首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The endoplasmic reticulum is a major site of localization for eukaryotic cytochrome P-450 mixed-function oxidase complexes. Previous studies have shown that the microsomal forms of P-450 insert into the membrane via their hydrophobic amino terminus through the signal recognition particle-dependent pathway. We have examined the insertion of bovine 17 alpha-hydroxylase (P45017 alpha) into the endoplasmic reticulum of COS 1 cells to evaluate the functional role of its hydrophobic amino-terminal sequence and membrane insertion. An NH2-terminal truncated protein, P450 delta 2-17, which lacked amino acids 2-17 was expressed in COS 1 cells, subcellular fractions were isolated, and P450 delta 2-17 was localized by immunoblot analysis. Compared to the full-length P45017 alpha, the NH2-terminal truncation resulted in a 2.5-fold decrease in P45017 alpha protein recovered with the microsomal fraction, 50% of which was an integral membrane protein as defined by resistance to Na2CO3 extraction. Despite correct membrane localization, P450 delta 2-17 was not a functional enzyme in COS 1 cells. A CO difference spectrum of microsomes containing P450 delta 2-17 did not give a typical 450 nm absorbance. We conclude that the hydrophobic amino terminus is required for the expression of a functionally competent P45017 alpha in COS 1 cells and suggest that the insertion of the amino terminus into the membrane is necessary for the folding of this protein into its correct structural form.  相似文献   

2.
In the human and bovine adrenal cortex, 17 alpha-hydroxylase (P45017 alpha) catalyzes reactions involved in the production of C21-glucocorticoids (17 alpha-hydroxylation) and C19-androgens (17,20-lyase). The bovine and human forms of P45017 alpha share 71% primary sequence identity. Using naturally occurring restriction sites common to cDNAs encoding both human and bovine P45017 alpha, we have constructed bovine/human (bovine amino terminus and human carboxy terminus) and human/bovine (human amino terminus and bovine carboxy terminus) cDNAs that have been expressed in COS 1 cells, and the enzymatic properties of the resultant chimeric proteins have been examined. The three bovine/human chimeras studied have 17 alpha-hydroxylase activities intermediate between those of the wild-type bovine and wild-type human enzymes, although the 17,20-lyase activity of these chimeras is significantly lower than that of either of the wild-type enzymes. Surprisingly, the opposite chimeras (those containing a human amino-terminal sequene and a bovine carboxy-terminal sequence) are all virtually inactive, even though they appear to be expressed at normal levels. These results indicate that the folding of P45017 alpha initiated by the bovine amino terminus can accommodate human P45017 alpha sequences of various lengths to produce a relatively normal 17 alpha-hydroxylase having decreased 17,20-lyase activity. On the other hand, folding initiated by the human P45017 alpha amino terminus does not easily accommodate bovine carboxy-terminal sequences to produce a functional enzyme. Presumably this difference arises from the fact that the tertiary structures of the bovine and human forms of P45017 alpha are sufficiently different so that interchanging sequences will not lead to functional enzymes in a predictable fashion.  相似文献   

3.
T Sato  M Sakaguchi  K Mihara    T Omura 《The EMBO journal》1990,9(8):2391-2397
We previously showed that the amino-terminal region of P-450 is responsible not only for targeting to endoplasmic reticulum (ER) membrane but also for stable anchoring to the membrane. In the present study, we introduced several mutations or deletions into the signal-anchor region of the chimeric proteins in which the amino-terminal regions of two forms of cytochrome P-450 were fused to the mature portion of interleukin 2. The amino-terminal acidic amino acid residues were replaced with basic amino acid residues or the hydrophobic core sequences were partially deleted, and these mutant proteins were assayed in vitro for their capacity to be inserted into or translocated across the ER membrane. The proteins that received the former manipulations were processed and the IL-2 portion was translocated across the membrane. In one case, the processing did not occur, thereby enabling the chimeric protein to anchor on the luminal side of the ER. Those that received the latter manipulation were also processed and the IL-2 portion translocated across the ER. These results strongly suggest that the signal-anchor function is determined both by the amino-terminal charged amino acid residues and by the length of the hydrophobic stretch.  相似文献   

