共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis of Glutathione in Leaves of Transgenic Poplar Overexpressing [gamma]-Glutamylcysteine Synthetase 总被引:2,自引:0,他引:2 下载免费PDF全文
Internode stem fragments of the poplar hybrid Populus tremula x Populus alba were transformed with a bacterial gene (gshl) for [gamma]-glutamylcysteine synthetase ([gamma]-ECS) targeted to the cytosol. Lines overexpressing [gamma]-ECS were identified by northern analysis, and the transformant with the highest enzyme activity was used to investigate the control of glutathione synthesis. Whereas foliar [gamma]-ECS activity was below the limit of detection in untransformed plants, activities of up to 8.7 nmol mg-1 protein min-1 were found in the transformant, in which the foliar contents of [gamma]-glutamylcysteine ([gamma]-EC) and glutathione were increased approximately 10- and 3-fold, respectively, without affecting either the reduction state of the glutathione pool or the foliar cysteine content. A supply of exogenous cysteine to leaf discs increased the glutathione content from both transformed and untransformed poplars, and caused the [gamma]-EC content of the transformant discs to increase still further. The following conclusions are drawn: (a) the native [gamma]-ECS of untransformed poplars exists in quantities that are limiting for foliar glutathione synthesis; (b) foliar glutathione synthesis in untransformed poplars is limited by cysteine availability; (c) in the transformant interactions between glutathione synthesis and cysteine synthesis operate to sustain the increased formation of [gamma]-EC and glutathione; and (d) the foliar glutathione content of the transformant is restricted by cysteine availability and by the activity of glutathione synthetase. 相似文献
2.
Increased Activity of [gamma]-Glutamylcysteine Synthetase in Tomato Cells Selected for Cadmium Tolerance 总被引:2,自引:2,他引:2 下载免费PDF全文
Two cell lines of tomato (Lycopersicon esculentum Mill cv VFNT-Cherry) were systematically compared for their capacity to tolerate cadmium. Unselected CdS cells died in the presence of 0.3 mM CdCl2. CdR6-0 cells, which were selected from CdS, survived and grew in medium supplemented with 0.3 mM CdCl2. Growth of CdR6-0 cells under this condition was accompanied by synthesis of cadmium-binding phytochelatins and maintenance of cellular glutathione (GSH) levels. CdR6-0 cells also exhibited increased tolerance to buthionine sulfoximine, in both the presence and absence of 0.1 mM CdCl2. The specific activity of [gamma]-glutamylcysteine synthetase (EC 6.3.2.2) was approximately 2-fold higher in CdR6-0 cells than in CdS cells, whereas there was no difference between cell lines in specific activity of GSH synthetase (EC 6.3.2.3). Increased activity of the first enzyme of GSH biosynthesis in CdR6-0 cells, presumably a result of selection for increased cadmium tolerance, provides an enhanced capacity to synthesize GSH and to maintain the production of phytochelatins in response to cadmium. This adaptation may contribute to the enhanced cadmium tolerance of CdR6-0 cells. 相似文献
3.
Phloem exudates were collected along the tree axis at differentheights of wild type and transgenic poplar. Over-expressionof bacterial 相似文献
4.
Three different His-tagged, mutant forms of the fission yeast glutathione synthetase (GSH2) were derived by site-directed mutagenesis. The mutant and wild-type enzymes were expressed in E. coli DH5α and affinity purified in a two-step procedure. Analysis of enzyme activity showed that it was possible to shift the substrate specificity of GSH2 from Gly (km 0,19; wild-type) to β-Ala or Ser. One mutation (substitution of Ile471, Cy472 to Met and Val and Ala 485 and Thr486 to Leu and Pro) increased the affinity of GSH2 for β-Ala (km 0,07) and lowered the affinity for Gly (km 0,83), which is a characteristic of the enzyme homoglutathione synthetase found in plants. Substitution of Ala485 and Thr486 to Leu and Pro only, increased instead the affinity of GSH2 for Ser (km 0,23) as a substrate, while affinity to Gly was preserved (km 0,12). This provides a new biosynthetic pathway for hydroxymethyl glutathione, which is known to be synthesized from glutathione and Ser in a reaction catalysed by carboxypeptidase Y. The reported findings provide further insight into how specific amino acids positioned in the GSH2 active site facilitate the recognition of different amino acid substrates, furthermore they support the evolutionary theory that homoglutathione synthetase evolved from glutathione synthetase by a single gene duplication event. 相似文献
5.
