首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fourteen wolves (Canis lupus L.) were singularly or repeatedly immobilized with 30 mg xylazine hydrochloride (HCl) and 400 mg ketamine HCl. Mean induction time was 5.3 +/- 4.6 min (mean +/- SD). Administration of 8.0 mg/kg tolazoline HCl as an antagonist significantly reduced immobilization times from 148.0 +/- 52.7 to 47.9 +/- 8.9 min (F = 63.69, df = 1,17, P less than 0.05). The average times from injection to ambulation for 2.0, 4.0, and 8.0 mg/kg tolazoline HCl were 35.2 +/- 31.8, 18.5 +/- 11.7, and 10.2 +/- 9.1 min. Tolazoline HCl increased heart rates significantly (P less than 0.001) from 75 +/- 14 to 120 +/- 23 beats/min, reversing a xylazine HCl-induced bradycardia. Respiratory rates also increased significantly (P less than 0.01) after tolazoline HCl injection from 19 +/- 7 to 28 +/- 8 breaths/min. Immobilization resulted in an initial hypertension which was normalized after tolazoline HCl administration. One female wolf had a single sinoatrial block within 1 min of receiving tolazoline HCl. Tolazoline HCl appears to be an effective antagonist for xylazine HCl-ketamine HCl immobilization of wolves.  相似文献   

2.
We captured 10 free-ranging desert mule deer (Odocoileus hemionus crooki) (five males and five females) by net-gun from a helicopter and immobilized them with xylazine hydrochloride (HCl) (100 mg) and ketamine HCl (300 to 400 mg) injected intramuscularly. Arousal and ambulation times were 13.9 +/- 4.2 and 14.3 +/- 4.2 min in eight deer injected intravenously with tolazoline HCl (3.0 mg/kg). We observed a curvilinear relationship (R = 0.50, P less than 0.01) between rectal temperature and time after induction of anesthesia. Mean peak temperature (41.4 C) occurred at 23.7 +/- 3.2 min postinduction and was greater (P less than 0.01) than the mean temperature measured initially (40.8 C). Heart and respiratory rates (108 beats/min and 75 breaths/min) were elevated prior to immobilization. Mean heart rate increased (P less than 0.05) from 90 +/- 9 beats/min in anesthetized deer to 120 +/- 13 beats/min after tolazoline HCl injection. A 20% capture-related mortality rate suggests this combination of physical and chemical capture has serious limitations. Captive deer permitted to recover from xylazine HCl-ketamine HCl immobilization without a reversal agent were able to walk in 290 +/- 79 min.  相似文献   

3.
Forty-nine free-ranging Japanese monkeys (Macaca fuscata) were immobilized with 4.3–15.6 mg/kg (mean±S.D.=10.0±2.5 mg/kg) of ketamine hydrochloride (HCl), and 27 Japanese monkeys kept in enclosures were immobilized with a combination of 0.8–1.4 mg/kg (1.0±0.2 mg/kg) of xylazine HCl and 4.0–7.1 mg/kg (5.0±0.6 mg/kg) of ketamine HCl. In the xylazine HCl-ketamine HCl combination, good myorelaxation was induced. The mean induction times for the single dosage of ketamine HCl and the xylazine HCl-ketamine HCl combination were 2.8±1.5 min and 6.9±4.4 min, respectively. The mean immobilization times with the single dosage of ketamine HCl and the xylazine HCl-ketamine HCl combination were 39.3±16.5 min and 58.8±34.2 min, respectively. A half dose of ketamine HCl in combination with xylazine HCl could also immobilize Japanese monkeys successfully. Administrations of 0.5 mg/kg i.v. and 1.0 mg/kg i.m. of yohimbine HCl as an antagonist to xylazine HCl at 30 min after the induction reduced the immobilization time to 31.4±0.5 min and 49.0±22.1 min, respectively. Yohimbine HCl appears to be an effective antagonist to combination anesthesia by xylazine HCl-ketamine HCl in the Japanese monkey.  相似文献   

