首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was designed to investigate whether and to what extent oxidative stress is induced in embryo axes of Lupinus luteus L. cv. Polo inoculated with a necrotrophic fungus, Fusarium oxysporum and cultured on Heller medium for 96h. Four variants were compared: inoculated embryo axes cultured with 60mM sucrose (+Si) or without it (-Si), and non-inoculated embryo axes cultured with 60mM sucrose (+Sn) or without it (-Sn). After inoculation, an accumulation of stable free radicals and Mn2+ ions in +Si and -Si were detected by electron paramagnetic resonance. Concentrations of the radicals with g-values of 2.0052+/-0.0004 and 2.0029+/-0.0003 were generally higher in -Si than in +Si. Beginning at 24h after inoculation, in both +Si and -Si the concentrations of these ions decreased, but more strongly in -Si than in +Si. After inoculation, the activities of superoxide dismutase (SOD, EC 1.15.1.1) and catalase (CAT, EC 1.11.1.6) were higher in -Si than in +Si. SOD and CAT zymograms showed that the synthesis of new isoforms was induced after inoculation. Simultaneously, superoxide anions were assayed in embryo axes by using their specific indicator dihydroethidium (DHE). The DHE-derived fluorescence was stronger and covered a much larger tissue area in +Si than in -Si. The respiration rate was generally much higher in +Si than in -Si. Electron micrographs revealed that, in contrast to -Si cells, +Si cells had numerous mitochondria with less reduced numbers of cristae and long sections of rough endoplasmic reticulum and Golgi bodies. These results indicate that different defensive strategies against F. oxysporum were induced depending on soluble sugar levels in yellow lupine embryo axes.  相似文献   

2.
This study investigated the effects of cross-talk interactions of sucrose and infection caused by a pathogenic fungus Fusarium oxysporum f.sp. lupini on the regulation of the phenylpropanoid pathway, i.e. the level of expression of genes encoding enzymes participating in flavonoid biosynthesis, as well as cell location and accumulation of these compounds in embryo axes of Lupinus luteus L. cv. Polo. Embryo axes, both non-inoculated and inoculated, were cultured for 96 h on Heller medium with 60 mM sucrose (+Sn and +Si) or without it (−Sn and −Si). Real-time RT-PCR to assess expression levels of the flavonoid biosynthetic genes, phenylalanine ammonialyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI) and isoflavone synthase (IFS) were used. Sucrose alone strongly stimulated the expression of these genes. There was a very high expression level of these genes in +Si embryo axes in the early phase of infection. Signal amplification by sucrose and the infection was most intense in the 48-h +Si axes, resulting in the highest level of expression of flavonoid biosynthetic genes. In −Si tissues, the expression level of these genes increased at 48 and 72 h after inoculation relative to 24 h; however, the relative level of expression was much lower than in +Si axes, except at 72 h for PAL and CHS.Moreover, at 48 h of culture, considerably higher activity of CHI (EC 5.5.1.6) was observed in axes with a high level of sucrose than in those with a sucrose deficit. CHI activity in +Si axes at 48 and 96 h post-inoculation was over 1.5 and 2 times higher than that in +Sn axes, as well as higher than in −Si axes.Observations of yellow lupine embryo axes under a confocal microscope showed an increased post-infection accumulation of flavonoids, particularly in cells of embryo axes infected with F. oxysporum and cultured on a medium containing sucrose (+Si). Up to 48 h post-infection in +Si axes, a very intensive emission of green fluorescence was observed, indicating high accumulation of these compounds in whole cells. Moreover, a nuclear location of flavonoids was recorded in cells. Strong staining of flavonoid end products in +Si embryo axes was consistent with the expression of PAL, CHS, CHI and IFS.These results indicate that, in the early phase of infection, the flavonoid biosynthesis pathway is considerably enhanced in yellow lupine embryo axes as a strong signal amplification effect of sucrose and the pathogenic fungus F. oxysporum.  相似文献   

