首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
MAK11 is a gene necessary for the maintenance of killer M1 double-stranded RNA, but not for other cellular double-stranded RNAs (L-A, L-BC, T, W). The DNA sequence of this gene revealed a 1407-base pair open reading frame, which corresponds to a 54-kDa protein. The C-terminal region is lysine-rich and is necessary for mak11-complementing activity. The N-terminal 24 amino acids of the open reading frame include 16 hydrophobic amino acids, 4 basic residues, and 4 neutral amino acids; this sequence could span a membrane. We constructed a MAK11-lacZ fusion that includes the entire MAK11 protein and complements the mak11-1 mutation. The fusion protein was localized in a membrane fraction as shown by centrifugation in Percoll gradients. The fusion protein could be released from the membrane fraction by salt washing. Western blotting of protein, isolated from the membrane fraction and purified by p-aminophenyl-beta-D-thiogalactoside-agarose column chromatography, revealed a fusion protein monomer of 170 kDa which agrees with the predicted molecular weight. While the mak11-1 mutation results in specific loss of M1 double-stranded RNA without any apparent growth defect, replacing a 792-base pair internal EcoRV fragment of MAK11 with the URA3 gene (gene disruption) resulted in a lethal mutation.  相似文献   

2.
We have isolated and sequenced a cDNA clone corresponding to the human cellular retinol-binding protein (CRBP). The deduced amino acid sequence, which encompasses 134 amino acid residues, shows significant homology with several low molecular weight proteins which bind hydrophobic ligands. No homology to the plasma retinol-binding protein was observed. Southern and Northern blot analyses suggest that the CRBP gene is present in a single copy in the haploid genome and that it is transcribed in a single mRNA species.  相似文献   

3.
The 44-amino-acid E5 protein of bovine papillomavirus type 1 is the shortest known protein with transforming activity. To identify the specific amino acids required for in vitro focus formation in mouse C127 cells, we used oligonucleotide-directed saturation mutagenesis to construct an extensive collection of mutants with missense mutations in the E5 gene. Characterization of mutants with amino acid substitutions in the hydrophobic middle third of the E5 protein indicated that efficient transformation requires a stretch of hydrophobic amino acids but not a specific amino acid sequence in this portion of the protein. Many amino acids in the carboxyl-terminal third of the protein can also undergo substitution without impairment of focus-forming activity, but the amino acids at seven positions, including two cysteine residues that mediate dimer formation, appear essential for efficient transforming activity. These essential amino acids are the most well conserved among related fibropapillomaviruses. The small size of the E5 protein, its lack of similarity to other transforming proteins, and its ability to tolerate many amino acid substitutions implies that it transforms cells via a novel mechanism.  相似文献   

4.
tmrB is the gene responsible for tunicamycin resistance in Bacillus subtilis. It is predicted that an increase in tmrB gene expression makes B. subtilis tunicamycin resistant. To examine the tmrB gene product, we produced the tmrB gene product in Escherichia coli by using the tac promoter. TmrB protein was found not only in the cytoplasm fraction but also in the membrane fraction. Although TmrB protein is entirely hydrophilic and has no hydrophobic stretch of amino acids sufficient to span the membrane, its C-terminal 18 amino acids could form an amphiphilic alpha-helix. Breaking this potential alpha-helix by introducing proline residues or a stop codon into this region caused the release of this membrane-bound protein into the cytoplasmic fraction, indicating that the C-terminal 18 residues were essential for membrane binding. On the other hand, TmrB protein has an ATP-binding consensus sequence in the N-terminal region. We have tested whether this sequence actually has the ability to bind ATP by photoaffinity cross-linking with azido-[alpha-32P]ATP. Wild-type protein bound azido-ATP well, but mutants with substitutions in the consensus amino acids were unable to bind azido-ATP. These C-terminal or N-terminal mutant genes were unable to confer tunicamycin resistance on B. subtilis in a multicopy state. It is concluded that TmrB protein is a novel ATP-binding protein which is anchored to the membrane with its C-terminal amphiphilic alpha-helix.  相似文献   

5.
A novel gene, IRE1, of Saccharomyces cerevisiae was cloned through genetic complementation of a myoinositol auxotrophic mutant. The predicted amino acid sequence indicated that IRE1 encodes a protein of 126983 Da with two highly hydrophobic regions, probably a signal sequence and a membrane-spanning region. The carboxy-terminal region of IRE1 showed close sequence similarity to the catalytic domains of protein kinases. Disruption of the IRE1 locus caused myo-inositol auxotrophy. The IRE1 product is very likely a protein kinase required for myo-inositol synthesis.  相似文献   

