首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1993,123(6):1597-1605
Beta 2 integrins are involved in the adhesion of leukocytes to other cells and surfaces. Although adhesion is required for cell locomotion, little is known regarding the way beta 2 integrin-receptors affect the actin network in leukocytes. In the present study filamentous actin (F- actin) levels in non-adherent human neutrophils have been measured by phalloidin staining after antibody cross-linking of beta 2 integrins. Antibody engagement of beta 2 integrins resulted in a rapid and sustained (146 and 131% after 30 and 300 s, respectively) increase in the neutrophil F-actin content. This is in contrast to stimulation with N-formyl-l-methionyl-l-leucyl-l-phenylalanine (fMLP), which causes a prompt and pronounced but rapidly declining rise in F-actin (214 and 127% after 15 and 300 s, respectively). Priming neutrophils with 1 nM PMA, a low concentration that did not influence the F-actin content per se, increased the magnitude of the beta 2 integrin-induced response but had no effect on the kinetics (199% after 30 s and 169% after 300 s). Removal of extracellular Ca2+ only marginally affected the beta 2 integrin-induced F-actin response for cells that were pretreated with PMA whereas the response for nonprimed cells was reduced by half. This suggests that even though extracellular Ca2+ has a modulatory effect it is not an absolute requirement for beta 2 integrin-induced actin polymerization. beta 2 integrin engagement did not affect the resting cellular level of cAMP arguing against a role of cAMP in beta 2 integrin-induced actin assembly.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Fluorescent staining with phalloidin, a specific probe for F-actin, and antibodies to non-muscle myosin from thymus was used to localize actin and myosin in brain neurons of the rat. Phalloidin and anti-myosin displayed a preferential affinity for synaptic formations in the cerebellum, the brain stem, the spinal cord and the retina. The conclusion that F-actin and myosin are concentrated in synaptic terminals was further established by simultaneous staining of isolated rat brain synaptosomes with phalloidin and anti-thymus myosin as well as by the demonstration of a selective affinity of anti-thymus myosin for a 200 000-Mr protein band in gel electrophoretograms of synaptic fractions. Apart from synaptic areas, phalloidin and anti-thymus myosin reacted also, albeit rather weakly, with a narrow circumferential layer located in the area of the plasma membrane of virtually all axons in the white matter and the spinal roots. The spatial coexistence of myosin and actin in brain synapses and axons is of particular interest in view of various dynamic functions that have been proposed for axonal and synaptic actin.  相似文献   

3.
Filament assembly from profilin-actin   总被引:2,自引:0,他引:2  
Profilin plays a major role in the assembly of actin filament at the barbed ends. The thermodynamic and kinetic parameters for barbed end assembly from profilin-actin have been measured turbidimetrically. Filament growth from profilin-actin requires MgATP to be bound to actin. No assembly is observed from profilin-CaATP-actin. The rate constant for association of profilin-actin to barbed ends is 30% lower than that of actin, and the critical concentration for F-actin assembly from profilin-actin units is 0.3 microM under physiological ionic conditions. Barbed ends grow from profilin-actin with an ADP-Pi cap. Profilin does not cap the barbed ends and is not detectably incorporated into filaments. The EDC-cross-linked profilin-actin complex (PAcov) both copolymerizes with F-actin and undergoes spontaneous self-assembly, following a nucleation-growth process characterized by a critical concentration of 0.2 microM under physiological conditions. The PAcov polymer is a helical filament that displays the same diffraction pattern as F-actin, with layer lines at 6 and 36 nm. The PAcov filaments bound phalloidin with the same kinetics as F-actin, bound myosin subfragment-1, and supported actin-activated ATPase of myosin subfragment-1, but they did not translocate in vitro along myosin-coated glass surfaces. These results are discussed in light of the current models of actin structure.  相似文献   

