相似文献   

11.
The expression of the 23 kDa plastid heat-shock protein (HSP) of Chenopodium rubrum has been studied at various light intensities at a temperature of 38°C where the 23 kDa protein accumulates to its highest levels. It was observed that the level of mRNA which is induced at this heat-shock temperature is independent of the light intensity between 0 and 1000 W m−2. Labelling in vivo of all investigated HSP is also not dependent on the light fluxes applied. In clear contrast the accumulation of the mature chloroplast HSP 23 is light dependent: while almost no protein is detectable in the dark the level of the accumulated protein reaches a maximum at a light intensity of 300 W m−2. The accumulated levels of HSP 23 correlate well with resistance against photoinhibition; photoinhibitory effects are observed at a light intensity of 300 W m−2 or above as measured by the decline of PS II activity. When high light intensities are applied during recovery from heat shock the amounts of HSP 23 stay elevated for a longer time and at a higher level than at the standard light intensity of 10 W m−2. This appears to be a peculiar property of the plastid HSP 23 as the accumulation of HSP 17 and 70, as analysed by Western blot, is not influenced by light. When under particular stress conditions the levels of HSP 23 remain low a protein of 31 kDa accumulates that reacts with the antibody to HSP 23 and might represent the precursor of HSP 23.  相似文献   

12.
Whole-body hyperthermia or heat shock confers protection to myocardial contractility against reperfusion-induced injury. The purpose of this study was to determine whether heat shock could provide similar protection to skeletal muscle contractility against low-frequency fatigue. Male Sprague-Dawley rats (6 rats/group) were heat shocked at 41.5 degrees C for 15 min either 24 h or 4 days prior to fatiguing stimulation to compare the contractile responses of the plantaris muscle with those of a nonheated group. Both 24 h and 4 days after heat shock, the 72-kDa heat shock protein (HSP72) was elevated above control levels. There were no differences between the heat-shocked and non-heat-shocked animals in measures of contractility prior to fatiguing contractions or in resistance to fatigue. Heat-shock preconditioning did not lead to improved postfatigue force recovery above control responses and, in fact, delayed the recovery of force. This study does not support the use of heat-shock therapy to improve skeletal muscle contractile performance under fatiguing conditions.  相似文献   

13.
14.
R Cavicchioli  K Watson 《FEBS letters》1986,207(1):149-152
Yeast cells when subjected to a primary heat shock, defined as a temperature shift from 23 to 37 degrees C for 30 min, acquired tolerance to heat stress (52 degrees C/5 min). Primary heat shocked cells incubated at 23 degrees C for up to 3 h, progressively lost thermotolerance but retained high levels of the major heat-shock proteins as observed on polyacrylamide gels. On the other hand, a temperature shift back up to 37 degrees C for 30 min fully restored thermotolerance. The major high-molecular-mass heat-shock proteins (hsp) identified were of approximate molecular mass 100 kDa (hsp 100), 80 kDa (hsp 80) and 70 kDa (hsp 70). The results indicate that loss of heat-shock acquisition of thermotolerance is not correlated with loss of heat-shock proteins.  相似文献   

15.
Using mRNA isolated from Neurospora crassa mycelium, grown for 14 h at normal growth temperature of 28 degrees C, and heat shocked for 1 h at 48 degrees C, a cDNA library was prepared in the expression vector lambda gt11. Following immunoscreening of this library with a polyclonal antiserum raised against a 80-kilodalton heat-shock protein (HSP80), cDNA clones containing 1.1- and 1.4-kilobase inserts were selected. Analysis of the partial nucleotide sequence and the deduced amino acid sequence of the cDNA clones revealed a remarkable extent of homology with other eukaryotic stress-90 family proteins; 85% identity of the amino acid sequence with that of yeast HSP90(82) was seen. The C-terminal end of the sequence contained the MEEVD motif, characteristic of eukaryotic stress proteins with a predominantly cytosolic localization. The gene for N. crassa HSP80 was mapped to the right arm of linkage group V, using restriction fragment length polymorphism mapping. Its expression during heat shock and recovery was monitored by probing Northern blots of RNA isolated from mycelium grown under various stress conditions.  相似文献   

