首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patella aplasia-hypoplasia (PTLAH) is a rare genetic defect characterized by congenital absence or marked reduction of the patella. PTLAH can occur either as an isolated defect or in association with other malformations, and it characteristically occurs in the nail-patella syndrome and in some chromosome imbalances. We report the first evidence of linkage for isolated PTLAH in an extended Venezuelan family. After exclusion of the candidate chromosome regions where disorders associated with PTLAH have been mapped, a genomewide scan was performed that supported mapping of the disease locus within a region of 12 cM on chromosome 17q22. Two marker loci (D17S787 and D17S1604) typed from this region gave maximum LOD scores >3. Accordingly, multipoint analysis gave a maximum LOD score of 3.39, with a most likely location for the disease gene between D17S787 and D17S1604. Sequencing of the noggin gene, a candidate mapping between these markers, failed to reveal any mutation in affected subjects.  相似文献   

2.
We describe a large pedigree of individuals with autosomal dominant atrioventricular septal defect (AVSD). The pedigree includes affected individuals and individuals who have transmitted the defect but are not clinically affected. AVSDs are a rare congenital heart malformation that occurs as only 2.8% of isolated cardiac lesions. They are the predominant heart defect in children with Down syndrome, making chromosome 21 a candidate for genes involved in atrioventricular septal development. We have carried out a linkage study in the pedigree by using 10 simple-sequence polymorphisms from chromosome 21. Multipoint linkage analysis gives lod scores of less than -2 for the region of trisomy 21 associated with heart defects, which excludes a locus within this region as the cause of the defect in this family.  相似文献   

3.
Deafness is a heterogeneous trait affecting approximately 1/1,000 newborns. Genetic linkage studies have already implicated more than a dozen distinct loci causing deafness. We conducted a genome search for linkage in a large Palestinian family segregating an autosomal recessive form of nonsyndromic deafness. Our results indicate that in this family the defective gene, DFNB10, is located in a 12-cM region near the telomere of chromosome 21. This genetic distance corresponds to <2.4 Mbp. Five marker loci typed from this region gave maximum LOD scores > or = to 3. Homozygosity of marker alleles was evident for only the most telomeric marker, D21S1259, suggesting that DFNB10 is closest to this locus. To our knowledge, this is the first evidence, at this location, for a gene that is involved in the development or maintenance of hearing. As candidate genes at these and other deafness loci are isolated and characterized, their roles in hearing will be revealed and may lead to development of mechanisms to prevent deafness.  相似文献   

4.
Common congenital malformations such as cleft lip and cleft palate are in most cases multifactorial in origin, involving both environmental and genetic components. Molecular biology techniques have enabled the successful chromosomal localization of many mutant genes from disorders that exhibit simple Mendelian segregation, whether autosomally dominant (e.g., Huntington's disease), autosomal recessive (e.g., cystic fibrosis), or X-linked (e.g., Duchenne muscular dystrophy). Studying the genetic aspect of multifactorial disorders is more complex. It requires a model family or families within which the common multifactorial phenotype is displayed as a single gene defect. Such a model has been recently exploited in the form of a large Icelandic family (over 280 members) exhibiting X-linked secondary cleft palate (CP) and ankyloglossia (A) (tongue-tied) as a single gene mutation. Using this family and the large bank of well-characterized DNA probes available for the human X chromosome, the gene for CP + A was localized by linkage analysis to Xq13-q21.1 (LOD score = 3.07, linked to anonymous probe DXYS1). Further fine mapping, using other X probes from this region (confirmed by analysis of DNA from a deletion cell-line) has placed the gene between markers DXYS12 and DXS17 (LOD score = 4.1) at Xq21.3-q22. The approximate distance between these two probes is 5 centimorgans (cM), equivalent to approximately 5 million base pairs. Now that the limits of genetic linkage have been fully tested and there are two markers flanking the defect locus, strategies are being pursued to clone the gene responsible.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Summary As evidenced by a large pedigree with 21 affected members, acrokeratoelastoidosis (AKE) is an autosomal dominant skin disease (10185; McKusick 1978). Linkage with genetic markers already assigned to human chromosomes could help to map the gene for this disease. Therefore 22 markers were investigated in 61 members of the AKE family. Loose linkage is possible between AKE and ACP1, IGKC, and Jk, but the estimated recombination fractions do not reach significant deviations from 0.5. However, since the three marker loci have been previously assigned to chromosome 2, the AKE locus might be assigned tentatively to the same chromosome. Of the provisionally and inconsistently assigned markers, only blood group P is seen to be in linkage with HLA.The study was supported in part by the Deutsche Forschungsgemeinschaft  相似文献   