4.
A new method was devised to visualize actin polymerization induced by postsynaptic differentiation signals in cultured muscle cells. This entails masking myofibrillar filamentous (F)-actin with jasplakinolide, a cell-permeant F-actin-binding toxin, before synaptogenic stimulation, and then probing new actin assembly with fluorescent phalloidin. With this procedure, actin polymerization associated with newly induced acetylcholine receptor (AChR) clustering by heparin-binding growth-associated molecule-coated beads and by agrin was observed. The beads induced local F-actin assembly that colocalized with AChR clusters at bead-muscle contacts, whereas both the actin cytoskeleton and AChR clusters induced by bath agrin application were diffuse. By expressing a green fluorescent protein-coupled version of cortactin, a protein that binds to active F-actin, the dynamic nature of the actin cytoskeleton associated with new AChR clusters was revealed. In fact, the motive force generated by actin polymerization propelled the entire bead-induced AChR cluster with its attached bead to move in the plane of the membrane. In addition, actin polymerization is also necessary for the formation of both bead and agrin-induced AChR clusters as well as phosphotyrosine accumulation, as shown by their blockage by latrunculin A, a toxin that sequesters globular (G)-actin and prevents F-actin assembly. These results show that actin polymerization induced by synaptogenic signals is necessary for the movement and formation of AChR clusters and implicate a role of F-actin as a postsynaptic scaffold for the assembly of structural and signaling molecules in neuromuscular junction formation.  相似文献   

5.
The effect of the type of metal ion (i.e., Ca2+, Mg2+, or none) bound to the high-affinity divalent cation binding site (HAS) of actin on filament assembly, structure, and dynamics was investigated in the absence and presence of the mushroom toxin phalloidin. In agreement with earlier reports, we found the polymerization reaction of G-actin into F-actin filaments to be tightly controlled by the type of divalent cation residing in its HAS. Moreover, novel polymerization data are presented indicating that LD, a dimer unproductive by itself, does incorporate into growing F-actin filaments. This observation suggests that during actin filament formation, in addition to the obligatory nucleation– condensation pathway involving UD, a productive filament dimer, a facultative, LD-based pathway is implicated whose abundance strongly depends on the exact polymerization conditions chosen. The “ragged” and “branched” filaments observed during the early stages of assembly represent a hallmark of LD incorporation and might be key to producing an actin meshwork capable of rapidly assembling and disassembling in highly motile cells. Hence, LD incorporation into growing actin filaments might provide an additional level of regulation of actin cytoskeleton dynamics. Regarding the structure and mechanical properties of the F-actin filament at steady state, no significant correlation with the divalent cation residing in its HAS was found. However, compared to native filaments, phalloidin-stabilized filaments were stiffer and yielded subtle but significant structural changes. Together, our data indicate that whereas the G-actin conformation is tightly controlled by the divalent cation in its HAS, the F-actin conformation appears more robust than this variation. Hence, we conclude that the structure and dynamics of the Mg–F-actin moiety within the thin filament are not significantly modulated by the cyclic Ca2+ release as it occurs in muscle contraction to regulate the actomyosin interaction via troponin.  相似文献   

6.
Plant viral movement proteins (MPs) enable viruses to pass through cell walls by increasing the size exclusion limit (SEL) of plasmodesmata (PD). Here, we report that the ability of Cucumber mosaic virus (CMV) MP to increase the SEL of the PD could be inhibited by treatment with the actin filament (F-actin)–stabilizing agent phalloidin but not by treatment with the F-actin–destabilizing agent latrunculin A. In vitro studies showed that CMV MP bound globular and F-actin, inhibited actin polymerization, severed F-actin, and participated in plus end capping of F-actin. Analyses of two CMV MP mutants, one with and one without F-actin severing activities, demonstrated that the F-actin severing ability was required to increase the PD SEL. Furthermore, the Tobacco mosaic virus MP also exhibited F-actin severing activity, and its ability to increase the PD SEL was inhibited by treatment with phalloidin. Our data provide evidence to support the hypothesis that F-actin severing is required for MP-induced increase in the SEL of PD. This may have broad implications in the study of the mechanisms of actin dynamics that regulate cell-to-cell transport of viral and endogenous proteins.  相似文献   

7.
Effects of proteolytic modifications of the DNase-I-binding loop (residues 39-51) in subdomain 2 of actin on F-actin dynamics were investigated by measuring the rates of the polymer subunit exchange with the monomer pool at steady state and of ATP hydrolysis associated with it, and by determination of relative rate constants for monomer addition to and dissociation from the polymer ends. Cleavage of actin between Gly-42 and Val-43 by protease ECP32 resulted in enhancement of the turnover rate of polymer subunits by an order of magnitude or more, in contrast to less than a threefold increase produced by subtilisin cleavage between Met-47 and Gly-48. Probing the structure of the modified actins by limited digestion with trypsin revealed a correlation between the increased F-actin dynamics and a change in the conformation of subdomain 2, indicating a more open state of the filament subunits relative to intact F-actin. The cleavage with trypsin and steady-state ATPase were cooperatively inhibited by phalloidin, with half-maximal effects at phalloidin to actin molar ratio of 1:8 and full inhibition at a 1:1 ratio. The results support F-actin models in which only the N-terminal segment of loop 39-51 is involved in monomer-monomer contacts, and suggest a possibility of regulation of actin dynamics in the cell through allosteric effects on this segment of the actin polypeptide chain.  相似文献   

