首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The primary (and inactive) enteric metabolite of 5-aminosalicylate is N-acetyl-5-amino-salicylate. Previous studies have demonstrated acetylation of this anti-inflammatory agent by intestinal and bacterial homogenates. To assess the contribution of anerobic bacteria to the N-acetylation in vivo, we have measured the production of N-acetyl-5-aminosalicylate in anerobic microculture. Our results indicate that enteric bacteria play a minor role in N-acetylation, but may contribute to the production of other metabolites of pharmacologic and toxicological interest.  相似文献   

2.
Summary A survey was conducted with seventeen enteric bacterial strains (including the generaKlebsiella, Enterobacter, Escherichia, Citrobacter, Edwardsiella andProteus) to examine their ability to transform furfural and 5-hydroxymethyl furfural (5-MHF). The enteric bacteria were able to convert furfural to furfuryl alcohol under both aerobic and anaerobic conditions in a relatively short incubation time of 8 h. 5-HMF was transformed by all the enteric bacteria studied to an unidentified compound postulated to be 5-hydroxymethyl furfuryl alcohol, which had an absorbance maximum of 222 nm. These bacteria did not transform furfuryl alcohol or 2-furoic acid. The enteric bacteria did not use furfural, 5-HMF, furfuryl alcohol or 2-furoic acid as sole source of carbon and energy. Biotransformation of furfural and 5-HMF was accomplished by co-metabolism in the presence of glucose and peptone as main substrates. The rate of transformation was similar under both aerobic and anaerobic conditions. These transformations are likely to be of value in the detoxification of furfurals, and in their ultimate conversion to methane and CO2 by anaerobic digestion.  相似文献   

3.
Abstract The aerobic metabolism of 3-aminobenzoate by bacteria was studied. Bacterial strains degrading 3-aminobenzoate were obtained by enrichment with 3-aminobenzoate (strain Ia3) or 5-aminosalicylate (strains BN9 and 5AS1). During growth with 3-aminobenzoate, strain Ia3 and strain 5AS1 transiently accumulated 5-aminosalicylate in the culture broth. In the presence of inhibitors of 5-aminosalicylate 1,2-dioxygenase, resting cells of all three strains converted 3-aminobenzoate to stoichiometric amounts of 5-aminosalicylate. 5-Aminosalicylate 1,2-dioxygenase activity was induced in all strains after growth with 3-aminobenzoate or 5-aminosalicylate, but not after growth in complex media.  相似文献   

4.
The naphthalenesulfonate-oxidizing bacterium Sphingomonas sp. BN6 was immobilized in calcium alginate. These beads were incubated under aerobic conditions in a medium with the sulfonated azo dye, Mordant Yellow 3 (MY3), and glucose. The immobilized cells converted MY3, but only a marginal turnover of the dye was found under these conditions with freely suspended cells of Sphingomonas sp. BN6. Under anaerobic conditions, suspended cells of Sphingomonas sp. BN6 reductively cleaved the azo bond of MY3 to 6-aminonaphthalene-2-sulfonate (6A2NS) and 5-aminosalicylate. The turnover of MY3 by the immobilized cells under aerobic conditions resulted in the formation of more than equimolar amounts of 5-aminosalicylate, but almost no (6A2NS) was detected. Cells of Sphingomonas sp. BN6 aerobically oxidize 6A2NS to 5-aminosalicylate. It was therefore concluded that the cells in the anaerobic center of the alginate beads reduced MY3 to 6A2NS and 5-aminosalicylate and that 6A2NS was oxidized to 5-aminosalicylate by those cells that were immobilized in the outer aerobic zones of the alginate beads. The presence of oxygen gradients within the alginate beads was verified by using oxygen micro-electrodes. A coimmobilisate of Sphingomonas sp. BN6 with a 5-aminosalicylate degrading bacterium completely degraded MY3. The immobilized cells also converted the sulfonated azo dyes Amaranth and Acid Red␣1. Received: 6 May 1996 / Received revision: 6 August 1996 / Accepted: 12 August 1996  相似文献   