6.
The 44-amino-acid E5 protein of bovine papillomavirus type 1 is the smallest transforming protein yet described. Previous results from our laboratory indicate that a hydrophobic core and specific carboxyl-terminal amino acids are required for the E5 protein to exert its transforming function. In this study, additional substitution mutations were generated in the E5 gene to determine the minimal amino acid sequence requirements for focus formation in mouse C127 cells. In most cases examined, substitution of the hydrophobic middle third of the E5 protein with unrelated hydrophobic sequences severely inhibited transforming activity. However, we have identified one hydrophobic amino acid sequence apparently unrelated to the wild-type one that can replace the middle third of the wild-type E5 protein without affecting the ability of the protein to stably transform cells or interact with cell membranes. Furthermore, a mutant E5 protein in which only the carboxyl-terminal 16 amino acids of the protein have been derived from E5 sequences retains transforming activity. Since several residues in the carboxyl-terminal portion of the E5 protein can be freely substituted with different amino acids (B. H. Horwitz, A. L. Burkhardt, R. Schlegel, and D. DiMaio, Mol. Cell. Biol. 8:4071-4078, 1988), the results reported here imply that much of the specific information necessary for cell transformation can be supplied by a subset of the carboxyl-terminal 16 amino acids of this protein.  相似文献   

7.
8.
Placental alkaline phosphatase (PLAP) is anchored in the plasma membrane by a phosphatidylinositol-glycan moiety (PI-glycan). PI-glycan is added posttranslationally to the nascent peptide chain after the removal of 29 amino acids from the COOH-terminus. The contribution of selected COOH-terminal amino acids to the signal for PI-glycan addition was tested by creating a fusion protein with the COOH-terminus of PLAP and a secreted protein and by mutagenesis of specific PLAP COOH-terminal amino acids. The cDNA encoding the COOH-terminus of PLAP was fused in frame to the cDNA for human clotting Factor X and expressed in transfected COS-1 cells. Fusion proteins containing 32 amino acids of the PLAP COOH-terminus were modified by PI-glycan addition. Thus, the signal for PI-glycan modification must reside in these amino acids. Next, the region between the hydrophobic domain and the cleavage site was examined for additional determinants. Mutations of the hydrophilic residues in the spacer region demonstrated that these amino acids do not contribute to the signal for PI-glycan addition. Deletion of amino acids in the spacer region prevented the addition of PI-glycan suggesting that the length of the spacer domain or the amino acids around the cleavage site are important determinants. Finally, we demonstrated that interruption of the hydrophobic domain by a charged residue prevents PI-glycan addition and results in a protein that is secreted into the medium. The finding that a single Leu to Arg substitution in the hydrophobic domain converts a PI-glycan anchored, membrane protein to a secreted protein suggests that an essential signal for the correct sorting of PI-glycan anchored proteins versus secreted proteins resides in the hydrophobic domain. Substitution of a charged amino acid for a hydrophobic amino acid may be a mechanism for producing membrane bound and secreted forms of the same protein.  相似文献   

9.
The gene I protein (pI) of the filamentous bacteriophage f1 is required for the assembly of this virus. Antibodies specific to either the amino or carboxyl terminus of this protein were used to determine the location and topology of the gene I protein in f1-infected bacteria. pI is anchored in the inner membrane of Escherichia coli cells via a 20-amino-acid hydrophobic stretch, with its carboxyl-terminal 75 residues located in the periplasm and its amino-terminal 253 amino acids residing in the cytoplasm. By using the carboxyl-terminal pI antibody, a smaller protein, pI*, is also detected in f1-infected cells at a ratio of one to two molecules per molecule of pI. Analysis of proteins produced from a gene I amber mutant plasmid or bacteriophage suggests that pI* is most likely the result of an in-frame internal translational initiation event at methionine 241 of the 348-amino-acid pI. pI* is shown to be an integral inner membrane protein inserted in the same orientation as pI. The relation of the cellular locations of pI and pI* to some of the proposed functions of pI is discussed.  相似文献   

10.
We have cloned the gene of the Saccharomyces cerevisiae phosphate transport protein (PTP), a member of the mitochondrial anion transport protein gene family. As PTP has a blocked N-terminus, we prepared three peptides. Oligonucleotides, based on their sequences, were used to screen a Yep24-housed genomic library. A total of 2073 bases of clone Y22 code for a 311 amino acid protein (Mr 32,814), which has similarities to the anion transport proteins: a triplicate gene structure and 6 hydrophobic segments. Typical for PTP, the triplicate gene structure possesses the X-Pro-X-(Asp/Glu)-X-X-(Lys/Arg)-X-(Arg/Lys)-X (X is an unspecified amino acid) motif and the very high homology only between the first and second repeat. The 6 hydrophobic segments harbor most of the 116 amino acids that are conserved between the yeast and the beef proteins. An N-terminal-extended signal sequence, as found in the beef protein, is absent. The yeast protein has about 33% fewer basic and acidic amino acids and five fewer Cys residues than the beef protein. The protein is insensitive to N-ethylmaleimide since Cys-42 (beef) has been replaced with a Thr. Mersalyl sensitivity has been retained and must be due to one of its three cysteines. Among these three cysteines, only Cys-28, located in the first hydrophobic segment, is conserved between the yeast and the beef protein.  相似文献   