6.
Congenital cataract is a clinically and genetically highly heterogeneous eye disorder, with autosomal dominant inheritance being most common. We investigated a large seven-generation family with 74 individuals affected by autosomal dominant congenital cataract (ADCC). The phenotype in this family can be described as "central pouchlike" cataract with sutural opacities, and it differs from the other mapped cataracts. We performed linkage analysis with microsatellite markers in this family and excluded the known candidate genes. A genomewide search revealed linkage to markers on chromosome 15, with a maximum two-point LOD score of 5.98 at straight theta=0 with marker D15S117. Multipoint analysis also gave a maximum LOD score of 5.98 at D15S117. Multipoint and haplotype analysis narrowed the cataract locus to a 10-cM region between markers D15S209 and D15S1036, closely linked to marker D15S117 in q21-q22 region of chromosome 15. This is the first report of a gene for a clinically new type of ADCC at 15q21-22 locus.  相似文献   

7.
Several loci and candidate genes for epilepsies or epileptic syndromes map or have been suggested to map to chromosome 8. We investigated families with adolescent-onset idiopathic generalized epilepsy (IGE), for linkage to markers spanning chromosome 8. The IGEs that we studied included juvenile myoclonic epilepsy (JME), epilepsy with only generalized tonic-clonic seizures occurring either randomly during the day (random grand mal) or on awakening (awakening grand mal), and juvenile absence epilepsy (JAE). We looked for a gene common to all these IGEs, but we also investigated linkage to specific subforms of IGE. We found evidence for linkage to chromosome 8 in adolescent-onset IGE families in which JME was not present. The maximum multipoint LOD score was 3.24 when family members with IGE or generalized spike-and-waves (SW) were considered affected. The LOD score remained very similar (3.18) when clinically normal family members with SW were not considered to be affected. Families with either pure grand mal epilepsy or absence epilepsy contributed equally to the positive LOD score. The area where the LOD score reaches the maximum encompasses the location of the gene for the beta3-subunit of the nicotinic acetylcholine receptor (CHRNB3), thus making this gene a possible candidate for these specific forms of adolescent-onset IGE. The data excluded linkage of JME to this region. These results indicate genetic heterogeneity within IGE and provide no evidence, on chromosome 8, for a gene common to all IGEs.  相似文献   

8.
A gene for familial juvenile polyposis maps to chromosome 18q21.1.   总被引:7,自引:2,他引:5       下载免费PDF全文
Familial juvenile polyposis (FJP) is a hamartomatouspolyposis syndrome in which affected family members develop upper and lower gastrointestinal juvenile polyps and are at increased risk for gastrointestinal cancer. A genetic locus for FJP has not yet been identified by linkage; therefore, the objective of this study was to perform a focused genome screen in a large family segregating FJP. No evidence for linkage was found with markers near MSH2, MLH1, MCC, APC, HMPS, CDKN2A, JP1, PTEN, KRAS2, TP53, or LKB1. Linkage to FJP was established with several markers from chromosome 18q21.1. The maximum LOD score was 5.00, with marker D18S1099 (recombination fraction of .001). Analysis of critical recombinants places the FJP gene in an 11.9-cM interval bounded by D18S1118 and D18S487, a region that also contains the tumor-suppressor genes DCC and DPC4. These data demonstrate localization of a gene for FJP to chromosome 18q21.1 by linkage, and they raise the possibility that either DCC or DPC4 could be responsible for FJP.  相似文献   