5.
Reduction of nitrite to nitric oxide by enteric bacteria   总被引:10,自引:0,他引:10  
Seven bacteria representing seven genera of enteric bacteria, in addition to Escherichia coli, were shown to reduce nitrite to NO under anaerobic conditions when the cells were grown as nitrate respirers. NO production was inhibited by nitrate and azide and was self limiting, just as was found to be the case previously with E. coli and its nitrate reductase. Maximum initial rates of NO production were observed at pH 5.5-6.  相似文献   

6.
High performance liquid chromatography with coulometric electrochemical detection has been used to achieve simultaneous determination of norepinephrine, epinephrine, 5-hydroxytryptophan, normetanephrine, dopamine, metanephrine, 3,4-dihydroxyphenylacetic acid, N-acetyldopamine, tyramine, tryptophan, 5-hydroxyindoleacetic acid, 5-hydroxytryptamine, N-acetyl-5-hydroxytryptamine, homovanillic acid, tyrosine, p-octopamine, N-acetyl-p-octopamine, and p-synephrine. The procedure has been applied to study monoamine degradation in the insect brain and to demonstrate that N-acetylation rather than oxidative deamination is the primary route of monoamine catabolism in insects.  相似文献   

7.
Following incubation of mesophilic methanogenic floccular sludge from a lab-scale upflow anaerobic sludge bed reactor used to treat cattle manure wastewater, a stable 5-aminosalicylate-degrading enrichment culture was obtained. Subsequently, a Citrobacter freundii strain, WA1, was isolated from the 5-aminosalicylate-degrading methanogenic consortium. The methanogenic enrichment culture degraded 5-aminosalicylate completely to CH4, CO2 and NH4 +, while C. freundii strain WA1 reduced 5-aminosalicylate with simultaneous deamination to 2-hydroxybenzyl alcohol during anaerobic growth with electron donors such as pyruvate, glucose or serine. When grown on pyruvate, C. freundii WA1 converted 3-aminobenzoate to benzyl alcohol and also reduced benzaldehyde to benzyl alcohol. Pyruvate was fermented to acetate, CO2, H2 and small amounts of lactate, succinate and formate. Less lactate (30%) was produced from pyruvate when C. freundii WA1 grew with 5-aminosalicylate as co-substrate.  相似文献   

8.
Enteric bacteria are resistant to the bactericidal effects of intestinal bile, but these resistance mechanisms are not completely understood. It is becoming increasingly apparent that enteric bacteria have evolved to utilize bile as a signal for the temporal production of virulence factors and other adaptive mechanisms. A greater understanding of the resistance and response of bacteria to bile may assist the development of novel therapeutic, prevention, and diagnostic strategies to treat enteric and extraintestinal infections.  相似文献   

9.
Lactobacillus reuteri is a commensal-derived anaerobic probiotic that resides in the human gastrointestinal tract. L. reuteri converts glycerol into a potent broad-spectrum antimicrobial compound, reuterin, which inhibits the growth of gram-positive and gram-negative bacteria. In this study, we compared four human-derived L. reuteri isolates (ATCC 55730, ATCC PTA 6475, ATCC PTA 4659 and ATCC PTA 5289) in their ability to produce reuterin and to inhibit the growth of different enteric pathogens in vitro. Reuterin was produced by each of the four L. reuteri strains and assessed for biological activity. The minimum inhibitory concentration (MIC) of reuterin derived from each strain was determined for the following enteric pathogens: enterohemorrhagic Escherichia coli, enterotoxigenic E. coli, Salmonella enterica, Shigella sonnei and Vibrio cholerae. We also analyzed the relative abilities of L. reuteri to inhibit enteric pathogens in a pathogen overlay assay. The magnitude of reuterin production did not directly correlate with the relative ability of L. reuteri to suppress the proliferation of enteric pathogens. Additional antimicrobial factors may be produced by L. reuteri, and multiple factors may act synergistically with reuterin to inhibit enteric pathogens.  相似文献   