4.
Multilineage colony stimulating factor is a secretory protein with a cleavable signal sequence that is unusually long and hydrophobic. Using molecular cloning techniques we exchanged sequences NH2- or COOH-terminally flanking the hydrophobic signal sequence. Such modified fusion proteins still inserted into the membrane but their signal sequence was not cleaved. Instead the proteins were now anchored in the membrane by the formerly cleaved signal sequence (signal-anchor sequence). They exposed the NH2 terminus on the exoplasmic and the COOH terminus on the cytoplasmic side of the membrane. We conclude from our results that hydrophilic sequences flanking the hydrophobic core of a signal sequence can determine cleavage by signal peptidase and insertion into the membrane. It appears that negatively charged amino acid residues close to the NH2 terminal side of the hydrophobic segment are compatible with translocation of this segment across the membrane. A tripartite structure is proposed for signal-anchor sequences: a hydrophobic core region that mediates targeting to and insertion into the ER membrane and flanking hydrophilic segments that determine the orientation of the protein in the membrane.  相似文献   

5.
Cytochrome P450b is an integral membrane protein of the rat hepatocyte endoplasmic reticulum (ER) which is cotranslationally inserted into the membrane but remains largely exposed on its cytoplasmic surface. The extreme hydrophobicity of the amino-terminal portion of P450b suggests that it not only serves to initiate the cotranslational insertion of the nascent polypeptide but that it also halts translocation of downstream portions into the lumen of the ER and anchors the mature protein in the membrane. In an in vitro system, we studied the cotranslational insertion into ER membranes of the normal P450b polypeptide and of various deletion variants and chimeric proteins that contain portion of P450b linked to segments of pregrowth hormone or bovine opsin. The results directly established that the amino-terminal 20 residues of P450b function as a combined insertion-halt-transfer signal. Evidence was also obtained that suggests that during the early stages of insertion, this signal enters the membrane in a loop configuration since, when the amino-terminal hydrophobic segment was placed immediately before a signal peptide cleavage site, cleavage by the luminally located signal peptidase took place. After entering the membrane, the P450b signal, however, appeared to be capable of reorienting within the membrane since a bovine opsin peptide segment linked to the amino terminus of the signal became translocated into the microsomal lumen. It was also found that, in addition to the amino-terminal combined insertion-halt-transfer signal, only one other segment within the P450b polypeptide, located between residues 167 and 185, could serve as a halt-transfer signal and membrane-anchoring domain. This segment was shown to prevent translocation of downstream sequences when the amino-terminal combined signal was replaced by the conventional cleavable insertion signal of a secretory protein.  相似文献   

6.
The N-terminal signal anchor of cytochrome P-450 2C1 mediates retention in the endoplasmic reticulum (ER) membrane of several reporter proteins. The same sequence fused to the C terminus of the extracellular domain of the epidermal growth factor receptor permits transport of the chimeric protein to the plasma membrane. In the N-terminal position, the ER retention function of this signal depends on the polarity of the hydrophobic domain and the sequence KQS in the short hydrophilic linker immediately following the transmembrane domain. To determine what properties are required for the ER retention function of the signal anchor in a position other than the N terminus, the effect of mutations in the linker and hydrophobic domains on subcellular localization in COS1 cells of chimeric proteins with the P-450 signal anchor in an internal or C-terminal position was analyzed. For the C-terminal position, the signal anchor was fused to the end of the luminal domain of epidermal growth factor receptor, and green fluorescent protein was additionally fused at the C terminus of the signal anchor for the internal position. In these chimeras, the ER retention function of the signal anchor was rescued by deletion of three leucines at the C-terminal side of its hydrophobic domain; however, deletion of three valines from the N-terminal side did not affect transport to the cell surface. ER retention of the C-terminal deletion mutants was eliminated by substitution of alanines for glutamine and serine in the linker sequence. These data are consistent with a model in which the position of the linker sequence at the membrane surface, which is critical for ER retention, is dependent on the transmembrane domain.  相似文献   