6.
Localization and Characterization of Peroxidases in the Mitochondria of Chilling-Acclimated Maize Seedlings 总被引:12,自引:2,他引:10 下载免费PDF全文
We present evidence of two peroxidases in maize (Zea mays L.) mitochondria. One of these uses guaiacol and the other uses cytochrome c as the electron donor. Treatments of fresh mitochondria with protease(s) indicate that ascorbate and glutathione peroxidases are likely bound to the mitochondria as cytosolic contaminants, whereas guaiacol and cytochrome peroxidases are localized within the mitochondria. These two mitochondrial peroxidases are distinct from contaminant peroxidases and mitochondrial electron transport enzymes. Cytochrome peroxidase is present within the mitochondrial membranes, whereas guaiacol peroxidase is loosely bound to the mitochondrial envelope. Unlike other cellular guaiacol peroxidases, mitochondrial guaiacol peroxidase is not glycosylated. Digestion of lysed mitochondria with trypsin activated mitochondrial guaiacol peroxidase but inhibited cytochrome peroxidase. Isoelectric focusing gel analysis indicated guaiacol peroxidase as a major isozyme (isoelectric point 6.8) that is also activated by trypsin. No change in the mobility of guaiacol peroxidase due to trypsin treatment on native polyacrylamide gel electrophoresis was observed. Although both peroxidases are induced by chilling acclimation treatments (14[deg]C), only cytochrome peroxidase is also induced by chilling (4[deg]C). Because chilling induces oxidative stress in the maize seedlings and the mitochondria are a target for oxidative stress injury, we suggest that mitochondrial peroxidases play a role similar to catalase in protecting mitochondria from oxidative damage. 相似文献
7.
8.
Hiroaki Kato Mariko Kobayashi Kousaku Murata Takaaki Nishioka Jun’ichi Oda 《Bioscience, biotechnology, and biochemistry》2013,77(11):3071-3073
Kohamaic acid A is a potent DNA polymerase inhibitor isolated from the Okinawan marine sponge Ircinia sp. A series of structurally simplified analogs of kohamaic acid A were synthesized with the aim of evaluating structure-activity relationships. 相似文献
9.
H. Kato-Noguchi 《Biologia Plantarum》2000,43(4):621-624
Maize (Zea mays L.) seedlings were exposed to osmotic stress, and alcohol dehydrogenase (ADH) activity and abscisic acid (ABA) concentration were determined. The osmotic stress increased ADH activities in both roots and shoots, whereas the increase was 2-fold greater in roots than the shoots. The stress also increased ABA concentration in both roots and shoots and the increase was greater in the roots than in the shoots. 相似文献
10.
Kaurene Synthetase Activity in Helianthus annuus L. : Increases in Enzyme Activity after Storage of Seedlings in Liquid Nitrogen 下载免费PDF全文
In previous studies, the conversion of geranylgeranyl pyrophosphate to ent-kaurene (kaurene synthetase AB activity) could not be detected readily in crude extracts of sunflower (Helianthus annuus L.) seedlings (Shen-Miller, West 1982 Plant Physiol 69: 637-641). These investigations also revealed the presence of inhibitors for Marah macrocarpus kaurene synthetase AB activity in crude extracts of sunflower seedlings. It has now been found that crude extracts prepared from intact sunflower seedlings stored in liquid N2 for several days have greatly enhanced AB activity in comparison with frozen, but not stored, controls. The levels of activity for the conversion of copalyl pyrophosphate to ent-kaurene (kaurene synthetase B activity) are affected only slightly by storage of intact seedlings in liquid N2. Extracts from intact seedlings that had been stored in liquid N2 also showed less inhibitory activity for Marah macrocarpus endosperm kaurene synthetase AB activity. 相似文献
11.