3.
Changes in ascorbate and glutathione contents and the activities and isoenzyme patterns of enzymes of the ascorbate-glutathione cycle were investigated in embryo axes and cotyledons of germinating lupine (Lupinus luteus L.) seeds. Ascorbate content was not significantly affected over the initial 12 h of imbibition in embryo axes, but afterwards increased, with the most rapid accumulation coinciding with radicle emergence. A somewhat similar trend was observed for glutathione with significant increase in embryo axes shortly before radicle protrusion followed by decline in the next hours. In cotyledons the ascorbate pool rose gradually during germination but the amount of glutathione showed fluctuations during a whole germination period. The activity of ascorbate peroxidase (APX) rose progressively in embryo axes, while activities of dehydroascorbate reductase (DHAR) and glutathione reductase (GR) showed transient increase during germination. New isoforms of APX and GR were synthesized, suggesting that they play a relevant role during germination. All analyzed enzymes were already present in dry seeds which allowed them to be active immediately after imbibition.  相似文献   

4.
Peroxidase activity was assayed with different electron donors (guaiacol, ascorbate, syringaldazine) in the intercellular fluid of Sedum album L. leaves after ozone exposure. Anionic and cationic peroxidases were separated and purified by high performance ion-exchange and gel permeation chromatography. Both isoperoxidases were tested as regards their molecular weight and apparent kinetic constants with different substrates. Ascorbate peroxidase activity was rapidly stimulated after ozone exposure, whereas syringaldazine peroxidase activity reached its maximum 24 h later. Increases in ascorbate and syringaldazine peroxidase activities occurred simultaneously with increases in cationic and anionic peroxidase activities, respectively. Apparent Km values indicate a high affinity of cationic peroxidases for ascorbate and of anionic peroxidases for syringaldazine. The metabolic role of this balance between cationic and anionic peroxidases after ozone exposure is discussed.  相似文献   

5.
Defence responses of embryo axes of Lupinus luteus L. cv. Polo were studied 48-96 h after inoculation with Fusarium oxysporum Schlecht f.sp. lupini. The infection restricted the growth of embryo axes, the lengths of infected embryo axes 72 and 96 h after inoculation were 11 and 12 mm less in the controls, respectively, while their masses c. 0.03 g less than in the controls. The concentration of H2O2 in embryo axes of inoculated germinating seeds was higher than in the control. This was probably a consequence of oxidative burst as well as H2O2 generation by the invading necrotrophic fungal pathogen. EPR-based analyses detected the presence of free radicals with g1 and g2 values of 2.0052 +/- 0.0004 and 2.0031 +/- 0.0005, respectively. Concentrations of the radicals 72 and 96 h after inoculation were 50% higher than in the control. The values of the spectroscopic splitting coefficients suggest that they are quinone radicals. However, inoculated embryo axes possess a number of adaptive mechanisms protecting them from oxidative damage. A twofold increase in catalase (CAT, EC 1.11.1.6) activity was evidenced in embryo axes infected with F. oxysporum Schlecht f. sp. lupini, as compared to the control 48-96 h after inoculation. Superoxide dismutase (SOD, EC 1.15.1.1) activity 96 h after inoculation was 80% higher than in the control. Furthermore, EPR-based analyses revealed a higher concentration of Mn2+ ions after 72 h for inoculated embryo axes, as compared to the control. On the other hand, no increase was detected in the concentration of thiobarbituric acid reactive substances (products of lipid peroxidation) in infected embryo axes. The protective mechanisms induced in lupine embryo axes in response to F. oxysporum Schlecht f.sp. lupini were compared with responses to infections with pathogenic fungi elicited in other plant families.  相似文献   

6.
Embryo axes isolated from germinating lupine seeds were cultivated in vitro for 24-96 h over media containing either 60 mmol/L sucrose or no sucrose. Ultrastructural studies showed that large vacuoles were accumulating in a central region of primary parenchyma cells in sucrose starved lupine embryo axes, whereas cytoplasm along with organelles were forced to a periphery of the cells. We suggest that the autolysis of cytoplasmic proteins contributes to the accumulation of the vacuoles and this suggestion is consistent with the results of the characterisation of protein content. The level of cytosolic proteins was reduced by 50% and the activity of cytosolic marker enzyme, PEP carboxylase, was reduced by 46% in starved embryos as compared to control. The mitochondria from starved tissues were not degraded. The level of mitochondrial proteins was reduced by only 10% and the activity of mitochondrial NAD-isocitrate dehydrogenase decreased by 8% as a result of starvation. As demonstrated by the results of Percoll density gradient centrifugation, sucrose starvation caused an increase of 49% in many of the higher density mitochondria fractions, whereas many of the lower density mitochondria fractions were decreased by 33%. The samples of mitochondria from starved embryo axes were determined to have higher respiration activity in the presence of glutamate and malate as compared to control samples. EPR-based analyses of free radicals showed the presence of free radicals with a signal at g = 2.0060 in embryo axes. The level of the radical was two times higher in sucrose-starved embryo axes than in control (the level of this radical increased in senescing plant tissues as well). The results of EPR-based quantitation of Mn2+ ions revealed that the level was a few times higher in starved material than in control. Starved embryo axes, however, do possess a number of adaptive mechanisms protecting them from oxidative damage. Densitometric analyses of gels revealed an increase in the activity of SOD in sugar-starved embryos, whereas CAT and POX activities were lower in axes grown without sucrose as compared to control. Superoxide dismutase, catalase and peroxidase zymogram analyses showed that synthesis of new isoforms was not induced by sugar starvation. An accumulation of phytoferritin was found in plastids of sucrose starved embryos. These results are discussed in relation to the metabolic changes observed in senescing plant tissues.  相似文献   

