首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 299 毫秒
1.
We studied the impact of delayed leaf senescence on the functioning of plants growing under conditions of nitrogen remobilization. Interactions between cytokinin metabolism, Rubisco and protein levels, photosynthesis and plant nitrogen partitioning were studied in transgenic tobacco (Nicotiana tabacum L.) plants showing delayed leaf senescence through a novel type of enhanced cytokinin syn‐thesis, i.e. targeted to senescing leaves and negatively auto‐regulated (PSAG12IPT), thus preventing developmental abnormalities. Plants were grown with growth‐limiting nitrogen supply. Compared to the wild‐type, endogenous levels of free zeatin (Z)‐ and Z riboside (ZR)‐type cytokinins were increased up to 15‐fold (total ZR up to 100‐fold) in senescing leaves, and twofold in younger leaves of PSAG12IPT. In these plants, the senescence‐associated declines in N, protein and Rubisco levels and photosynthesis rates were delayed. Senescing leaves accumulated more (15N‐labelled) N than younger leaves, associated with reduced shoot N accumulation (–60%) and a partially inverted canopy N profile in PSAG12IPT plants. While root N accumulation was not affected, N translocation to non‐senescing leaves was progressively reduced. We discuss potential consequences of these modified sink–source relations, associated with delayed leaf senescence, for plant productivity and the efficiency of utilization of light and minerals.  相似文献   

2.
该实验对CDF1类似蛋白基因(P1)在拟南芥叶片发育不同阶段的定量PCR结果显示,P1基因在拟南芥叶片发育的所有时期均可表达,但在茎生叶和衰老叶中的表达水平明显高于成熟叶和幼叶。GUS报告基因表达的组织化学染色结果显示,P1启动子在拟南芥叶片中有较高的驱动活性;在营养生长阶段的幼苗和植株(4~5周)的所有叶片中均能检测到GUS表达,但在植株转入生殖生长阶段后(6周及以后),GUS表达主要集中在逐渐衰老的叶中,并随着叶片衰老程度加剧GUS染色程度也越深,这一结果与GUS荧光定量检测结果一致。通过分析P1基因启动子上可能存在的顺式调控元件,发现茉莉酸甲酯、热压、干旱和水杨酸等均能够引起叶片衰老调控元件的响应,证实P1的表达受到这些因素的调控。研究表明,P1在拟南芥莲座叶片中很可能参与了对上游衰老信号的响应,该研究结果为进一步探究P1在叶片衰老过程中的分子功能验证奠定了基础。  相似文献   

3.
Accumulation of ammonium and proline were reported as phenomena associated with plant response to stress and/or senescence. The effects of a preservative (8HQC + sucrose) and 24 hrs pulse conditioning with GA3 on the ammonium and proline contents were studied in senescing cut leaves of Zantedeschia aethiopica Spr. and Z. elliottiana Engl., grown for the florists green. Generally, accumulation of both compounds was observed in senescing leaves, however, the final ammonium and proline levels depended upon the species and the treatment applied. Conditioning with GA3, a treatment known to delay leaf senescence in Zantedeschia sp., prevented the increases in the ammonium and proline contents. Standard preservative solution used to prolong the longevity of cut flowers enhanced the ammonium accumulation in senescing leaves of both species, and the proline accumulation in the leaves of Z. aethiopica, but not in Z. elliottiana. These observations suggest that neither ammonium nor proline accumulation would be fully reliable predictors of cut leaf freshness during their entire market life. However, proline accumulation could serve as a quick test of freshness in the first half of the useful market life of cut leaves of Zantedeschia.  相似文献   

4.
Quantitative levels of indole-3-acetic acid (IAA) were determined in leaf blades of two sugarbeet cultivars by a double standard isotope dilution assay using column chromatography followed by reverse phase C18 high performance liquid chromatography and gas-liquid chromatography with nitrogen thermionic detection. The double standard method was validated as a quantitative tool by gas chromatography/selected ion monitoring mass spectrometry using 2,′,4′,5′,6′,7′-d5-IAA as the internal standard. Progenies of one breeding line that had been selected for a high taproot to leaf weight ratio were used to correlate IAA levels with varying leaf and plant size at day 31 from germination. In spite of size differences, no significant difference in IAA levels per unit leaf weight could be found. The possible relationship between day 31 leaves and IAA content at an earlier stage of development is discussed in the text. A second analysis used four developmental leaf stages, classified as expanding, recently mature, aging, and senescing leaves. Expanding leaves contained the most IAA, senescing leaves contained the least IAA, with recently mature leaves and aging leaves containing intermediate amounts. The DNA content of each of the four developmental leaf stages was determined and DNA levels per gram fresh weight were found to be constant at all developmental stages.  相似文献   