7.
I gamma CAT is a hybrid protein that inserts into the membrane of the endoplasmic reticulum as a type II membrane protein. These proteins span the membrane once and expose the NH2-terminal end on the cytoplasmic side and the COOH terminus on the exoplasmic side. I gamma CAT has a single hydrophobic segment of 30 amino acid residues that functions as a signal for membrane insertion and anchoring. The signal-anchor region in I gamma CAT was analyzed by deletion mutagenesis from its COOH-terminal end (delta C mutants). The results show that the 13 amino acid residues on the amino-terminal side of the hydrophobic segment are not sufficient for membrane insertion and translocation. Mutant proteins with at least 16 of the hydrophobic residues are inserted into the membrane, glycosylated, and partially proteolytically processed by a microsomal protease (signal peptidase). The degree of processing varies between different delta C mutants. Mutant proteins retaining 20 or more of the hydrophobic amino acid residues can span the membrane like the parent I gamma CAT protein and are not proteolytically processed. Our data suggest that in the type II membrane protein I gamma CAT, the signals for membrane insertion and anchoring are overlapping and that hydrophilic amino acid residues at the COOH-terminal end of the hydrophobic segment can influence cleavage by signal peptidase. From this and previous work, we conclude that the function of the signal-anchor sequence in I gamma CAT is determined by three segments: a positively charged NH2 terminus, a hydrophobic core of at least 16 amino acid residues, and the COOH-terminal flanking hydrophilic segment.  相似文献   

8.
A complete amino acid sequence for rat testis P-450(17)alpha was deduced from nucleotide analysis of a cDNA clone isolated from a rat Leydig cell cDNA library. This DNA clone, containing initiation and termination codons and a polyA tail, translated a polypeptide in COS-1 cells that expressed both 17 alpha-hydroxylase and 17,20 lyase activities. It exhibited significant similarity to the nucleotide and deduced amino acid sequences of the bovine and human cytochrome P-450(17)alpha, particularly with respect to the highly conserved regions and secondary structure. The P-450(17)alpha appears to be anchored to the membrane of the endoplasmic reticulum through two transmembrane regions, specifically the N terminal insertion peptide and the stop-transfer sequence. Hydropathic analysis indicates that the remainder of the C terminus is associated with the membrane through four hydrophobic clefts, including the putative steroid binding site.  相似文献   

9.
H P Wessels  M Spiess 《Cell》1988,55(1):61-70
To study the insertion of multispanning membrane proteins into the endoplasmic reticulum, we constructed novel proteins on the cDNA level by repeating, up to four times, the internal signal-anchor domain of the asialoglycoprotein receptor H1. Upon in vitro translation in the presence of microsomes, these polypeptides are indeed inserted as polytopic membrane proteins. The first hydrophobic domain functions as a signal and the second as a stop-transfer sequence, while the third initiates a second translocation process, halted again by the fourth. We were able to demonstrate that insertion occurs sequentially, starting with the first apolar segment from the amino terminus. By replacing the original signal-anchor domains by a mutant sequence not recognized by signal recognition particle (SRP), it was shown that only the first hydrophobic domain needs to be a signal sequence and that the second translocation event does not require SRP.  相似文献   

10.
The molecular organization of microsomal cytochromes P450 (P450s) and formation of complexes with P450 reductase have been studied previously with isolated proteins and in reconstituted systems. Although these studies demonstrated that some P450s oligomerize in vitro, neither oligomerization nor interactions of P450 with P450 reductase have been studied in living cells. Here we have used fluorescence resonance energy transfer (FRET) to study P450 oligomerization and binding to P450 reductase in live transfected cells. Cytochrome P450 2C2, but not P450 2E1, forms homo-oligomeric structures, and this self-association is mediated by the signal-anchor sequence. Because P450 2C2, in contrast to P450 2E1, is directly retained in the endoplasmic reticulum (ER), these results could suggest that oligomerization may prevent transport from the ER. However, P450 2C1 signal-anchor sequence chimera defective in ER retention also formed oligomers, and chimera containing the cytoplasmic domain of P450 2C2, which is directly retained in the ER, did not exhibit self-oligomerization, which indicates that oligomerization is not correlated with direct retention. By using FRET, we have also detected binding of P450 2C2 and P450 2E1 to P450 reductase. In contrast to self-oligomerization, the catalytic domain can mediate an interaction of P450 2C2 with P450 reductase. These results suggest that microsomal P450s may differ in their quaternary structure but that these differences do not detectably affect interaction with the reductase or transport from the ER.  相似文献   