7.
Defense responses to inoculation with Fusarium oxysporum SCHLECHT f. sp. lupini were studied in embryo axes of Lupinus luteus L. cv. Polo cultured on a medium with sucrose (60 mM) or without it. Exogenous sucrose caused a marked endogenous increase in concentrations of sucrose, glucose and fructose in embryo axes. In axes cultured with sucrose, high performance liquid chromatography (HPLC) revealed generally higher levels of isoflavone glycosides (particularly until 48 h of culture) and free aglycones (genistein, wighteone, luteone). Inoculation resulted in a considerable decline in soluble carbohydrates between 24 and 72 h of culture. Simultaneously, the infection stimulated an increase in the level of free isoflavone aglycones in inoculated embryo axes, as compared to non-inoculated ones. Concentrations of free aglycones (i.e. genistein, wighteone and luteone) after infection were particularly high in inoculated embryo axes fed with sucrose. Genistein was a better inhibitor to F. oxysporum growth than genistein 7-O-glucoside tested. Exogenous sucrose also stimulated the activity of phenylalanine ammonialyase (PAL, EC 4.3.1.5)--an important enzyme initiating phenylpropanoid metabolism. After infection of tissues, a strong increase was observed in the activity of PAL and beta-glucosidase (EC 3.2.1.21)--an enzyme hydrolyzing isoflavone glycosides. Furthermore, the growth of inoculated embryo axes cultured with sucrose was less inhibited as a result of infection than inoculated axes cultured under carbohydrate deficiency conditions. Additionally, it had been reported previously that disease symptoms of embryo axes growing in the presence of sucrose were less intensive [30]. These results suggest that soluble sugars are involved in the mechanism of resistance, as they can stimulate phenylpropanoid metabolism and contribute to the increase in concentration of isoflavonoids, which are important elements of the defense system of legumes.  相似文献   

8.
Transgenic Pssu-ipt tobacco with elevated content of endogenous cytokinins grown under in vitro conditions exhibited elevated activities of antioxidant enzymes (i.e. catalase, ascorbate peroxidase, guaiacol and syringaldazine peroxidase, glutathione reductase) and some of enzymes involved in anaplerotic pathways such as glucose-6-phosphate dehydrogenase, glycolate oxidase, NADP-malic enzyme, NADP-isocitrate dehydrogenase, and glutamate dehydrogenase compared to control non-transgenic SR1 tobacco. Higher activities of peroxidases, NADP-malic enzyme, and glutamate dehydrogenase were maintained in transgenic grafts after several weeks of the growth under ex vitro conditions, while transgenic rooted plants showed only the increase in activity of glycolate oxidase compared to control non-transformed tobacco. Total activities of superoxide dismutase were lower in both types of Pssu-ipt tobacco contrary to controls under both growth conditions. The presence of PR-1 protein and proteins with elevated activities of chitinase was proved in the extracellular fluid in both transgenic types under both in vitro and ex vitro conditions.  相似文献   

9.
Research of the regulatory function of sucrose in storage protein breakdown was conducted on isolated embryo axes, excised cotyledons and whole seedlings of three lupine species grown in vitro on medium with 60 mM sucrose or without the sugar. Sucrose stimulated growth of yellow, white and Andean lupine isolated embryo axes and cotyledons but growth of seedlings was inhibited. Dry matter content was higher in sucrose-fed isolated organs and in seedling organs. Ultrastructure research revealed that lack of sucrose in the medium caused enhancement in storage protein breakdown. Protein deposits in cotyledons were smaller as well as soluble portion content in all studied organs was lower when there was no sucrose in the medium. In the same conditions, the activity of glutamate dehydrogenase was significantly higher. Increase in vacuolization of cells of white lupine root meristematic zone cells was observed and induction of autophagy in young carbohydrate-starved embryo axes is discussed.  相似文献   