5.
Photosynthetic complexes in the thylakoid membrane of plant leaves primarily function as energy-harvesting machinery during the growth period. However, leaves undergo developmental and functional transitions along aging and, at the senescence stage, these complexes become major sources for nutrients to be remobilized to other organs such as developing seeds. Here, we investigated age-dependent changes in the functions and compositions of photosynthetic complexes during natural leaf senescence in Arabidopsis thaliana. We found that Chl a/b ratios decreased during the natural leaf senescence along with decrease of the total chlorophyll content. The photosynthetic parameters measured by the chlorophyll fluorescence, photochemical efficiency (F v/F m) of photosystem II, non-photochemical quenching, and the electron transfer rate, showed a differential decline in the senescing part of the leaves. The CO2 assimilation rate and the activity of PSI activity measured from whole senescing leaves remained relatively intact until 28 days of leaf age but declined sharply thereafter. Examination of the behaviors of the individual components in the photosynthetic complex showed that the components on the whole are decreased, but again showed differential decline during leaf senescence. Notably, D1, a PSII reaction center protein, was almost not present but PsaA/B, a PSI reaction center protein is still remained at the senescence stage. Taken together, our results indicate that the compositions and structures of the photosynthetic complexes are differentially utilized at different stages of leaf, but the most dramatic change was observed at the senescence stage, possibly to comply with the physiological states of the senescence process.  相似文献   

6.
7.
Aliphatic polyamines (PAs) are involved in the delay or prevention of plant senescence, but the molecular mechanism is not clarified. The hypothesis is put forward that one of the mechanisms by which PAs modulate leaf senescence and chlorophyll stabilisation could be due to their modification of chlorophyll-bound proteins, catalysed by transglutaminase (TGase, R-glutaminylpeptide-amine γ-glutamyltransferase; E.C. 2.3.2.13). The retardation of leaf senescence of Lactuca sativa L. by spermine (Spm) was examined during induced cell death using leaf discs, or during the normal developmental senescence of leaves. Over 3 days, in leaf discs, Spm caused a delay of chlorophyll (Chl) decay, an increase of endogenous TGase activity, and a three-fold increase in chlorophyll content when supplied together with exogenous TGase. Spm was conjugated, via TGase, mainly to 22–30 kDa proteins. Long-term experiments over 5 days showed a general decrease in all three parameters with or without Spm. When leaves remained on the plants, Spm-sprayed leaves showed an increase in free Spm 1 h after spraying, mainly in the young leaves, whereas over longer periods (15 days) there was an increase in perchloric acid-soluble and -insoluble Spm metabolites. In senescing leaves, Spm prevented degradation of chlorophyll b and some proteins, and increased TGase activity, producing more PA-protein conjugates. Spm was translocated to chloroplasts and bound mainly onto fractions enriched in PSII, but also those enriched in PSI, whose light-harvesting complexes (LHC) sub-fractions contained TGase. Spm was conjugated by TGase mainly to LHCII, more markedly in the light. Immunodetection of TGase revealed multiple proteins in young leaves, possibly representing different TGase isoforms when TGase activity was high, whereas in already senescent leaves, when its activity decreased, one high-molecular-mass band was found, possibly because of enzyme polymerisation. Spm thus protected senescing Lactuca leaves from the decay of their chloroplast photosystem complexes. The senescence-delaying effects of Spm could be mediated by TGase, as TGase was re-activated to the level in young leaves following Spm treatment.  相似文献   

8.
To reveal the environmental and substrate quality effects on decomposition process and enzyme activities, litterbag experiments containing Nuphar and Carex leaves, Nuphar rhizome, and Ranunculus shoot, were carried in five-subalpine marshes in Lake Tahoe basin, USA. Alkaline phosphatase, β-glucosidase, and β-xylosidase activities were determined by a fluorogenic method using methyumbelliferyl substrates. Carex leaves, Nuphar rhizome and leaves, and Ranunculus shoots lost, respectively, 33, 67, 82 and 93% of original dry weight over 268 days. Decay rates were different among substrates but not among marshes. Nitrogen and carbon contents increased during the first 58 days and subsequently remained stable. Phosphorus content was stable during the experimental period except for a decrease in the first 16 days in Nuphar shoots. Enzyme activities in decomposing Carex and Nuphar leaves in four marshes were not significantly affected by environmental conditions. β-glucosidase and β-xylosidase activities in decomposing Carex leaves increased with time, but in other plant tissue these enzyme activities remained stable during experimental period. Enzyme activities were significantly different among decomposing substrates. Alkaline phosphatase activity was highest in Nuphar leaves (ca. 1286 μ-mole h−1 g DW −1) but lower and similar in other plant tissues (ca. 100 and 10 μ-mole h −1 g DW −1, respectively). This study showed differences in decay rates and enzyme activities rely on substrate and not the environment conditions of the study area. Decomposition rates in the early stage of decomposition were related to cumulative enzyme activities.  相似文献   