8.
The cyclic peptide phalloidin, one of the toxic components of Amanita phalloides prevented the drop of viscosity of F-actin solutions after the addition of 0.6 M KI and inhibited the ATP splitting of F-actin during sonic vibration. The data concerning ATP splitting are consistent with the assumption (a) that only 1 out of every 3 actin units of the filaments needs to be combined with phalloidin in order to suppress the contribution of these 3 actins to the ATPase activity of the filament and (b) that all actin units of the filaments can combine with phalloidin with a very high affinity. -halloidin did not only stabilize the actin-actin bonds in the F-actin structure but it also increased the rate of polymerization of G-actin to F-actin. The ability of F-actin to activate myosin ATPase was not affected by phalloidin. The tropomyosin-troponin complex did not prevent the stabilizing effect of phalloidin on the F-actin structure.  相似文献   

9.
The fluorescence of five fluorophores conjugated to phallotoxins was found to be specifically enhanced upon binding to F-actin in a polymerizing buffer. Rhodamine phalloidin had the greatest fluorescence enhancement of ninefold. The fluorescence titration of rhodamine phalloidin by actin was shown to be consistent with stoichiometric binding. The fluorescence enhancement of rhodamine phalloidin at 5 microM is linearly related to F-actin concentrations up to 2 microM and therefore can be used as an easy means of F-actin quantitation. In a competition assay, other phallotoxins reduce the fluorescence enhancement that results from the binding of rhodamine phalloidin to polymerized actin. This reduction also permits a convenient measurement of the binding constants of any competing phallotoxins.  相似文献   

10.
1. Glyceraldehyde-3-phosphate dehydrogenase (G3PD) is a glycolytic enzyme that has also been implicated in a wide variety of functions within neurons. Because of the well-documented role of G3PD as an actin-binding protein, we sought evidence for a G3PD–actin complex in synaptosomes and postsynaptic densities (PSDs).2. We have shown G3PD association with 0.5-m synaptosomal particles by immunofluorescence as similarly demonstrated for actin (Toh et al., Nature 264:648–650, 1976). An immunoblot analysis also showed G3PD and actin to be enriched in synaptosomes. Further analysis of subcellular fractions from synaptosomes showed the PSD but not the synaptosomal plasma membranes to be enriched in G3PD and actin.3. Highest levels of G3PD catalytic activity were found in synaptosomes and PSDs. Although synaptosomes showed significant activity for phosphoglyceratekinase (PGK), an enzyme in sequence with G3PD for ATP production in the glycolytic pathway, no such activity was detected in the PSD fraction.4. Our studies indicate that a G3PD–actin complex may exist at the synapse. A physical association of G3PD with endogenous F-actin in synaptosomes and PSDs was demonstrated by combined phalloidin shift velocity sedimentation/immunoblot studies. By this approach, synaptosomal G3PD–actin complexes were also found to be significantly less dense than the PSD G3PD–actin complexes.5. G3PD and PGK catalytic activity in synaptosomes suggests a role in glycolysis, as well as actin binding, in the presynaptic terminals. On the other hand, the high levels of G3PD activity in PSDs but lack of PGK activity suggests that G3PD is involved in nonglycolytic functions, such as actin binding and actin filament network organization.  相似文献   