10.
Sedum album and Pelargonium zonale extracts do not show any peroxidase activity. Both extracts provoke a lag phase in the horse-radish peroxidase-catalyzed oxidation of guaiacol by H2O2. Preincubation of Sedum album extract with ascorbate oxidase eliminated completely the lag phase. Ascorbic acid has been identified as the substance responsible for this lag phase by reacting with a coloured intermediary product of the analytical reaction. In the Pelargonium zonale extract, the lag phase seems to be due to competitive inhibitors of peroxidase, which are of a phenolic nature.  相似文献   

11.
This study revealed that cytosolic aconitase (ACO, EC 4.2.1.3) and isocitrate lyase (ICL, EC 4.1.3.1, marker of the glyoxylate cycle) are active in germinating protein seeds of yellow lupine. The glyoxylate cycle seems to function not only in the storage tissues of food-storage organs, but also in embryonic tissue of growing embryo axes. Sucrose (60 mM) added to the medium of in vitro culture of embryo axes and cotyledons decreased activity of lipase (LIP, EC 3.1.1.3) and activity of glutamate dehydrogenase (NADH-GDH, EC 1.4.1.2). The opposite effect was caused by sucrose on activity of cytosolic ACO, ICL as well as NADP+-dependent (EC 1.1.1.42) and NAD+-dependent (EC 1.1.1.41) isocitrate dehydrogenase (NADP-IDH and NAD-IDH, respectively); activity of these enzymes was clearly stimulated by sucrose. Changes in the activity of LIP, ACO, NADP-IDH, and NAD-IDH caused by sucrose were based on modifications in gene expression because corresponding changes in the enzyme activities and in the mRNA levels were observed. The significance of cytosolic ACO and NADP-IDH in carbon flow from storage lipid to amino acids, as well as the peculiar features of storage lipid breakdown during germination of lupine seeds are discussed.  相似文献   

12.
It was previously reported that an unique peroxidase isoenzyme, cationic cell-wall-bound peroxidase (CWPO-C), from poplar callus oxidizes sinapyl alcohol, ferrocytochrome c and synthetic lignin polymers, unlike other plant peroxidases. Here, the catalytic mechanism of CWPO-C was investigated using chemical modification and homology modeling. The simulated CWPO-C structure predicts that the entrance to the heme pocket of CWPO-C is the same size as those of other plant peroxidases, suggesting that ferrocytochrome c and synthetic lignin polymers cannot interact with the heme of CWPO-C. Since Trp and Tyr residues are redox-active, such residues located on the protein surface were predicted to be active sites for CWPO-C. Modification of CWPO-C Trp residues did not suppress its oxidation activities toward guaiacol and syringaldazine. On the other hand, modification of CWPO-C Tyr residues using tetranitromethane strongly suppressed its oxidation activities toward syringaldazine and 2,6-dimethoxyphenol by 90%, respectively, and also suppressed its guaiacol oxidation activity to a lesser extent. Ferrocytochrome c was not oxidized by Tyr-modified CWPO-C. These results indicate that the Tyr residues in CWPO-C mediate its oxidation of syringyl compounds and high-molecular-weight substrates. Homology modeling indicates that Tyr-177 and Tyr-74 are located near the heme and exposed on the protein surface of CWPO-C. These results suggest that Tyr residues on the protein surface are considered to be important for the oxidation activities of CWPO-C with a wide range of substrates, and potentially unique oxidation sites for the plant peroxidase family.  相似文献   