9.
ARR5-gene expression was studied in the course of natural leaf senescence and detached leaf senescence in the dark using Arabidopsis thaliana plants transformed with the P ARR5 -GUS gene construct. GUS-activity was measured as a marker of ARR5-gene expression. Chlorophyll and total protein amounts were also estimated to evaluate leaf senescence. Natural leaf senescence was accompanied by the progressive decline in the GUS-activity in leaves of the 2nd and 3rd nodes studied, and this shift of GUS-activity was more pronounced than the loss of chlorophyll content. The ability of the ARR5-gene promoter to respond to cytokinin was not eliminated during natural leaf senescence, as was demonstrated by a cytokinin-induced increase in GUS activity in leaves after their detachment and incubation on benzyladenine (BA, 5 × 10−6 M) in the dark. Leaf senescence in the dark was associated with the further decrease in the GUS-activity. The ARR5-gene promoter response to cytokinin was enhanced with the increase of the age of plants, taken as a source of leaves for cytokinin treatments. Hence, although the expression of the ARR5 gene reduces during natural and dark/detached leaf senescence, the ARR5-gene sensitivity to cytokinin was maintained in both cases and even increased with the leaf age. This data suggest that the ARR5 gene, which belongs to the type-A negative regulators of plant response to cytokinin, could be a feedback regulator able to prevent retardation by cytokinin of leaf senescence when it is important for plant life. Growth regulators either reduced ARR5 gene response to cytokinin during senescence of mature detached leaves in the dark (SA, meJA, ABA, SP) or increased it (IAA), thus modifying the resulting rate of its expression.  相似文献   

10.
During leaf senescence, resources are recycled by redistribution to younger leaves and reproductive organs. Candidate pathways for the regulation of onset and progression of leaf senescence include ubiquitin‐dependent turnover of key proteins. Here, we identified a novel plant U‐box E3 ubiquitin ligase that prevents premature senescence in Arabidopsis plants, and named it SENESCENCE‐ASSOCIATED E3 UBIQUITIN LIGASE 1 (SAUL1). Using in vitro ubiquitination assays, we show that SAUL1 has E3 ubiquitin ligase activity. We isolated two alleles of saul1 mutants that show premature senescence under low light conditions. The visible yellowing of leaves is accompanied by reduced chlorophyll content, decreased photochemical efficiency of photosystem II and increased expression of senescence genes. In addition, saul1 mutants exhibit enhanced abscisic acid (ABA) biosynthesis. We show that application of ABA to Arabidopsis is sufficient to trigger leaf senescence, and that this response is abolished in the ABA‐insensitive mutants abi1‐1 and abi2‐1, but enhanced in the ABA‐hypersensitive mutant era1‐3. We found that increased ABA levels coincide with enhanced activity of Arabidopsis aldehyde oxidase 3 (AAO3) and accumulation of AAO3 protein in saul1 mutants. Using label transfer experiments, we showed that interactions between SAUL1 and AAO3 occur. This suggests that SAUL1 participates in targeting AAO3 for ubiquitin‐dependent degradation via the 26S proteasome to prevent premature senescence.  相似文献   