11.
Stimulation-induced chromaffin cell cortical F-actin disassembly allows the movement of vesicles towards exocytotic sites. Scinderin (Sc), a Ca2+-dependent protein, controls actin dynamics. Sc six domains have three actin, two PIP2 and two Ca2+-binding sites. F-actin severing activity of Sc is Ca2+-dependent, whereas Sc-evoked actin nucleation is Ca2+-independent. Sc domain role in secretion was studied by co-transfection of human growth hormone (hGH) reporter gene and green fluorescent protein (GFP)-fusion Sc constructs. Cells over-expressing actin severing Sc1-6 or Sc1-2 (first and second actin binding sites) constructs, increased F-actin disassembly and hGH release upon depolarization. Over-expression of nucleating Sc5-6, Sc5 or ScABP3 (third actin site) constructs decreased F-actin disassembly and hGH release upon stimulation. Over-expression of ScL5-6 or ScL5 (lack of third actin site) produced no changes. During secretion, actin sites 1 and 2 are involved in F-actin severing, whereas site 3 is responsible for nucleation (polymerization). Sc functions as a molecular switch in the control of actin (disassembly left arrow over right arrow assembly) and release (facilitation left arrow over right arrow inhibition). The position of the switch (severing left arrow over right arrow nucleation) may be controlled by [Ca2+]i. Thus, increase in [Ca2+]i produced by stimulation-induced Ca2+ entry would increase Sc-evoked cortical F-actin disassembly. Decrease in [Ca2+]i by either organelle sequestration or cell extrusion would favor Sc-evoked actin nucleation.  相似文献   

12.
The ability of a phagocytic stimulus, rabbit IgG anti-BSA/BSA immune complexes, to increase the F-actin content of human polymorphonuclear leukocytes was quantitated by flow cytometry following staining with nitrobenzoxadiazole-phallacidin. A significant rise in F-actin assembly was induced by addition of 5 micrograms/ml immune complex. Concentrations of immune complex of more than 200 micrograms/ml caused a maximal (approximately twofold) increase in F-actin content. After a delay of 5 s, the F-actin levels rose and reached maximum levels by 60 s after adding immune complexes. The twofold elevation in F-actin persisted for up to 60 min. Both anti-Fc gamma RII and anti-Fc gamma RIII mAb blocked immune complex stimulated actin polymerization. Exposure to pertussis toxin failed to affect the rate or extent of immune complex-induced actin polymerization. Cells incubated with immune complexes and then lysed with Triton had an increased number of sites able to nucleate actin polymerization. These findings suggest that immune complex binding to both polymorphonuclear leukocytes Fc gamma RII and Fc gamma RIII is required for actin filament assembly and that the induction of assembly occurs via transduction pathways that differ from those used by chemoattractants. As with adhesion this phagocytic stimulus induces actin assembly by a pertussis toxin insensitive pathway and produces a rise in actin filament content that persists for prolonged periods of time.  相似文献   

13.
Exposure of cryptic actin filament fast growing ends (barbed ends) initiates actin polymerization in stimulated human and mouse platelets. Gelsolin amplifies platelet actin assembly by severing F-actin and increasing the number of barbed ends. Actin filaments in stimulated platelets from transgenic gelsolin-null mice elongate their actin without severing. F-actin barbed end capping activity persists in human platelet extracts, depleted of gelsolin, and the heterodimeric capping protein (CP) accounts for this residual activity. 35% of the approximately 5 microM CP is associated with the insoluble actin cytoskeleton of the resting platelet. Since resting platelets have an F- actin barbed end concentration of approximately 0.5 microM, sufficient CP is bound to cap these ends. CP is released from OG-permeabilized platelets by treatment with phosphatidylinositol 4,5-bisphosphate or through activation of the thrombin receptor. However, the fraction of CP bound to the actin cytoskeleton of thrombin-stimulated mouse and human platelets increases rapidly to approximately 60% within 30 s. In resting platelets from transgenic mice lacking gelsolin, which have 33% more F-actin than gelsolin-positive cells, there is a corresponding increase in the amount of CP associated with the resting cytoskeleton but no change with stimulation. These findings demonstrate an interaction between the two major F-actin barbed end capping proteins of the platelet: gelsolin-dependent severing produces barbed ends that are capped by CP. Phosphatidylinositol 4,5-bisphosphate release of gelsolin and CP from platelet cytoskeleton provides a mechanism for mediating barbed end exposure. After actin assembly, CP reassociates with the new actin cytoskeleton.  相似文献   