10.
We have examined the distribution of cobalamin (coenzyme B(12)) synthetic ability and cobalamin-dependent metabolism among enteric bacteria. Most species of enteric bacteria tested synthesize cobalamin under both aerobic and anaerobic conditions and ferment glycerol in a cobalamin-dependent fashion. The group of species including Escherichia coli and Salmonella typhimurium cannot ferment glycerol. E. coli strains cannot synthesize cobalamin de novo, and Salmonella spp. synthesize cobalamin only under anaerobic conditions. In addition, the cobalamin synthetic genes of Salmonella spp. (cob) show a regulatory pattern different from that of other enteric taxa tested. We propose that the cobalamin synthetic genes, as well as genes providing cobalamin-dependent diol dehydratase, were lost by a common ancestor of E. coli and Salmonella spp. and were reintroduced as a single fragment into the Salmonella lineage from an exogenous source. Consistent with this hypothesis, the S. typhimurium cob genes do not hybridize with the genomes of other enteric species. The Salmonella cob operon may represent a class of genes characterized by periodic loss and reacquisition by host genomes. This process may be an important aspect of bacterial population genetics and evolution.  相似文献   

11.
Summary Anaerobic bacteria, such as sulfate-reducing bacteria and clostridia, are capable of generating H2S and organic acids which corrode metallurgy resulting in millions of dollars of damage to industry annually. The bacteria are obligate anaerobes which grow typically on equipment surfaces under deposits such as biofilms. A successful method of penetrating biofilm and killing the anaerobic bacteria specifically has not been previously presented. We have investigated whether a blend of 1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole (metronidazole) and a biodispersant would killDesulfovibrio, Desulfotomaculum, andClostridium species grown in the laboratory and in field applications. We found the blend significantly reduced the anaerobes in laboratory cultures. However, in a bioreactor designed to induced a high level of biofilm production and enhance underdeposit growth of anaerobic bacteria, a 40–58% increase in the antibiotic-biodispersant blend concentration was required. The metronidazole blend killed obligate anaerobic bacteria specifically but was non-toxic to aerobic bacteria and fungi. These results were confirmed in cooling tower field trial studies.  相似文献   

12.
Many enteric bacteria express a type I oxygen-insensitive nitroreductase, which reduces nitro groups on many different nitroaromatic compounds under aerobic conditions. Enzymatic reduction of nitramines was also documented in enteric bacteria under anaerobic conditions. This study indicates that nitramine reduction in enteric bacteria is carried out by the type I, or oxygen-insensitive nitroreductase, rather than a type II enzyme. The enteric bacterium Morganella morganii strain B2 with documented hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) nitroreductase activity, and Enterobacter cloacae strain 96-3 with documented 2,4,6-trinitrotoluene (TNT) nitroreductase activity, were used here to show that the explosives TNT and RDX were both reduced by a type I nitroreductase. Morganella morganii and E. cloacae exhibited RDX and TNT nitroreductase activities in whole cell assays. Type I nitroreductase, purified from E. cloacae, oxidized NADPH with TNT or RDX as substrate. When expression of the E. cloacae type I nitroreductase gene was induced in an Escherichia coli strain carrying a plasmid, a simultaneous increase in TNT and RDX nitroreductase activities was observed. In addition, neither TNT nor RDX nitroreductase activity was detected in nitrofurazone-resistant mutants of M. morganii. We conclude that a type I nitroreductase present in these two enteric bacteria was responsible for the nitroreduction of both types of explosive.  相似文献   