9.
Recently, a new locus (PARK8) for autosomal dominant parkinsonism has been identified in one large Japanese family. Linkage has been shown to a 16-cM centromeric region of chromosome 12, between markers D12S1631 and D12S339. We tested 21 white families with Parkinson disease and an inheritance pattern compatible with autosomal dominant transmission for linkage in this region. Criteria for inclusion were at least three affected individuals in more than one generation. A total of 29 markers were used to saturate the candidate region. One hundred sixty-seven family members were tested (84 affected and 83 unaffected). Under the assumption of heterogeneity and through use of an affecteds-only model, a maximum multipoint LOD score of 2.01 was achieved in the total sample, with an estimated proportion of families with linkage of 0.32. This LOD score is significant for linkage in a replication study and corresponds to a P value of.0047. Two families (family A [German Canadian] and family D [from western Nebraska]) reached significant linkage on their own, with a combined maximum multipoint LOD score of 3.33, calculated with an affecteds-only model (family A: LOD score 1.67, P=.0028; family D: LOD score 1.67, P=.0028). When a penetrance-dependent model was calculated, the combined multipoint LOD score achieved was 3.92 (family A: LOD score 1.68, P=.0027; family D: LOD score 2.24, P=.0007). On the basis of the multipoint analysis for the combined families A and D, the 1-LOD support interval suggests that the most likely disease location is between a CA repeat polymorphism on genomic clone AC025253 (44.5 Mb) and marker D12S1701 (47.7 Mb). Our data provide evidence that the PARK8 locus is responsible for the disease in a subset of families of white ancestry with autosomal dominant parkinsonism, suggesting that it could be a more common locus.  相似文献   

10.
Autosomal dominant distal myopathy: linkage to chromosome 14.   总被引:2,自引:1,他引:1       下载免费PDF全文
We have studied a family segregating a form of autosomal dominant distal myopathy (MIM 160500) and containing nine living affected individuals. The myopathy in this family is closest in clinical phenotype to that first described by Gowers in 1902. A search for linkage was conducted using microsatellite, VNTR, and RFLP markers. In total, 92 markers on all 22 autosomes were run. Positive linkage was obtained with 14 of 15 markers tested on chromosome 14, with little indication of linkage elsewhere in the genome. Maximum two-point LOD scores of 2.60 at recombination fraction .00 were obtained for the markers MYH7 and D14S64--the family structure precludes a two-point LOD score > or = 3. Recombinations with D14S72 and D14S49 indicate that this distal myopathy locus, MPD1, should lie between these markers. A multipoint analysis assuming 100% penetrance and using the markers D14S72, D14S50, MYH7, D14S64, D14S54, and D14S49 gave a LOD score of exactly 3 at MYH7. Analysis at a penetrance of 80% gave a LOD score of 2.8 at this marker. This probable localization of a gene for distal myopathy, MPD1, on chromosome 14 should allow other investigators studying distal myopathy families to test this region for linkage in other types of the disease, to confirm linkage or to demonstrate the likely genetic heterogeneity.  相似文献   

11.
Myoclonus-dystonia (M-D) is an autosomal dominant disorder characterized by myoclonic and dystonic muscle contractions that are often responsive to alcohol. The dopamine D2 receptor gene (DRD2) on chromosome 11q has been implicated in one family with this syndrome, and linkage to a 28-cM region on 7q has been reported in another. We performed genetic studies, using eight additional families with M-D, to assess these two loci. No evidence for linkage was found for 11q markers. However, all eight of these families showed linkage to chromosome 7 markers, with a combined multipoint LOD score of 11.71. Recombination events in the families define the disease gene within a 14-cM interval flanked by D7S2212 and D7S821. These data provide evidence for a major locus for M-D on chromosome 7q21.  相似文献   