11.
Requirements for the membrane insertion of signal-anchor type proteins   总被引:16,自引:5,他引:11       下载免费PDF全文
Proteins which are inserted and anchored in the membrane of the ER by an uncleaved signal-anchor sequence can assume two final orientations. Type I signal-anchor proteins translocate the NH2 terminus across the membrane while type II signal-anchor proteins translocate the COOH terminus. We investigated the requirements for cytosolic protein components and nucleotides for the membrane targeting and insertion of single-spanning type I signal-anchor proteins. Besides the ribosome, signal recognition particle (SRP), GTP, and rough microsomes (RMs) no other components were found to be required. The GTP analogue GMPPNP could substitute for GTP in supporting the membrane insertion of IMC-CAT. By using a photocrosslinking assay we show that for secreted, type I and type II signal-anchor proteins the presence of both GTP and RMs is required for the release of the nascent chain from the 54-kD subunit of SRP. For two of the proteins studied the release of the nascent chain from SRP54 was accompanied by a new interaction with components of the ER. We conclude that the GTP-dependent release of the nascent chain from SRP54 occurs in an identical manner for each of the proteins studied.  相似文献   

12.
Previous studies identified two intrinsic endoplasmic reticulum (ER) proteins, 11beta-hydroxysteroid dehydrogenase, isozyme 1 (11beta-HSD) and the 50-kDa esterase (E3), sharing some amino acid sequence motifs in their N-terminal transmembrane (TM) domains. Both are type II membrane proteins with the C terminus projecting into the lumen of the ER. This finding implied that the N-terminal TM domains of 11beta-HSD and E3 may constitute a lumenal targeting signal (LTS). To investigate this hypothesis we created chimeric fusions using the putative targeting sequences and the reporter gene, Aequorea victoria green fluorescent protein. Transfected COS cells expressing LTS-green fluorescent protein chimeras were examined by fluorescent microscopy and electron microscopic immunogold labeling. The orientation of expressed chimeras was established by immunocytofluorescent staining of selectively permeabilized COS cells. In addition, protease protection assays of membranes in the presence and absence of detergents was used to confirm lumenal or the cytosolic orientation of the constructed chimeras. To investigate the general applicability of the proposed LTS, we fused the N terminus of E3 to the N terminus of the NADH-cytochrome b5 reductase lacking the myristoyl group and N-terminal 30-residue membrane anchor. The orientation of the cytochrome b5 reductase was reversed, from cytosolic to lumenal projection of the active domain. These observations establish that an amino acid sequence consisting of short basic or neutral residues at the N terminus, followed by a specific array of hydrophobic residues terminating with acidic residues, is sufficient for lumenal targeting of single-pass proteins that are structurally and functionally unrelated.  相似文献   

13.
Cytochrome P450 17 alpha-hydroxylase/C17-20 lyase (P45017 alpha) catalyzes the conversion of C-21 steroids to C-19 steroids in gonads. A full-length mouse cDNA encoding P450 17 alpha was isolated from a mouse Leydig cell library and characterized by restriction mapping and sequencing. The predicted amino acid sequence has 83% homology to rat, 66% homology to human, and 62% homology to bovine P45017 alpha amino acid sequences. The protein is 507 amino acids in length, which is 1 amino acid shorter than the human protein and 2 amino acids shorter than the bovine protein. The structural gene encoding P450 17 alpha (Cyp17) was localized utilizing an interspecific testcross to mouse chromosome 19, distal to Got-1. Another cytochrome P450, P4502c (Cyp2c), also is located at the distal end of chromosome 19. CYP17, CYP2c, and GOT1 have been mapped to human chromosome 10, with CYP2C and GOT1 mapped to the distal region, q24.3 and q25.3, respectively. The data in the present study indicate conserved syntenic loci on mouse chromosome 19 and human chromosome 10 and predict that the structural gene encoding P45017 alpha will be found distal to GOT1 on human chromosome 10.  相似文献   