13.
When microorganisms eluted from upper Hudson River sediment were cultured without any substrate except polychlorobiphenyl (PCB)-free Hudson River sediment, methane formation was the terminal step of the anaerobic food chain. In sediments containing Aroclor 1242, addition of eubacterium-inhibiting antibiotics, which should have directly inhibited fermentative bacteria and thereby should have indirectly inhibited methanogens, resulted in no dechlorination activity or methane production. However, when substrates for methanogenic bacteria were provided along with the antibiotics (to free the methanogens from dependence on eubacteria), concomitant methane production and dechlorination of PCBs were observed. The dechlorination of Aroclor 1242 was from the para positions, a pattern distinctly different from, and more limited than, the pattern observed with untreated or pasteurized inocula. Both methane production and dechlorination in cultures amended with antibiotics plus methanogenic substrates were inhibited by 2-bromoethanesulfonic acid. These results suggest that the methanogenic bacteria are among the physiological groups capable of anaerobic dechlorination of PCBs, but that the dechlorination observed with methanogenic bacteria is less extensive than the dechlorination observed with more complex anaerobic consortia.  相似文献   

14.
The ability of enteric bacteria to protect themselves against reactive nitrogen species generated by their own metabolism, or as part of the innate immune response, is critical to their survival. One important defence mechanism is their ability to reduce NO (nitric oxide) to harmless products. The highest rates of NO reduction by Escherichia coli K-12 were detected after anaerobic growth in the presence of nitrate. Four proteins have been implicated as catalysts of NO reduction: the cytoplasmic sirohaem-containing nitrite reductase, NirB; the periplasmic cytochrome c nitrite reductase, NrfA; the flavorubredoxin NorV and its associated oxidoreductase, NorW; and the flavohaemoglobin, Hmp. Single mutants defective in any one of these proteins and even the mutant defective in all four proteins reduced NO at the same rate as the parent. Clearly, therefore, there are mechanisms of NO reduction by enteric bacteria that remain to be characterized. Far from being minor pathways, the currently unknown pathways are adequate to sustain almost optimal rates of NO reduction, and hence potentially provide significant protection against nitrosative stress.  相似文献   

15.
Marine bacteria have recently attracted attention as potentially useful candidates for the production of practical materials from marine ecosystems, including the oceanic carbon dioxide cycle. The advantages of using marine bacteria for the biosynthesis of poly(hydroxyalkanoate) (PHA), one of the eco-friendly bioplastics, include avoiding contamination with bacteria that lack salt-water resistance, ability to use filtered seawater as a culture medium, and the potential for extracellular production of PHA, all of which would contribute to large-scale industrial production of PHA. A novel marine bacterium, Vibrio sp. strain KN01, was isolated and characterized in PHA productivity using various carbon sources under aerobic and aerobic–anaerobic marine conditions. The PHA contents of all the samples under the aerobic–anaerobic condition, especially when using soybean oil as the sole carbon source, were enhanced by limiting the amount of dissolved oxygen. The PHA accumulated using soybean oil as a sole carbon source under the aerobic–anaerobic condition contained 14% 3-hydroxypropionate (3HP) and 3% 5-hydroxyvalerate (5HV) units in addition to (R)-3-hydroxybutyrate (3HB) units and had a molecular weight of 42 × 103 g/mol. The present result indicates that the activity of the beta-oxidation pathway under the aerobic–anaerobic condition is reduced due to a reduction in the amount of dissolved oxygen. These findings have potential for use in controlling the biosynthesis of long main-chain PHA by regulating the activity of the beta-oxidation pathway, which also could be regulated by varying the dissolved oxygen concentration.  相似文献   