Glutamine Synthetase Activity, Relative Water Content and Water Potential in Maize Submitted to Drought 总被引:1,自引:0,他引:1
Primer screening and optimization for random amplified polymorphic DNA (RAPD) analysis of cashew (Anacardium occidentale L.) was investigated. Among four series (A, B, D and N) of 10-mer primers, A-series performed better amplification of fragments
than other series. The maximum amplification fragments was obtained using OPA-02, OPA-03, OPA-09, OPB-06, OPB-10, OPD-03,
OPD-05 and OPN-03 primers. The primers OPA-02 and OPN-03 produced maximum number of DNA fragments in Anacardium occidentale cv. H-320. Primers (OPB-08 and OPN-05 performed a least number of amplification fragments. RAPD profile also indicate that
some primer did not produce good amplification. The primer OPA-02 amplified 12 number of polymorphic bands in 20 cultivars
of cashew. Only one DNA fragment was produced in A. occidentale cv. Vridhachalam - 2 (M-44/3) by using the primer OPA-02.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
12.
大豆初生幼苗多胺氧化酶活性的细胞化学定位 总被引:6,自引:0,他引:6
对大豆(Glycinemax(L.)Merril“l)垦农4号”萌发种子和初生幼苗中的多胺氧化酶(polyamineoxidase,PAO,EC1.4.3.6)的活性和分布进行了研究。结果表明,PAO活性仅在种子萌发起始后(吸胀后24h)才检测到,然后随着种子萌发进程,PAO活性快速升高。但是,在萌发种子(吸胀后72h)和初生幼苗(吸胀后120h)中,PAO活性在各器官中的分布有明显差异。在萌发种子中,PAO活性在胚根最高(5.17±0.91Ug-1FW),胚轴次之,胚芽再次之,子叶活性最低(0.12±0.03Ug-1FW);在初生幼苗中,PAO活性在下胚轴中最高(5.47±0.66Ug-1FW),幼根次之,顶芽再次之,子叶最低(0.10±0.03Ug-1FW)。这种差异对种子萌发和幼苗形态建成有积极意义。运用细胞化学定位在透射电镜下观察初生幼苗PAO在各部位的分布,发现PAO主要定位在顶芽细胞的液泡膜上、子叶细胞的细胞壁及其外侧表面、下胚轴细胞的细胞壁及其表面,且PAO与细胞壁表面结合较紧;根细胞的细胞壁、细胞间隙、细胞膜、液膜上均有分布,但以液泡膜分布居多。本研究结果进一步证实了PAO在细胞壁和细胞间隙有着较广泛的分布。首次报道PAO在细胞膜和液泡膜上有分布。 相似文献
13.
Cadmium Tolerance and Accumulation in Indian Mustard Is Enhanced by Overexpressing γ-Glutamylcysteine Synthetase 下载免费PDF全文
Yong Liang Zhu Elizabeth A.H. Pilon-Smits Alice S. Tarun Stefan U. Weber Lise Jouanin Norman Terry 《Plant physiology》1999,121(4):1169-1177
To investigate rate-limiting factors for glutathione and phytochelatin (PC) production and the importance of these compounds for heavy metal tolerance, Indian mustard (Brassica juncea) was genetically engineered to overexpress the Escherichia coli gshI gene encoding γ-glutamylcysteine synthetase (γ-ECS), targeted to the plastids. The γ-ECS transgenic seedlings showed increased tolerance to Cd and had higher concentrations of PCs, γ-GluCys, glutathione, and total non-protein thiols compared with wild-type (WT) seedlings. When tested in a hydroponic system, γ-ECS mature plants accumulated more Cd than WT plants: shoot Cd concentrations were 40% to 90% higher. In spite of their higher tissue Cd concentration, the γ-ECS plants grew better in the presence of Cd than WT. We conclude that overexpression of γ-ECS increases biosynthesis of glutathione and PCs, which in turn enhances Cd tolerance and accumulation. Thus, overexpression of γ-ECS appears to be a promising strategy for the production of plants with superior heavy metal phytoremediation capacity. 相似文献
14.