12.
Generalized epilepsy with febrile seizures plus (GEFS+) is a recently recognized but relatively common form of inherited childhood-onset epilepsy with heterogeneous epilepsy phenotypes. We genotyped 41 family members, including 21 affected individuals, to localize the gene causing epilepsy in a large family segregating an autosomal dominant form of GEFS+. A genomewide search examining 197 markers identified linkage of GEFS+ to chromosome 2, on the basis of an initial positive LOD score for marker D2S294 (Z=4.4, recombination fraction [straight theta] = 0). A total of 24 markers were tested on chromosome 2q, to define the smallest candidate region for GEFS+. The highest two-point LOD score (Zmax=5.29; straight theta=0) was obtained with marker D2S324. Critical recombination events mapped the GEFS+ gene to a 29-cM region flanked by markers D2S156 and D2S311, with the idiopathic generalized epilepsy locus thereby assigned to chromosome 2q23-q31. The existence of the heterogeneous epilepsy phenotypes in this kindred suggests that seizure predisposition determined by the GEFS+ gene on chromosome 2q could be modified by other genes and/or by environmental factors, to produce the different seizure types observed.  相似文献   

13.
Family and twin studies provide strong evidence that genetic factors are involved in the transmission of Gilles de la Tourette syndrome (TS) and related psychiatric disorders. To detect the underlying susceptibility gene(s) for TS, we performed linkage analysis in one large French Canadian family (127 members) from the Charlevoix region, in which 20 family members were definitely affected by TS and 20 others showed related tic disorders. Using model-based linkage analysis, we observed a LOD score of 3.24 on chromosome 11 (11q23). This result was obtained in a multipoint approach involving marker D11S1377, the marker for which significant linkage disequilibrium with TS recently has been detected in an Afrikaner population. Altogether, 25 markers were studied, and, for level of significance, we derived a criterion that took into account the multiple testing arising from the use of three phenotype definitions and three modes of inheritance, a procedure that yielded a LOD score of 3.18. Hence, even after adjustment for multiple testing, the present study shows statistically significant evidence for genetic linkage with TS.  相似文献   

14.
We recently described an autosomal dominant inclusion-body myopathy characterized by congenital joint contractures, external ophthalmoplegia, and predominantly proximal muscle weakness. A whole-genome scan, performed with 161 polymorphic markers and with DNA from 40 members of one family, indicated strong linkage for markers on chromosome 17p. After analyses with additional markers in the region and with DNA from eight additional family members, a maximum LOD score (Zmax) was detected for marker D17S1303 (Zmax=7.38; recombination fraction (theta)=0). Haplotype analyses showed that the locus (Genome Database locus name: IBM3) is flanked distally by marker D17S945 and proximally by marker D17S969. The positions of cytogenetically localized flanking markers suggest that the location of the IBM3 gene is in chromosome region 17p13.1. Radiation hybrid mapping showed that IBM3 is located in a 2-Mb chromosomal region and that the myosin heavy-chain (MHC) gene cluster, consisting of at least six genes, co-localizes to the same region. This localization raises the possibility that one of the MHC genes clustered in this region may be involved in this disorder.  相似文献   

15.
16.
We have previously reported an autosomal recessive form of congenital muscular dystrophy, characterized by proximal girdle weakness, generalized muscle hypertrophy, rigidity of the spine, and contractures of the tendo Achilles, in a consanguineous family from the United Arab Emirates. Early respiratory failure resulting from severe diaphragmatic involvement was present. Intellect and the results of brain imaging were normal. Serum creatine kinase levels were grossly elevated, and muscle-biopsy samples showed dystrophic changes. The expression of the laminin-alpha2 chain of merosin was reduced on several fibers, but linkage analysis excluded the LAMA2 locus on chromosome 6q22-23. Here, we report the results of genomewide linkage analysis of this family, by use of homozygosity mapping. In all four affected children, an identical homozygous region was identified on chromosome 1q42, spanning 6-15 cM between flanking markers D1S2860 and D1S2800. We have identified a second German family with two affected children having similar clinical and histopathological features; they are consistent with linkage to the same locus. The cumulative LOD score was 3.57 (straight theta=.00) at marker D1S213. This represents a novel locus for congenital muscular dystrophy. We suggest calling this disorder "CMD1B." The expression of three functional candidate genes in the CMD1B critical region was investigated, and no detectable changes in their level of expression were observed. The secondary reduction in laminin-alpha2 chain in these families suggests that the primary genetic defect resides in a gene coding for a protein involved in basal lamina assembly.  相似文献   