16.
Cellular heat stress results in elevated heat-shock protein (HSP) synthesis and in thermotolerance development. Recently, we demonstrated that protein glycosylation is also an integral part of the stress response with the identification of two major stress glycoproteins, GP50, associated with thermotolerance, and P-SG67, the “prompt” stress glycoprotein induced immediately during acute heat stress. In the present study, we characterized the subcellular location and redistribution of these proteins during the cellular injury and recovery phase. In unheated and heated CHO cells, both stress glycoproteins were present in each subcellular fraction isolated by differential centrifugation. However, the subcellular redistribution in the course of cellular recovery after heat stress was specific for each stress glycoprotein. GP50 was present in all subcellular fractions before heat stress, but showed relatively little redistribution after heat stress. By 24 h of recovery following stress, GP50 showed partial depletion from lysosomes and microsomes, and was mainly present in the mitochondria. Glycosylated P-SG67 was redistributed in a more complex fashion. It was seen predominantly in the lysosomes and microsomes immediately following heat-stress, but after 6 h of recovery following heat stress, it largely disappeared from the microsomes and was present mainly in the cytosol. By 24 h of recovery following heat stress, it was found predominantly in the nucleus-rich fraction and mitochondria. The localization of GP50 and P-SG67 by subcellular fractionation is consistent with immunolocalization studies and contrasts with the translocation of HSP70 after heat stress from cytosol to nuclei and nucleoli. These results reflect a characteristic distribution for each stress glycoprotein; their presence in virtually all subcellular fractions suggests multifunctional roles for the various stress glycoproteins in the cellular heat stress response. J. Cell. Biochem. 66:98–111, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
In S. cerevisiae the induction of heat-shock protein (HSP) synthesis is accompanied by a decrease in the cytoplasmic and vacuolar pH as determined by means of [31P]NMR spectroscopy. The relationship of HSP synthesis and acidification of the cytoplasmic pH is dose-dependent under a variety of treatments (temperature increases (23-32 degrees C), addition of 2,4-dinitrophenol (greater than 1 mM), sodium arsenite (greater than 3.75 X 10(-5) M) or sodium cyanide (greater than 10 mM]. Changes in the intracellular pH occur within 5 min after treatment, attain a maximum within 30 min and are subsequently stable. HSPs 98, 85 and 70 show maximum synthesis rates 1-2 h after a 40 degrees C heat shock. The synthesis rates then decline. HSPs 56, 44 and 33 reveal a smaller and slower increase and almost no decrease in the synthesis rate within 4 h at 40 degrees C. The similar dose dependencies of HSP synthesis and cytoplasmic pH. as well as the immediate response of the pH, can also be demonstrated in the mitochondrial mutant of S. cerevisiae (Q0). This result indicates that the heat-shock response is mainly independent of intact oxidative phosphorylation. No correlation was observed between HSP synthesis rate and total intracellular ATP content.  相似文献   

18.
The optimal conditions capable of inducing an increase in HSP70 neosynthesis during development of the urodele amphibian Pleurodeles waltl were determined in this study. These conditions depend on temperature, heat shock duration and recovery duration. In oocytes, a heat shock response was repeatedly obtained at 37°C for 15 min followed by 1 h recovery. These results provided evidence for heat shock response at every stage considered. An increase in HSP70 synthesis was noted throughout oogenesis, but it did not lead to an increase in the amount of soluble HSP70, except for stage VI oocytes. Such results suggest that from stage II to stage IV oocytes, an equilibrium occurs between the HSP70 used and the HSP70 neosynthesized. In contrast, in stage VI oocytes, heat shock led to overproduction of HSP70. During early development, the heat shock response was repeatedly obtained only from the gastrula stage with a 37°C shock and a 15min duration of treatment. Surprisingly, during cleavage stage, the soluble HSP70 total amount increased after heat shock at a time when no HSP70 neosynthesis occurred.  相似文献   

19.
Treatment for 2 h with 200 microM cadmium chloride, followed by recovery, caused apoptosis and induced heat-shock protein 70 (HSP70) expression in U-937 promonocytic cells. However, pre-incubation with the GSH depleting agent L-buthionine-[S,R]-sulfoximine (BSO, 1 mM for 24 h) caused necrosis instead of apoptosis and failed to induce HSP70 expression. This failure was a consequence of necrosis instead of GSH depletion, since BSO allowed or even potentiated HSP70 induction when used in combination with heat shock (2 h at 42.5 degrees C) or with 50 microM cadmium, which caused apoptosis. The administration of N-acetyl-L-cysteine (NAC) at the beginning of recovery after BSO/200 microM cadmium treatment prevented the execution of necrosis and restored the execution of apoptosis, but did not restore HSP70 induction, indicating that the inhibition by BSO of HSP70 expression is an early regulated event. This contrasted with the capacity of NAC to prevent the alterations caused by BSO/200 microM cadmium in other proteins, namely the suppression of Bax expression and the increase in Bcl-2 and HSP-60 expression. Finally, it was observed that treatment with 200 microM cadmium rapidly increased the HSP70 mRNA level and stimulated heat-shock factor 1 (HSF1) trimerization and binding, and that these effects were prevented by pre-incubation with BSO. Taken together, these results indicate that the stress response is compatible with apoptosis but not with necrosis in cadmium-treated promonocytic cells. The suppression of the stress response is specifically due to the early inhibition of HSF1 activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号