14.
Recent studies from our laboratory showed that the beta-naphthoflavone-inducible cytochrome P4501A1 is targeted to both the endoplasmic reticulum (ER) and mitochondria. In the present study, we have further investigated the ability of the N-terminal signal sequence (residues 1-44) of P4501A1 to target heterologous proteins, dihydrofolate reductase, and the mature portion of the rat P450c27 to the two subcellular compartments. In vitro transport and in vivo expression experiments show that N-terminally fused 1-44 signal sequence of P4501A1 targets heterologous proteins to both the ER and mitochondria, whereas the 33-44 sequence strictly functions as a mitochondrial targeting signal. Site-specific mutations show that positively charged residues at the 34th and 39th positions are critical for mitochondrial targeting. Cholesterol 27-hydroxylase activity of the ER-associated 1-44/1A1-CYP27 fusion protein can be reconstituted with cytochrome P450 reductase, but the mitochondrial associated fusion protein is functional with adrenodoxin + adrenodoxin reductase. Consistent with these differences, the fusion protein in the two organelle compartments exhibited distinctly different membrane topology. The results on the chimeric nature of the N-terminal signal of P4501A1 coupled with interaction with different electron transport proteins suggest a co-evolutionary nature of some of the xenobiotic inducible microsomal and mitochondrial P450s.  相似文献   

15.
《The Journal of cell biology》1994,126(6):1407-1420
Rat microsomal aldehyde dehydrogenase (msALDH) has no amino-terminal signal sequence, but instead it has a characteristic hydrophobic domain at the carboxyl terminus (Miyauchi, K., R. Masaki, S. Taketani, A. Yamamoto, A. Akayama, and Y. Tashiro. 1991. J. Biol. Chem. 266:19536- 19542). This membrane-bound enzyme is a useful model protein for studying posttranslational localization to its final destination. When expressed from cDNA in COS-1 cells, wild-type msALDH is localized exclusively in the well-developed ER. The removal of the hydrophobic domain results in the cytosolic localization of truncated proteins, thus suggesting that the portion is responsible for membrane anchoring. The last 35 amino acids of msALDH, including the hydrophobic domain, are sufficient for targeting of E. coli beta-galactosidase to the ER membrane. Further studies using chloramphenicol acetyltransferase fusion proteins suggest that two hydrophilic sequences on either side of the hydrophobic domain play an important role in ER targeting.  相似文献   

16.
《The Journal of cell biology》1993,120(5):1093-1100
The lamin B receptor (LBR) is a polytopic protein of the inner nuclear membrane. It is synthesized without a cleavable amino-terminal signal sequence and composed of a nucleoplasmic amino-terminal domain of 204 amino acids followed by a hydrophobic domain with eight putative transmembrane segments. To identify a nuclear envelope targeting signal, we have examined the cellular localization by immunofluorescence microscopy of chicken LBR, its amino-terminal domain and chimeric proteins transiently expressed in transfected COS-7. Full- length LBR was targeted to the nuclear envelope. The amino-terminal domain, without any transmembrane segments, was transported to the nucleus but excluded from the nucleolus. When the amino-terminal domain of LBR was fused to the amino-terminal side of a transmembrane segment of a type II integral membrane protein of the ER/plasma membrane, the chimeric protein was targeted to the nuclear envelope, likely the inner nuclear membrane. When the amino-terminal domain was deleted from LBR and replaced by alpha-globin, the chimeric protein was retained in the ER. These findings demonstrate that the amino-terminal domain of LBR is targeted to the nucleus after synthesis in the cytoplasm and that this polypeptide can function as a nuclear envelope targeting signal when located at the amino terminus of a type II integral membrane protein synthesized on the ER.  相似文献   

17.
A cDNA clone encoding the complete rat 17 alpha-hydroxylase (P450(17 alpha] from testis has been identified and sequenced. The deduced amino acid sequence is found to have 69% similarity with human P450(17 alpha), 64% similarity with bovine P450(17 alpha), and 47% similarity with chicken P450(17 alpha). The protein contains 507 amino acids being one amino acid shorter than the human P450(17 alpha) as the result of a codon being absent at the position of amino acid 139 in the human sequence. The cDNA hybridizes to a single mRNA (approximately 2.0 kilobases) in rat testis RNA and Southern analysis indicates the presence of a single CYP17 gene in the rat genome. Expression of this cDNA in COS1 cells leads to production of a steroid hydroxylase which is capable of converting both 17 alpha-hydroxypregnenolone and 17 alpha-hydroxyprogesterone into C19 steroids, dehydroepiandrosterone, and androstenedione, respectively. This activity profile is distinct from that of either the human or bovine forms of P450(17 alpha) which are unable to catalyze 17,20-lyase conversion of delta 4-C21 steroids to delta 4-C19 steroids at significant rates.  相似文献   