11.
Summary The female-sterile mutants fs(1) 1163 of Drosophila melanogaster described by Gans et al. (1975) has been characterised as a yolk protein 1 (YP1) secretion mutant (Bownes and Hames 1978b; Bownes and Hodson 1980). We have cloned and sequenced the YP1 gene from this strain, and the strain in which the mutant was induced. One amino acid substitution was found in the predicted polypeptide sequence, an isoleucine to asparagine change at position 92. The sequence of the leader peptide was identical to previously published YP1 sequences. The possible effects of the amino acid change were investigated by computer analysis, which suggests there is no major alteration of secondary structure, but that a hydrophobic region in YP1 is lost in the mutant. This may affect higher order structure.  相似文献   

12.
Liu Y  Luo J  Xu C  Ren F  Peng C  Wu G  Zhao J 《Plant physiology》2000,122(4):1015-1024
A small cysteine-rich protein with antimicrobial activity was isolated from pokeweed (Phytolacca americana) seeds and purified to homogeneity. The protein inhibits the growth of several filamentous fungi and gram-positive bacteria. The protein was highly basic, with a pI higher than 10. The entire amino acid sequence of the protein was determined to be homologous to antimicrobial protein (AMP) from Mirabilis jalapa. The cDNA encoding the P. americana AMP (Pa-AMP-1) and chromosomal DNA containing the gene were cloned and sequenced. The deduced amino acid sequence shows the presence of a signal peptide at the amino terminus, suggesting that the protein is synthesized as a preprotein and secreted outside the cells. The chromosomal gene shows the presence of an intron located within the region encoding the signal peptide. Southern hybridization showed that there was small gene family encoding Pa-AMP. Immunoblotting showed that Pa-AMP-1 was only present in seeds, and was absent in roots, leaves, and stems. The Pa-AMP-1 protein was secreted into the environment of the seeds during germination, and may create an inhibitory zone against soil-borne microorganisms. The disulfide bridges of Pa-AMP-1 were identified. The three-dimensional modeling of Pa-AMP-1 indicates that the protein has a small cystine-knot folding, a positive patch, and a hydrophobic patch.  相似文献   

13.
Heterochromatin represents a cytologically visible state of heritable gene repression. In the yeast, Schizosaccharomyces pombe, the swi6 gene encodes a heterochromatin protein 1 (HP1)-like chromodomain protein that localizes to heterochromatin domains, including the centromeres, telomeres, and the donor mating-type loci, and is involved in silencing at these loci. We identify here the functional domains of swi6p and demonstrate that the chromodomain from a mammalian HP1-like protein, M31, can functionally replace that of swi6p, showing that chromodomain function is conserved from yeasts to humans. Site-directed mutagenesis, based on a modeled three-dimensional structure of the swi6p chromodomain, shows that the hydrophobic amino acids which lie in the core of the structure are critical for biological function. Gel filtration, gel overlay experiments, and mass spectroscopy show that HP1 proteins can self-associate, and we suggest that it is as oligomers that HP1 proteins are incorporated into heterochromatin complexes that silence gene activity.  相似文献   

14.
J T Skare  S K Roof    K Postle 《Journal of bacteriology》1989,171(8):4442-4447
We have developed a selection for mutations in a trpC-tonB gene fusion that takes advantage of the properties of the plasmid-encoded TrpC-TonB hybrid protein. The TrpC-TonB hybrid protein consists of amino acids 1 through 25 of the normally cytoplasmic protein, TrpC, fused to amino acids 12 through 239 of TonB. It is expressed from the trp promoter and is regulated by the trpR gene and the presence or absence of tryptophan. Under repressing conditions in the presence of tryptophan, the trpC-tonB gene can restore phi 80 sensitivity to a tonB deletion mutant, which indicates that TrpC-TonB can be exported and is functional. High-level expression of TrpC-TonB protein in the absence of tryptophan results in virtually immediate cessation of growth for strains carrying the trpC-tonB plasmid. By selecting for survivors of the induced growth inhibition (overproduction lethality), we have isolated a variety of mutations. Many of the mutations decrease expression of the TrpC-TonB protein, as expected. In addition, three independently isolated mutants expressing normal levels of TrpC-TonB protein result in a Gly----Asp substitution within the hydrophobic amino terminus of TonB. The mutant proteins are designated TrpC-TonBG26D. The mutations are suppressed by prlA alleles, known to suppress export (signal sequence) mutations. TrpC-TonB proteins carrying the Gly----Asp substitution accumulate in the cytoplasm. We conclude that the Gly----Asp substitution is an export mutation. TrpC-TonBG26D protein has been purified and used to raise polyclonal antibodies that specifically recognize both TrpC-TonB protein and wild-type TonB protein.  相似文献   