13.
Two cvs. of wheat differently sensitive to many stress factors (cv. Ofanto less sensitive than cv. Adamello) were grown in a controlled environment with cadmium near threshold concentrations supplying the metal at equal-effect concentrations. Cd excess determined in both cvs. a reduction in water and turgor potential but a maintenance of relative water content. Cv Ofanto showed a higher capacity of Cd exclusion from roots but a higher translocation to shoots in comparison with cv. Adamello. Notwithstanding the higher metal concentration in leaves of cv. Ofanto, K+ leakage was more pronounced in Adamello suggesting that mechanisms of Cd detoxification and tolerance such as vacuolar compartmentalisation were activated in the first one. In Adamello plants, ethylene rose at the lowest metal concentration and the activation in roots of the antioxidative enzymes catalase, ascorbate peroxidase and guaiacol peroxidase came into play whereas in Ofanto ethylene and catalase did not change. Following cadmium treatment, superoxide dismutase activity was reduced or remained at the control value in roots and in leaves. For both cultivars ascorbate peroxidase, syringaldazine peroxidase and guaiacol peroxidase activities were always higher in roots than in leaves. These activities were induced by Cd in Ofanto leaves, whereas in Adamello leaves they remained at control levels or increased somewhat at the highest metal concentration. Cadmium changed the peroxidase isozyme pattern in both cultivars. Cv. Ofanto showed, as for other stress such as drought, salinity, nickel and copper, a co-tolerance towards Cd. Analogies in the response to other metals such as copper could be found in activation of catalase at the lower metal concentration in cv. Adamello and in the induction of ascorbate peroxidase in leaves of cv. Ofanto.  相似文献   

14.
A laccase from Pycnoporus sanguineus was purified by two steps using phenyl-Sepharose columm. A typical procedure provided 54.1-fold purification, with a yield of 8.37%, using syringaldazine as substrate. The molecular weight of the purified laccase was 69 and 68 kDa as estimated by 12% (w/v) SDS-PAGE gel and by gel filtration, respectively. The K m values for the substrates ABTS, syringaldazine, and guaiacol were 58, 8.3, and 370 μM, respectively. The enzyme’s pH optimum for syringaldazine was 4.2 and optimal activity was 50°C. The enzyme showed to be thermostable because when kept at 50°C for 24 and 48 h it retained 93 and 76% activity. This laccase was inhibited by l-cysteine, β-mercaptoethanol, NaN3, NaF, and HgCl2.  相似文献   

15.
Peroxidase activity of red raspberry canes was dependent on the cultivar and influenced the subsequent lignification. After inoculation with Didymella applanata, responsible for the spur blight cane disease, the activity of soluble cytoplasmic enzyme increased in the moderately resistant ‘Latham’ and susceptible ‘Malling Promise’, similarly for syringaldazine and guaiacol as hydrogen donors. Systemic induction found in ‘Latham’ was recognized as a symptom of defence mechanism responsible for fungal restriction. Locally enhanced peroxidase activity in the ‘M.Promise’ tissues was related to the local lignification and/or may be associated with the loss of cell integrity caused by pathogen penetration. Pathogen-induced changes of cell wall peroxidases were similar in both cultivars mentioned above. No influence of the infection was found in the high susceptible Zeva cultivar. Using native-PAGE analysis and horizontal starch electrophoresis of soluble fraction five constitutive acidic isoperoxidases were detected in ‘Latham’ and three in ‘M. Promise’. The infection process was accompanied by the appearance of two new anodic isoforms.  相似文献   

16.
Changes in the activities of peroxidase, ascorbate peroxidase, catalase and superoxide dismutase in rice in response to infection by Rhizoctonia solani were studied. A significant increase in peroxidase activity was observed in R. solani-inoculated rice leaf sheaths 1 day after inoculation and the maximum enzyme activity was recorded 3 days after inoculation at which period a 3-fold increase in peroxidase activity was observed compared to the untreated control. Three peroxidase isozymes viz., PO-4, PO-5 and PO-6 were induced in rice upon infection by R. solani. Ascorbate peroxidase and catalase activities significantly increased 1–2 days after inoculation and the maximum enzyme activities were recorded 5 days after inoculation. Superoxide dismutase activity increased significantly 2 days after inoculation and increased progressively, reaching four times the control value at 7 days after inoculation.  相似文献   

17.
When rice seedlings grown for 10 and 20 days were subjected to in vitro drought stress of −0.5 and −2.0 MPa for 24 h, an increase in the concentration of superoxide anion (O2.−), increased level of lipid peroxidation and a decrease in the concentration of total soluble protein and thiols was observed in stressed seedlings compared to controls. The concentration of H2O2 as well as ascorbic acid declined with imposition of drought stress, however glutathione (GSH) concentration declined only under severe drought stress. The activities of total superoxide dismutases (SODs) as well as ascorbate peroxidase (APX) showed consistent increases with increasing levels of drought stress, however catalase activity declined. Mild drought stressed plants had higher guaiacol peroxidase (GPX) and chloroplastic ascorbate peroxidase (c-APX) activity than control grown plants but the activity declined at the higher level of drought stress. The activities of enzymes involved in regeneration of ascorbate i.e. monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) were higher in drought stressed plants compared to controls. Results suggest that drought stress induces oxidative stress in rice plants and that besides SOD, the enzymes of ascorbate-glutathione cycle, which have not been studied in detail earlier under stressful conditions, appear to function as important component of antioxidative defense system under drought stress.  相似文献   