S. Pandey 《Biologia Plantarum》2000,43(1):149-151
Incubation of 5-d-old maize seedlings in the half-strength Hoagland's nutrient solution containing 10 mM KNO3 with FeCl3 or FeSO4 (0.5 or 2.0 mM) caused a significant increase in nitrate reductase (NR) activity and slightly increased total protein content in root, shoot and scutellum. In case of root, NADPH:NR activity was inhibited contrary to the NADH:NR activity. In spite of NR activity, nitrate uptake was inhibited from 13 to 37 % by the iron. The results presented demonstrate an isoform specific, organ specific, and to some extent salt specific responses of NR to iron. 相似文献
15.
16.
In cells of Saccharomyces cerevisiae grown with glucose in standing cultures, the microsomal fraction had the highest specific activity for acetyl-coenzyme A synthetase and contained the greatest fraction of the total activity regardless of when the cells were harvested during growth. The addition of acetate did not affect the distribution of the enzyme, nor did subsequent aeration of such cells in phosphate buffer even in the presence of glucose, acetate, or succinate. In cells grown aerobically, however, the microsomal fraction had the highest specific activity and the greatest fraction of the total activity only until the cells reached the stationary phase. After this time, most of the activity was associated with the mitochondrial fraction. Finally, 3 or 4 days after inoculation, this fraction appeared to lose most of the enzyme to the microsomal and soluble fractions. Chloramphenicol, at concentrations that interfered with respiration but not with fermentation, prevented the association of acetyl-coenzyme A synthetase with the mitochondrial fraction in aerated cells, but it did not appreciably affect the large increases in enzyme activity observed during aerobic incubation. Cells grown with glucose under strict anaerobic conditions contained barely detectable amounts of acetyl-coenzyme A synthetase. 相似文献
17.
Cysteine, gamma-Glutamylcysteine, and Glutathione Levels in Maize Seedlings : Distribution and Translocation in Normal and Cadmium-Exposed Plants 下载免费PDF全文
The levels of cysteine (Cys), γ-glutamylcysteine (γEC), and glutathione (GSH) were measured in the endosperms, scutella, roots, and shoots of maize (Zea mays L.) seedlings. GSH was the major thiol in roots, shoots, and scutella, Cys predominated in endosperms. The endosperm, scutellum, and functional phloem translocation were required for maintenance of GSH pools in roots and shoots of 6-day-old seedlings. Exposure of roots to 3 micromolar Cd, besides causing a decline in GSH, caused an accumulation of γEC, as if the activity of GSH synthetase was reduced in vivo. [35S]Cys injected into endosperms of seedlings was partly metabolized to [35S]sulfate. The scutella absorbed both [35S]sulfate and [35S]Cys and transformed 68 to 87% of the radioactivity into [35S]GSH. [35S]GSH was translocated to roots and shoots in proportion to the tissue fresh weight. Taken together, the data supported the hypothesis that Cys from the endosperm is absorbed by the scutellum and used to synthesize GSH for transfer through the phloem to the root and shoot. The estimated flux of GSH to the roots was 35 to 60 nanomoles per gram per hour, which totally accounted for the small gain in GSH in roots between days 6 and 7. For Cd-treated roots the GSH influx was similar, yet the GSH pool did not recover to control levels within 24 hours. The estimated flux of GSH to the entire shoot was like that to the roots; however, it was low (11-13 nanomoles per gram per hour) to the first leaf and high (76-135 nanomoles per gram per hour) to the second and younger leaves. 相似文献
18.
19.
20.
Kazuo Iwai Noboru Suzuki Shusaku Mizoguchi 《Bioscience, biotechnology, and biochemistry》2013,77(9):1016-1022
It has been found, that ammonium sulfate is effective not only in stabilizing, but also in stimulating the activity of formyltetrahydrofolate synthetase (E. C. 6, 3. 4. 3) purified approximately 500-fold from pea seedlings. Kinetic studies have indicated that the stimulation by ammonium sulfate is due to the enhancement of the binding of the substrate, formate, with the enzyme. The binding of the another substrate, FAH4, with the enzyme was not affected by the addition of ammonium sulfate. The enzyme activity was inhibited by various sulfhydryl reagents, and the inhibition by PCMB was overcome by the addition of l-cysteine. The inhibition by PCMB was competitive with FAH4, and the Ki value for PCMB was 0.8 × 10?6m. 相似文献