15.
We constructed a molecular clone encoding the N-terminal 379 amino acids of the polyomavirus middle-size tumor antigen, followed by the C-terminal 60 amino acids of the vesicular stomatitis virus glycoprotein G. This hybrid gene contained the coding region for the C-terminal hydrophobic membrane-spanning domain of the G protein in place of the C-terminal hydrophobic domain of the middle-size tumor antigen. The hybrid gene was expressed in COS-1 cells under the control of the simian virus 40 late promoter. The hybrid protein was located in cell membranes and was associated with a tyrosine-specific protein kinase activity, as was the middle-size tumor antigen. Plasmids encoding the hybrid protein failed to transform mouse NIH 3T3 or rat F2408 cells.  相似文献   

16.
The gene that codes for the surface antigen of Plasmodium knowlesi sporozoites (CS protein) is unsplit and present in the genome in only one copy. The CS protein, as deduced from DNA sequence analysis of the structural gene, has an unusual structure with the central 40% of the polypeptide chain present as 12 tandemly repeated amino acid peptide units flanked by regions of highly charged amino acids. The protein has an amino-terminal hydrophobic amino acid signal sequence and a hydrophobic carboxy-terminal anchor sequence. The coding sequence of the gene has an AT content of 53%, compared with 70% AT in the 5′ and 3′ flanking sequences, and is contained entirely within an 11 kb Eco RI genomic DNA fragment. This genomic fragment expresses the CS protein in E. coli, indicating that the parasite promoter and ribosome binding site signals can be recognized in E. coli.  相似文献   

17.
J. Arunachalam  N. Gautham 《Proteins》2008,71(4):2012-2025
Globular proteins fold such that the hydrophobic groups are packed inside forming hydrophobic clusters, and the hydrophilic groups are present on the surface. In this article we analyze clusters of hydrophobic groups of atoms in 781 protein structures selected from the PDB. Our analysis showed that every structure consists of two types of clusters: at least one large cluster that forms the hydrophobic core and probably dictates the protein fold; and numerous smaller clusters, which might be involved in the stabilization of the fold. We also analyzed the preference of the hydrophobic groups in each of the amino acids toward forming hydrophobic clusters. We find that hydrophobic groups from the hydrophilic amino acids also contribute toward cluster formation. Proteins 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

18.
Local hydrophobic collapse of the polypeptide chain and transient long-range interactions in unfolded states of apomyoglobin appear to occur in regions of the amino acid sequence which, upon folding, bury an above-average area of hydrophobic surface. To explore the role of these interactions in protein folding, we prepared and characterized apomyoglobins with compensating point mutations designed to change the average buried surface area in local regions of the sequence, while conserving as much as possible the constitution of the hydrophobic core. The behavior of the mutants in quench-flow experiments to determine the folding pathway was exactly as predicted by the changes in the buried surface area parameter calculated from the amino acid sequence. In addition, spin label experiments with acid-unfolded mutant apomyoglobin showed that the transient long-range contacts that occur in the wild-type protein are abolished in the mutant, while new contacts are observed between areas that now have above-average buried surface area. We conclude that specific groupings of amino acid side-chains, which can be predicted from the sequence, are responsible for early hydrophobic interactions in the first phase of folding in apomyoglobin, and that these early interactions determine the subsequent course of the folding process.  相似文献   

19.
The mechanism of attachment of acetylcholinesterase (AChE) to neuronal membranes in interneuronal synapses is poorly understood. We have isolated, sequenced, and cloned a hydrophobic protein that copurifies with AChE from human caudate nucleus and that we propose forms a part of a complex of membrane proteins attached to this enzyme. It is a short protein of 136 amino acids and has a molecular mass of 18 kDa. The sequence contains stretches of both hydrophobic and hydrophilic amino acids and two cysteine residues. Analysis of the genomic sequence reveals that the coding region is divided among five short exons. Fluorescence in situ hybridization localizes the gene to chromosome 6p21.32-p21.2. Northern blot analysis shows that this gene is widely expressed in the brain with an expression pattern that parallels that of AChE.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号