11.
Howard Thomas 《Planta》1982,154(3):212-218
Soluble and thylakoid membrane polypeptides from senescing leaf tissue of Rossa, a normal yellowing Festuca pratensis genotype, were fractionated by sodium dodecyl sulphate polyacrylamide gel electrophoresis and compared with those of the non-yellowing mutant Bf 993. Subunits of ribulose-1,5-bisphosphate carboxylase were the major soluble polypeptides and declined to low levels in senescing leaves of both genotypes. The major thylakoid polypeptides were those associated with the chlorophyllprotein complexes CPI and CPII. The levels of all thylakoid polypeptide species fell during senescence of Rossa leaf tissue but Bf993 lamellae retained CPI, CPII and a number of other hydrophobic low molecular weight polypeptides. The increasing hydrophobicity and decreasing protein complement of Bf 993 thylakoids were reflected in a fall in membrane density from 1.16 to 1.13 g cm-3 over 8 d of senescence and a decline in the extractability of chlorophyll-containing membranes in the same period. In Bf993 the molar ratio of chlorophyll to hydrophobic membrane protein increased from 92 at day 0 to 296 at day 8. In the same time the ratio for Rossa increased from 88 to 722 and 8 d-senesced Rossa tissue yielded less than 2% of the solvent-soluble protein it contained at day 0 as compared with 24% for the protein of Bf993. These results are discussed in relation to the nature of the non-yellowing lesion.Abbreviations RuBPC ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) - EDTA ethylenediaminetetraacetate - SDS sodium dodecyl sulphate - CP chlorophyll-protein complex  相似文献   

12.
To determine the role of ethylene during tomato (Lycopersicon esculentum Mill. cv. Alisa Craig) leaf senescence, transgenic ACC oxidase antisense plants were analysed. Northern analysis of wild-type plants indicated that ACC oxidase mRNA accumulation normally begins in pre-senescent green leaves but was severely reduced in the antisense plants. Although the levels of ethylene evolved by wild-type and transgenic leaves increased during the progression of senescence, levels were extremely low in transgenic leaves. Leaf senescence, as assessed by colour change from green to yellow, was clearly delayed by 10–14 days in the antisense plants when compared with wild-type plants. Northern analysis of the photosynthesis-associated genes, cab and rbcS, indicated that levels of the corresponding mRNAs were higher in transgenic leaves which were not yet senescing compared with senescing wild-type leaves of exactly the same age. Northern analysis using probes for tomato fruit ripening-related genes expressed during leaf senescence indicated that once senescence was initiated the expression pattern of these mRNAs was similar in transgenic and wild-type leaves. In the antisense plants chlorophyll levels, photosynthetic capacity and chlorophyll fluorescence were higher when compared with senescing wild-type plants of the same age. Photosynthetic capacity and the quantum efficiency of photosystem II were maintained for longer in the transformed plants at values close to those observed in wild-type leaves prior to the visible onset of senescence. These results indicate that inhibiting ACC oxidase expression and ethylene synthesis results in delayed leaf senescence, rather than inducing a stay-green phenotype. Once senescence begins, it progresses normally. Onset of senescence is not, therefore, related to a critical level of ethylene. The correlation between higher levels prior to senescence and early onset, however, suggests that ethylene experienced by the plant may be a significant contributing factor in the timing of senescence.  相似文献   

13.
We report here the cloning and characterization of a soybean receptor-like kinase (RLK) gene, designated GmSARK (Glycine max senescence-associated receptor-like kinase), which is involved in regulating leaf senescence. The conceptual protein product of GmSARK contains typical domains of LRR receptor-like kinases: a cytoplasmic domain with all the 11 kinase subdomains, a transmembrane domain and an extracelullar domain containing 9 Leucine-Rich Repeat (LRR) units that may act as a receptor. The expression of GmSARK in soybean leaves was up-regulated in all the three tested senescence systems: senescing cotyledons, dark-induced primary leaf senescence and the natural leaf senescence process after florescence. Furthermore, the RNA interference (RNAi)-mediated knocking-down of GmSARK dramatically retarded soybean leaf senescence. A more complex thylakoid membrane system, higher foliar level of chlorophyll content and a very remarkable delay of senescence-induced disintegration of chloroplast structure were observed in GmSARK-RNAi transgenic leaves. A homolog of maize lethal leaf-spot 1 gene, which has been suggested to encode a key enzyme catalyzing chlorophyll breakdown, was isolated and nominated Gmlls1. The expression level of Gmgtr1 gene, which encodes a key enzyme of chlorophyll synthesis, was also analyzed. It was found that Gmlls1 was up-regulated and Gmgtr1 was down-regulated during senescence in wild-type soybean leaves. However, both of the up-regulation of Gmlls1 and down-regulation of Gmgtr1 were retarded during senescence of GmSARK-RNAi transgenic leaves. In addition, over-expression of the GmSARK gene greatly accelerated the senescence progression of CaMV 35S:GmSARK transgenic plants. Taken together, these results strongly suggested the involvement of this LRR-RLK in regulation of soybean leaf senescence, maybe via regulating chloroplast development and chlorophyll accumulation. Multiple functions of GmSARK besides its regulation of leaf senescence were also discussed. Electronic Supplementary Material Supplementary material is available for this article at Rui Gan, Peng-Li Li and Yuan-Yuan Ma contributed equally to this work.  相似文献   