14.
L Eichinger  M Schleicher 《Biochemistry》1992,31(20):4779-4787
Severin is a Ca(2+)-activated actin-binding protein that nucleates actin assembly and severs and caps the fast growing ends of actin filaments. It consists of three highly conserved domains. To investigate the domain structure of severin, we constructed genetically the N-terminal domain 1, the middle domain 2, and the tandem domains 2 + 3. Their interaction with actin, Ca2+, and lipids was characterized. Domain 1 contains the F-actin capping and a Ca(2+)-binding site [Eichinger, L., Noegel, A. A., & Schleicher, M. (1991) J. Cell Biol. 112, 665-676]. Binding of domain 2 to actin filaments was Ca(2+)-dependent and saturated at a 1:1 molar ratio. In the presence of Ca2+, about 1.5 mol of domains 2 + 3 bound per mole of F-actin subunit. Scatchard analysis gave a Kd of 18 microM for the interaction of domain 2 with F-actin subunits and a Kd of 1.6 microM for domains 2 + 3. Low-shear viscometry, electron microscopy, and low-speed sedimentation assays showed that domains 2 + 3 induced bundling of actin filaments. The influence of PIP2 micelles on the different activities of severin was assayed using native severin and N- and C-terminally truncated fragments. Severin contains at least two PIP2-binding sites since the activities of the two nonoverlapping severin fragments domain 1 and domains 2 + 3 were inhibited by PIP2. The specificity of severin-phospholipid interaction was investigated by studying the regulation of native severin by PIP2 and other pure or mixed phospholipids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Rotavirus is a major cause of infantile gastroenteritis with a multifactorial pathogenesis. As with many other pathogens, rotavirus infection and replication leads to rearrangement of the cytoskeleton with disorganization of cytoskeletal elements such as actin and cytokeratin through a calcium-dependent process that has not been fully characterized. The rotavirus enterotoxin NSP4, shown previously to elevate intracellular calcium levels when added exogenously as well as when expressed intracellularly, is a key player in intracellular calcium regulation during rotavirus infection. Here, we investigated the role NSP4 may play in actin rearrangement. Expression of NSP4 fused to enhanced green fluorescent protein (NSP4-EGFP), but not expression of EGFP alone, caused stabilization of long cellular projections in fully confluent HEK 293 cells. Cells expressing NSP4-EGFP for 24 h were also resistant to cell rounding induced by cytochalasin D. Quantification of filamentous actin (F-actin) content by using rhodamine-conjugated phalloidin and flow cytometry showed an elevated F-actin content in NSP4-EGFP-expressing and rotavirus-infected cells in comparison with that in nonexpressing and noninfected cells. Normalization of intracellular calcium levels prevented alterations of F-actin content. Observed changes in F-actin amounts correlated with the increased activation of the actin-remodeling protein cofilin. These calcium-dependent actin rearrangements induced by intracellular NSP4 expression may contribute to rotavirus pathogenesis by interfering with cellular processes dependent on subcortical actin remodeling, including ion transport and viral release.  相似文献   

16.
In vitro Ca++ activates gelsolin to sever F-actin and form a gelsolin-actin (GA) complex at the+end of F-actin that is not dissociated by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) but is separated by EGTA+PIP/PIP2. The gelsolin blocks the+end on the actin filament, but the-end of the filament can still initiate actin polymerization. In thrombin activated platelets, evidence suggests that severing of F-actin by gelsolin increases GA complex, creates one-end actin nucleus and one cryptic+end actin nucleus per cut, and then dissociates to yield free+ends to nucleate rapid actin assembly. We examined the role of F-actin severing in creation and regulation of nuclei and polymerization in polymorphonuclear neutrophils (PMNs). At 2-s intervals after formyl peptide (FMLP) activation of endotoxin free (ETF) PMNs, change in GA complex was correlated with change in+end actin nuclei,-end actin nuclei, and F-actin content. GA complex was quantitated by electrophoretograms of proteins absorbed by antigelsolin from cells lysed in 10 mM EGTA,+end actin nuclei as cytochalasin (CD) sensitive and-end actin nuclei as CD insensitive increases in G-pyrenyl actin polymerization rates induced by the same PMNs, and F-actin content by NBDphallacidin binding to fixed cells. Thirty three percent of gelsolin was in GA complex in basal ETF PMNs; from 2-6 s, GA complexes dissociate (low = 15% at 10 s) and sequentially+end nuclei and F-actin content and then-end nuclei increase to a maximum at 10 s. At > s GA complex increase toward basal and + end nuclei and F-actin content returned toward basal. These kinetic data show gelsolin regulates availability of + end nuclei and actin polymerization in FMLP. However, absence of an initial increase in GA complex or - end nucleating activity shows FMLP activation does not cause gelsolin to sever F- or to bind G-actin to create cryptic + end nuclei in PMNs; the results suggest the + nucleus formation is gelsolin independent.  相似文献   