17.
Nonsyndromic cleft lip with or without cleft palate (CLP) is a common craniofacial anomaly, the etiology of which is not known. Population studies have shown that a large proportion of cases occur sporadically. Recently, segregation analyses applied to CLP families have demonstrated that an autosomal dominant/codominant gene(s) may cause clefting in cases. Associations of autosomal dominant CLP and nonsyndromic cleft palate (CP) with HLA and F13A genes on chromosome 6p have been suggested previously. Linkage to these two areas on chromosome 6p were tested in 12 autosomal dominant families with CLP. With a LOD score of -2 or less for exclusion, no evidence of linkage was found to four chromosome 6p markers. Multipoint analysis showed no evidence of a clefting locus in this region spanning 54 cM on chromosome 6p in these CLP families.  相似文献   

18.
To identify genetic loci for autism-spectrum disorders, we have performed a two-stage genomewide scan in 38 Finnish families. The detailed clinical examination of all family members revealed infantile autism, but also Asperger syndrome (AS) and developmental dysphasia, in the same set of families. The most significant evidence for linkage was found on chromosome 3q25-27, with a maximum two-point LOD score of 4.31 (Z(max )(dom)) for D3S3037, using infantile autism and AS as an affection status. Six markers flanking over a 5-cM region on 3q gave Z(max dom) >3, and a maximum parametric multipoint LOD score (MLS) of 4.81 was obtained in the vicinity of D3S3715 and D3S3037. Association, linkage disequilibrium, and haplotype analyses provided some evidence for shared ancestor alleles on this chromosomal region among affected individuals, especially in the regional subisolate. Additional potential susceptibility loci with two-point LOD scores >2 were observed on chromosomes 1q21-22 and 7q. The region on 1q21-22 overlaps with the previously reported candidate region for infantile autism and schizophrenia, whereas the region on chromosome 7q provided evidence for linkage 58 cM distally from the previously described autism susceptibility locus (AUTS1).  相似文献   

19.
A missense mutation of Gipc3 was previously reported to cause age-related hearing loss in mice. Point mutations of human GIPC3 were found in two small families, but association with hearing loss was not statistically significant. Here, we describe one frameshift and six missense mutations in GIPC3 cosegregating with DFNB72 hearing loss in six large families that support statistically significant evidence for genetic linkage. However, GIPC3 is not the only nonsyndromic hearing impairment gene in this region; no GIPC3 mutations were found in a family cosegregating hearing loss with markers of chromosome 19p. Haplotype analysis excluded GIPC3 from the obligate linkage interval in this family and defined a novel locus spanning 4.08?Mb and 104 genes. This closely linked but distinct nonsyndromic hearing loss locus was designated DFNB81.  相似文献   

20.
Apolipoprotein E (APOE) is the only confirmed susceptibility gene for late-onset Alzheimer disease (AD). In a recent genomic screen of 54 families with late-onset AD, we detected significant evidence for a second late-onset AD locus located on chromosome 12 between D12S373 and D12S390. Linkage to this region was strongest in 27 large families with at least one affected individual without an APOE-4 allele, suggesting that APOE and the chromosome 12 locus might have independent effects. We have since genotyped several additional markers across the region, to refine the linkage results. In analyzing these additional data, we have addressed the issue of heterogeneity in the data set by weighting results by clinical and neuropathologic features, sibship size, and APOE genotype. When considering all possible affected sib pairs (ASPs) per nuclear family, we obtained a peak maximum LOD score between D12S1057 and D12S1042. The magnitude and location of the maximum LOD score changed when different weighting schemes were used to control for the number of ASPs contributed by each nuclear family. Using the affected-relative-pair method implemented in GENEHUNTER-PLUS, we obtained a maximum LOD score between D12S398 and D12S1632, 25 cM from the original maximum LOD score. These results indicate that family size influences the location estimate for the chromosome 12 AD gene. The results of conditional linkage analysis by use of GENEHUNTER-PLUS indicated that evidence for linkage to chromosome 12 was stronger in families with affected individuals lacking an APOE-4 allele; much of this evidence came from families with affected individuals with neuropathologic diagnosis of dementia with Lewy bodies (DLB). Taken together, these results indicate that the chromosome 12 locus acts independently of APOE to increase the risk of late-onset familial AD and that it may be associated with the DLB variant of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号