14.
The emergence of yellow and red hued foliage in plants, which we commonly associate with vegetal decline or a foreshadowing of winter, signals the progression of a process known as leaf senescence. It is characterised by a series of carefully orchestrated degradation events, which liberate nutrients from senescing tissues and redistribute them to growing organs such as young leaves and reproductive structures. As the timing and execution of this process is essential to maximising the viability of succeeding plant generations and fruit production, it has tremendous implications for the agricultural industry. In this issue of Physiologia Plantarum, Zhang et al. (2020) describes the way in which a novel microRNA (miRNA) affects the timing of leaf senescence in tomato (Solanum lycopersicum) by modulating biosynthesis of the phytohormone cytokinin.  相似文献   

15.
Tilsner J  Kassner N  Struck C  Lohaus G 《Planta》2005,221(3):328-338
Oilseed rape (Brassica napus L.) needs very high nitrogen fertilizer inputs. Significant amounts of this nitrogen are lost during early leaf shedding and are a source of environmental and economic concern. The objective of this study was to investigate whether the remobilization of leaf amino acids could be limiting for nitrogen use efficiency. Therefore, amino acid concentrations were analyzed in subcellular compartments of leaf mesophyll cells of plants grown under low (0.5 mM NO3) and high (4 mM NO3) nitrogen supply. With high nitrogen supply, young leaves showed an elevated amino acid content, mainly in vacuoles. In old leaves, however, subcellular concentrations were similar under high and low nitrogen conditions, showing that the excess nitrogen had been exported during leaf development. The phloem sap contained up to 650 mM amino acids, more than four times as much than the cytosol of mesophyll cells, indicating a very efficient phloem-loading process. Three amino acid permeases, BnAAP1, BnAAP2, and BnAAP6, were identified and characterized. BnAAP1 and BnAAP6 mediated uptake of neutral and acidic amino acids into Xenopus laevis oocytes at the actual apoplastic substrate concentrations. All three transporters were expressed in leaves and the expression was still detectable during leaf senescence, with BnAAP1 and BnAAP2 mRNA levels increasing from mature to old leaves. We conclude that phloem loading of amino acids is not limiting for nitrogen remobilization from senescing leaves in oilseed rape.  相似文献   

16.
Peroxisomal enzyme activities in attached senescing leaves   总被引:4,自引:0,他引:4  
Recently it has been demonstrated that detached leaves show glyoxysomal enzyme activities when incubated in darkness for several days. In this report glyoxylate-cycle enzymes have been detected in leaves of rice (Oryza sativa L.) and wheat (Triticum durum L.) from either naturally senescing or dark-treated plants. Isolated peroxisomes of rice and wheat show isocitrate lyase (EC 4.1.3.1), malate synthase (EC 4.1.3.2) and -oxidation activities. Leaf peroxisomes from dark-induced senescing leaves show glyoxylic-acid-cycle enzyme activities two to four times higher than naturally senescing leaves. The glyoxysomal activities detected in leaf peroxisomes during natural foliar senescence may represent a reverse transition of the peroxisomes into glyoxysomes.This work was supported by CNR Italy, special grant RAISA, subproject 2, paper no. 26.  相似文献   

17.
Leaf mass loss in wetland graminoids during senescence   总被引:2,自引:0,他引:2  
Mass loss of senescing leaves is an important part of plant biomass turnover and has consequences for assessment of ecosystem productivity, ecosystem nutrient use efficiency, and plant nutrient resorption efficiency. Data, however, on mass loss are scarce, and often based on leaf area as the reference base. This leads to an underestimation of the mass loss, as leaf area itself shrinks during senescence. Furthermore, the few existing studies have almost exclusively used woody species. The purpose of the present study was twofold: i) to assess leaf mass loss during senescence in herbaceous species, with the example of five wetland graminoids and, ii) to compare two different methods of mass loss assessment (two species). Assuming that leaf length does not change during senescence, we assessed leaf mass per leaf length prior to and after senescence. We also estimated pre‐senescence leaf mass nondestructively based on leaf length, width and thickness. For Typha latifolia and Carex stricta, two species with graminoid type leaves but contrasting leaf structure, both methods delivered almost identical results. After the first assessment of leaf mass on July 7th, T. latifolia leaf mass initially increased by 13%, and then decreased to be 12% below the original mass after senescence. C. stricta leaf mass remained stable until senescence, but decreased then by 33%. In a second experiment, the mass of 100 mm pieces of leaves was measured before and after senescence. Calamagrostis canadensis, Carex rostrata and C. stricta lost 23–57% of their leaf mass during senescence, whereas Glyceria canadensis did not show any mass loss. We conclude that mass loss of senescing leaves of herbaceous plants can be considerable and should not be neglected in studies of productivity, nutrient use efficiency or nutrient resorption. For species with no shrinking leaf length during senescence, mass loss can be measured with leaf length as the base whereas for others, pre‐senescent mass can be estimated on the basis of leaf dimensions.  相似文献   