17.
The effect of novel cytotoxic marine macrolide, amphidinolide H (Amp-H), on actin dynamics was investigated in vitro. Amp-H attenuated actin depolymerization induced by diluting F-actin. This effect remained after washing out of unbound Amp-H by filtration. In the presence of either Amp-H or phalloidin, lag phase, which is the rate-limiting step of actin polymerization, was shortened. Phalloidin decreased the polymerization-rate whereas Amp-H did not. Meanwhile, the effects of both compounds were the same when barbed end of actin was capped by cytochalasin D. Quartz crystal microbalance system revealed interaction of Amp-H with G-actin and F-actin. Amp-H also enhanced the binding of phalloidin to F-actin. We concluded that Amp-H stabilizes actin in a different manner from that of phalloidin and serves as a novel pharmacological tool for analyzing actin-mediated cell function.  相似文献   

18.
Cofilin (ADF) affects lateral contacts in F-actin   总被引:1,自引:0,他引:1  
The effect of yeast cofilin on lateral contacts between protomers of yeast and skeletal muscle actin filaments was examined in solution. These contacts are presumably stabilized by the interactions of loop 262-274 of one protomer with two other protomers on the opposite strand in F-actin. Cofilin inhibited several-fold the rate of interstrand disulfide cross-linking between Cys265 and Cys374 in yeast S265C mutant F-actin, but enhanced excimer formation between pyrene probes attached to these cysteine residues. The possibility that these effects are due to a translocation of the C terminus of actin by cofilin was ruled out by measurements of fluorescence resonance energy transfer (FRET) from tryptophan residues and ATP to acceptor probes at Cys374. Such measurements did not reveal cofilin-induced changes in FRET efficiency, suggesting that changes in Cys265-Cys374 cross-linking and excimer formation stem from the perturbation of loop 262-274 by cofilin. Changes in lateral interactions in F-actin were indicated also by the cofilin-induced partial release of rhodamine phalloidin. Disulfide cross-linking of S265C yeast F-actin inhibited strongly and reversibly the release of rhodamine phalloidin by cofilin. Overall, this study provides solution evidence for the weakening of lateral interactions in F-actin by cofilin.  相似文献   

19.
Oda T  Namba K  Maéda Y 《Biophysical journal》2005,88(4):2727-2736
Knowledge of the phalloidin binding position in F-actin and the relevant understanding of the mechanism of F-actin stabilization would help to define the structural characteristics of the F-actin filament. To determine the position of bound phalloidin experimentally, x-ray fiber diffraction data were obtained from well-oriented sols of F-actin and the phalloidin-F-actin complex. The differences in the layer-line intensity distributions, which were clearly observed even at low resolution (8 A), produced well-resolved peaks corresponding to interphalloidin vectors in the cylindrically averaged difference-Patterson map, from which the radial binding position was determined to be approximately 10 A from the filament axis. Then, the azimuthal and axial positions were determined by single isomorphous replacement phasing and a cross-Patterson map in radial projection to be approximately 84 degrees and 0.5 A relative to the actin mass center. The refined position was close to the position found by prior researchers. The position of rhodamine attached to phalloidin in the rhodamine-phalloidin-F-actin complex was also determined, in which the conjugated Leu(OH)(7) residue was found to face the outside of the filament. The position and orientation of the bound phalloidin so determined explain the increase in the interactions between long-pitch strands of F-actin and would also account for the inhibition of phosphate release, which might also contribute to the F-actin stabilization. The method of analysis developed in this study is applicable for the determination of binding positions of other drugs, such as jasplakinolide and dolastatin 11.  相似文献   

20.
We tested whether phalloidin protects actin in myofibrils from depolymerization by ultraviolet light (UV). I bands in glycerinated rabbit psoas myofibrils were irradiated with a UV microbeam in the presence and absence of phalloidin. We used the retention of contractility of the irradiated I band as the assay for protection of actin by phalloidin, since previous experiments indicated that UV blocks contraction of an irradiated I band by depolymerizing the thin filaments. The I bands of myofibrils incubated in phalloidin were as sensitive to UV as control I bands, indicating that phalloidin did not protect the thin filaments. However, phalloidin did protect F-actin in solution from depolymerization by UV. This apparent contradiction between F-actin in myofibrils and F-actin in solution was resolved by observing unirradiated myofibrils that were stained with rhodamine-phalloidin. It was found that phalloidin does not bind uniformly to the thin filaments, though as the fluorescence image is observed over time the staining pattern changes until it does appear to bind uniformly. We conclude that phalloidin does not protect F-actin in myofibrils from depolymerization by UV because it does not bind uniformly to the filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号