18.
The cDNA coding for the human 3beta-hydroxy-5-ene steroid dehydrogenase/5-ene-4-ene steroid isomerase (3beta-HSD) has been expressed in yeast. When expressed from identical vectors except for the coding sequence, the specific activity of the type I is lower than that of the type II enzyme. A mutant of the human 3beta-HSD type II lacking the putative membrane spanning domain 1 was generated by site directed mutagenesis: its apparent K(m) for pregnenolone (PREG) is significantly increased and its V reduced to the level of the type I enzyme. The influence of the kinetic properties of 3beta-HSD in the accumulation of 17alpha-hydroxyprogesterone was probed by co-expression of the bovine 17alpha-hydroxylase cytochrome P450 (P45017alpha) cDNA. The metabolism of PREG was followed with time using the membrane fraction. Kinetic properties of the 3beta-HSD were modulated such that its activity was in excess, limiting or balanced with respect to the activity of the P45017alpha and the accumulation of intermediates and products recorded. Conditions for the generation of the by-products resulting from the 17,20-Lyase activity of the P45017alpha were found. The potential applications of the system are discussed.  相似文献   

19.
Outer mitochondrial membrane cytochrome b5 is an isoform of microsomal membrane cytochrome b5. In rat testes the outer mitochondrial membrane cytochrome b5 is present in both mitochondria and microsomes, whereas microsomal membrane cytochrome b5 is undetectable. Outer mitochondrial membrane cytochrome b5 present in the testis was localized in Leydig cells with cytochrome P-45017alpha, which catalyzes androgenesis therein. We therefore analyzed the functions of outer mitochondrial membrane cytochrome b5 in rat testis microsomes by using a proteoliposome system. In a low but physiological concentration of NADPH-cytochrome P-450 reductase and excess amount of progesterone, outer mitochondrial membrane cytochrome b5 stimulated the cytochrome P-45017alpha-catalyzed reactions, 17alpha-hydroxylation and C17-C20 bond cleavage. The effects were different from those by microsomal membrane cytochrome b5 as follows: preferential elevation of the 17alpha-hydroxylase activity by outer mitochondrial membrane cytochrome b5 in an amount-dependent manner versus that of the lyase activity by microsomal membrane cytochrome b5 at the low concentration, and the inhibition of both activities at the high concentration. At a low concentration of progesterone reflecting a physiological cholesterol supply, outer mitochondrial membrane cytochrome b5 elevated primarily the production of 17alpha-hydroxyprogesterone and then facilitated the conversion of the released intermediate to androstenedione. Thus, we demonstrated that outer mitochondrial membrane cytochrome b5 and not microsomal membrane cytochrome b5 functions as an activator for androgenesis in rat Leydig cells.  相似文献   

20.
We have investigated the topogenic rules of multispanning membrane proteins using erythrocyte band 3. Here, the fine structural requirements for the correct disposition of its second transmembrane segment (TM2) were assessed. We made fusion proteins where TM1 and the loop sequence preceding TM2 were changed and fused to prolactin. They were expressed in a cell-free system supplemented with rough microsomal membrane, and their topologies on the membrane were assessed by protease sensitivity and N-glycosylation. TM1 was demonstrated to be a signal-anchor sequence that mediates translocation of the downstream portion, and thus TM2 should be responsible to halt the translocation to acquire TM topology. When the loop between TM1 and TM2 was elongated, however, TM2 was readily translocated through the membrane and not integrated. For the membrane integration of TM2, TM2 must be in close proximity to TM1. The TM1 can be replaced with another signal-anchor sequence with a long hydrophobic segment but not with a signal sequence with shorter hydrophobic stretch. The length of the hydrophobic segment affected final topology of TM2. We concluded that the two TM segments work synergistically within the translocon to acquire the correct topology and that the length of the preceding signal sequence is critical for stable transmembrane assembly of TM2. We propose that direct interaction among the TM segments is one of the critical factors for the transmembrane topogenesis of multispanning membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号