18.
We investigated whether changes in sucrose-phosphate synthase (EC 2.4.1.14, SPS) activity could alter N remobilization during leaf senescence. Transgenic rice (Oryza sativa L. cv. Nipponbare) with low SPS activities and wild-type rice plants were grown with basal N (1.0 mM NH4NO3) until the late vegetative stage. Subsequently, half of the plants were transferred to a low N (0.1 mM NH4NO3) condition to accelerate leaf senescence, and the others were continuously grown with basal N. With low N supply, the amounts of chlorophyll and soluble protein in flag leaf blades decreased after anthesis in both the low SPS plants and wild-type plants, although the decrease was less in the low SPS plants. Panicle weights were significantly lower in the low SPS plant than in the wild-type plant. These results suggest that the remobilization of N from flag leaves was diminished by suppressing the development of reproductive sinks in the low SPS plant.  相似文献   

19.
During seedling development chloroplast formation marks the transition from heterotrophic to autotrophic growth. The development and activity of chloroplasts may differ in cotyledons that initially serve as a storage organ and true leaves whose primary function is photosynthesis. A genetic screen was used for the identification of genes that affect selectively chloroplast function in cotyledons of Arabidopsis thaliana. Several mutants exhibiting pale cotyledons and green true leaves were isolated and dubbed snowy cotyledon (sco).One of the mutants, sco1, was characterized in more detail. The mutated gene was identified using map-based cloning. The mutant contains a point mutation in a gene encoding the chloroplast elongation factor G, leading to an amino acid exchange within the predicted 70S ribosome-binding domain. The mutation results in a delay in the onset of germination. At this early developmental stage embryos still contain undifferentiated proplastids, whose proper function seems necessary for seed germination. In light-grown sco1 seedlings the greening of cotyledons is severely impaired, whereas the following true leaves develop normally as in wild-type plants. Despite this apparent similarity of chloroplast development in true leaves of mutant and wild-type plants various aspects of mature plant development are also affected by the sco1 mutation such as the onset of flowering, the growth rate, and seed production. The onset of senescence in the mutant and the wild-type plants occurs, however, at the same time, suggesting that in the mutant this particular developmental step does not seem to suffer from reduced protein translation efficiency in chloroplasts.  相似文献   

20.
Senescence and reserve mobilization are integral components of plant development, are basic strategles in stress mitigation, and regulated at least in part by cytokinin. In the present study the effect of altered cytokinin metabolism caused by senescence-specific autoregulated expression of the Agrobacterium tumefaciens IPT gene under control of the PSAG12 promoter (PSAG12-IPT) on seed germination and the response to a water-deficit stress was studied in tobacco (Nicotiana tabacum L.). Cytokinin levels, sugar content and composition of the leaf strata within the canopy of wild-type and PSAG12-IPT plants confirmed the reported altered source–sink relations. No measurable difference in sugar and pigment content of discs harvested from apical and basal leaves was evident 72 h after incubation with (+)-ABA or in darkness, indicating that expression of the transgene was not restricted to senescing leaves. No difference in quantum efficiency, photosynthetic activity, accumulation of ABA, and stomatal conductance was apparent in apical, middle and basal leaves of either wild-type or PSAG12-IPT plants after imposition of a mild water stress. However, compared to wild-type plants, PSAG12-IPT plants were slower to adjust biomass allocation. A stress-induced increase in root:shoot ratio and specific leaf area (SLA) occurred more rapidly in wild-type than in PSAG12-IPT plants reflecting delayed remobilization of leaf reserves to sink organs in the transformant. PSAG12-IPT seeds germinated more slowly even though abscisic acid (ABA) content was 50% that of the wild-type seeds confirming cytokinin-induced alterations in reserve remobilization. Thus, senescence is integral to plant growth and development and an increased endogenous cytokinin content impacts source–sink relations to delay ontogenic transitions wherein senescence in a necessary process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号