18.
Compared to non-embryogenic callus, proembryonic mass, globular, and heart-shaped embryos of Eleutherococcus senticosus had higher levels of endogenous reduced glutathione (GSH). GSH content declined during the course of the embryo development (torpedo and cotyledon). Similarly, glutathione reductase that is involved in the recycling of GSH providing a constant intracellular level of GSH was also higher in globular and heart-shaped embryos. The transient increase in GSH contents also correlated with the changes in measured γ-glutamylcysteine synthetase activity over the same period. The endogenous levels of oxidized glutathione showed similar trend during development of the somatic embryos, whereas it declined in maturing somatic embryos. A pronounced increase in glutathione-S-transferase, glutathione peroxidase, catalase, and guaiacol peroxidase activity was observed during somatic embryo maturation. Ascorbate-glutathione cycle enzymes (ascorbate peroxidase; dehydroascorbate reductase and monodehydroascorbate reductase) activities also induced indicated that antioxidant enzymes played an important role during embryo development. These results suggested that the coordinated up-regulations of the antioxidant enzymes and glutathione redox system provide protection during somatic embryo development in E. senticosus. Antioxidant responses through alterations of the glutathione redox systems, have been described in the present studies have a significant role in somatic embryo development.  相似文献   

19.
We compare cadmium and copper induced oxidative stress in tomato leaves and the antioxidative enzyme response during a time course of 96 h. Plants were subjected to 25 μM of CdCl2 or CuSO4 and malondialdehyde (MDA) level and activity of guaiacol peroxidase, superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase were determined. The results showed that there was an early increase in the MDA level and in the guaiacol peroxidase activity more pronounced with copper exposure during almost all the time course of the experiment. The activity of superoxide dismutase and catalase was induced very early after cadmium and copper treatment, reached a maximal value after 12 h and then declined but it remained always slightly higher than the control at the end of the experiment. Ascorbate peroxidase activity pathway was similar to superoxide dismutase or catalase with a maximal activity after 48 h of heavy metal exposure. Induction of glutathione reductase activity observed only under copper exposure is maintained during almost all the experimental time. The antioxidative activity developed by tomato leaves is more induced by copper treatment. This can be related to the ability of this metal to induce more than cadmium an accumulation of reactive oxygen species (ROS) at the cellular level. Decline in the antioxidative enzymes activity at the end of the experiment can be a consequence of cadmium- and copper-inducing a further ROS formation that might affect enzymes activity.  相似文献   

20.
The aim of the present studies was to compare H2O2 and ascorbate contents as well as peroxidase (PO) and catalase (CAT) activities in leaves of less susceptible cultivar Perkoz and more susceptible Corindo after B. cinerea infection. Increase in H2O2 contents in both Perkoz and Corindo cytosol was observed, however, it appeared earlier in the less susceptible cultivar. The increase in PO activity in the cytosol fraction was observed 48 hours after infection in both cultivars but it was greater in the less susceptible Perkoz. No significant differences between the tested cultivars were observed in ascorbate peroxidase (APX) activity and in reduced and oxidated ascorbate contents. PO activity was thoroughly analyzed in the apoplast fraction. It was measured with syringaldazine (S), tetramethylbenzidine (TMB) and ferulic acid (FA)—substrates characteristic of isoenzymes involved in lignification and stiffening of a cell wall. Increase in PO activity with these substrates was observed earlier in cultivar Perkoz than in cultivar Corindo. Similarly, increase in PO activity with NADH appeared significantly earlier in cultivar Perkoz. Apoplastic PO was separated with DEAE Sepharose and two fractions binding and non-binding were obtained. Binding PO fraction was significantly more active especially with S, TMB and NADH after B. cinerea infection. The increase in the enzyme activity was mostly observed in cultivar Perkoz. Binding PO was separated by electrophoresis on acrylamide gel and revealed six enzymatic forms from which three were much more active after infection in cultivar Perkoz. The obtained results suggest that cell wall strengthening mediated by apoplast PO is a key factor responsible for different resistance of tomato cultivars Perkoz and Corindo to B. cinerea infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号