16.
17.
Technologies are available which will allow the conversion of lignocellulose into fuel ethanol using genetically engineered bacteria. Assembling these into a cost-effective process remains a challenge. Our work has focused primarily on the genetic engineering of enteric bacteria using a portable ethanol production pathway. Genes encoding Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase have been integrated into the chromosome of Escherichia coli B to produce strain KO11 for the fermentation of hemicellulose-derived syrups. This organism can efficiently ferment all hexose and pentose sugars present in the polymers of hemicellulose. Klebsiella oxytoca M5A1 has been genetically engineered in a similar manner to produce strain P2 for ethanol production from cellulose. This organism has the native ability to ferment cellobiose and cellotriose, eliminating the need for one class of cellulase enzymes. The optimal pH for cellulose fermentation with this organism (pH 5.0-5.5) is near that of fungal cellulases. The general approach for the genetic engineering of new biocatalysts has been most successful with enteric bacteria thus far. However, this approach may also prove useful with Gram-positive bacteria which have other important traits for lignocellulose conversion. Many opportunities remain for further improvements in the biomass to ethanol processes. These include the development of enzyme-based systems which eliminate the need for dilute acid hydrolysis or other pretreatments, improvements in existing pretreatments for enzymatic hydrolysis, process improvements to increase the effective use of cellulase and hemicellulase enzymes, improvements in rates of ethanol production, decreased nutrient costs, increases in ethanol concentrations achieved in biomass beers, increased resistance of the biocatalysts to lignocellulosic-derived toxins, etc. To be useful, each of these improvements must result in a decrease in the cost for ethanol production. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

18.
The nitrogen cycle is based on several redox reactions that are mainly accomplished by prokaryotic organisms, some archaea and a few eukaryotes, which use these reactions for assimilatory, dissimilatory or respiratory purposes. One group is the Enterobacteriaceae family of Gammaproteobacteria, which have their natural habitats in soil, marine environments or the intestines of humans and other warm-blooded animals. Some of the genera are pathogenic and usually associated with intestinal infections. Our body possesses several physical and chemical defence mechanisms to prevent pathogenic enteric bacteria from invading the gastrointestinal tract. One response of the innate immune system is to activate macrophages, which produce the potent cytotoxin nitric oxide (NO). However, some pathogens have evolved the ability to detoxify NO to less toxic compounds, such as the neuropharmacological agent and greenhouse gas nitrous oxide (N?O), which enables them to overcome the host's attack. The same mechanisms may be used by bacteria producing NO endogenously as a by-product of anaerobic nitrate respiration. In the present review, we provide a brief introduction into the NO detoxification mechanisms of two members of the Enterobacteriaceae family: Escherichia coli and Salmonella enterica serovar Typhimurium. These are discussed as comparative non-pathogenic and pathogenic model systems in order to investigate the importance of detoxifying NO and producing N?O for the pathogenicity of enteric bacteria.  相似文献   

19.
Homologous recombination in Escherichia coli occurs at increased frequency near Chi sites, 5'G-C-T-G-G-T-G-G3'. Cutting of DNA close to the Chi sequence by the E. coli RecBC enzyme is essential to Chi's stimulation of recombination. We have detected Chi-dependent cutting activity in extracts of several genera of terrestrial enteric bacteria (family Enterobacteriaceae) and of two genera of marine enteric bacteria (family Vibrionaceae). More distantly related bacteria had no detectable Chi-dependent cutting activity. These results support the view that recognition of this specific nucleotide sequence as a signal activating recombination has been maintained during the evolution of certain groups of bacteria. We discuss the possibility that other sequences play a similar role in other groups of bacteria.  相似文献   

20.
The presence of aerobic and anaerobic bacteria in the blood, spleen, and liver was investigated in mice that were exposed to 7, 8, 9, or 10 Gy 60Co radiation. Microorganisms were detected more often in animals exposed to higher doses of radiation. The number of mice that were culture positive and the number of isolates in one site increased with increasing dose. Bacteria were recovered in mice killed at various times after radiation, in 3 of 100 mice exposed to 7 Gy, in 13 of 100 irradiated with 8 Gy, in 23 of 90 exposed to 9 Gy, and in 34 of 87 irradiated with 10 Gy. The predominant organisms recovered were Escherichia coli, anaerobic Gram-positive cocci, Proteus mirabilis, Staphylococcus aureus, and Bacteroides spp. Escherichia coli and anaerobes were more often isolated in animals exposed to 10 Gy, while S. aureus was more often recovered in those irradiated with 9 Gy. These data demonstrate a relationship between the dose of radiation and the rate of infection due to enteric aerobic and anaerobic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号