4.
A combination of tiletamine-zolazepam/xylazine (TZ/X) is effective in the chemical immobilization of white-tailed deer (Odocoileus virginianus); however, the lengthy duration of immobilization may limit its usefulness. From October to November 2002, 21 captive female deer were assigned randomly to an alpha(2) antagonist treatment to reverse xylazine-induced sedation (seven does per group). All deer were given 220 mg of TZ (4.5+/-0.4 mg/kg) and 110 mg of X (2.2+/-0.2 mg/kg) intramuscularly (IM). Antagonist treatments were either 200 mg of tolazoline (4.0+/-0.4 mg/kg), 11 mg of atipamezole (0.23+/-0.02 mg/kg), or 15 mg of yohimbine (0.30+/-0.02 mg/kg) injected, half intravenously and half subcutaneously, 45 min after the IM TZ/X injection. In addition, 10 other deer (five per group) were immobilized as before and then given tolazoline (200 mg) after 45 min, with either a carrier (dimethyl sulfoxide [DMSO]) or carrier (DMSO) plus flumazenil (5 mg) to reverse the zolazepam portion of TZ. Mean times from antagonist injection until a deer raised its head were different for alpha(2) antagonist treatments (P=0.02). Times were longer for yohimbine (62.3+/-42.7 min) than for either atipamezole (24.3+/-17.1 min) or tolazoline (21.3+/-14.3 min). Mean times from antagonist injection until standing were not different (P=0.15) among yohimbine (112.0+/-56.4 min), atipamezole (89.7+/-62.8 min), or tolazoline (52.6+/-37.2 min). A sedation score based on behavioral criteria was assigned to each deer every 30 min for 5 hr. On the basis of sedation scores, tolazoline resulted in a faster and more complete reversal of immobilization. Flumazenil treatment did not affect recovery.  相似文献   

5.
From January 1999 to April 2002, 14 free-ranging elk were darted with a mixture of Telazol reconstituted with xylazine hydrochloride (HCl) in a forested habitat in southwestern Oklahoma and north-central Arkansas. Elk were darted from ground blinds, tree stands, or a vehicle at distances of 14-46 m and were recovered 37-274 m from the dart site. Elk were located using radiotelemetry with 3-cc disposable Pneu-dart transmitter darts. Mean+/-SD dose of Telazol and xylazine HCl was 590+/-192 mg/ml and 276+/-153 mg/ml, respectively, and mean time to standing after injection of reversal agent was 27 min (range: 1-65 min). The combination of Telazol and xylazine HCl successfully immobilized free-ranging elk, and transmitter-equipped darts permitted successful location of sedated elk by two people in areas of dense forest cover. The dose required to sedate elk appeared to vary depending on physiology and behavior, but no drug-induced mortality occurred despite the wide variance in the doses administered. We recommend 500 mg Telazol reconstituted with 300 mg xylazine HCl as an initial dose for a >or=200 kg elk. If needed to achieve full sedation, up to 3 additional ml of the mixture may be administered without adverse effects.  相似文献   

6.
Thirty seven southern elephant seals (Mirounga leonina) were singularly or repeatedly immobilized with combinations of ketamine hydrochloride (HCl) and xylazine HCl or ketamine HCl and diazepam. Atropine sulphate was included in the drug combinations. To permit experimental procedures the seals were immobilized for periods of 30-330 min. The mean induction dose of ketamine HCl was 8.71 +/- 0.25 mg/kg (mean +/- SE). The mean induction time was 16.02 +/- 2.62 min. For the elephant seals immobilized for periods in excess of 180 min, the mean dose of ketamine HCl used per hr was 3.31 +/- 0.13 mg/kg/hr and the mean dose of ketamine HCl used per hr postinduction was 1.31 +/- 0.15 mg/kg/hr. The mean dose of diazepam used was 0.09 +/- 0.01 mg/kg and the mean dose of xylazine HCl was 0.41 +/- 0.01 mg/kg. Elephant seals were weighed on 20 occasions (weight range: 897-1,932 kg) and the relationship between standard length and weight was found to be: Weight = 9.98 length - 2,317.63 (r2 = 0.724). Adverse reactions to seals immobilized only once or twice were not observed. Two seals immobilized on three occasions developed abscesses at the site of injection.  相似文献   

7.
Meperidine HCl was administered intramuscularly by hand-syringe to a number of individuals representing several species of cetaceans (n = 95) and pinnipeds (n = 36). Dosage administered was 0.11 mg/kg, 0.23 mg/kg or 0.45 mg/kg, with the majority of animals receiving the middle dosage. Meperidine HCl provided moderate restraint in cetaceans without obvious deleterious effects. Restraint was achieved rapidly, with maximum effect occurring 20 min after intramuscular injection and lasting for 2 to 3 hr. Analgesia appeared to last as long as 4 hr and was sometimes accompanied by a restoration of appetite in animals suffering from physical discomfort. Higher doses produced increased sedation and analgesia without noticeably depressing respiration. Meperidine HCl provided moderate restraint for phocids and walrus (Odobenus rosmarus) without apparent detriment. California sea lions (Zalophus californianus) showed little restraint, but demonstrated profound respiratory depression.  相似文献   

8.
Eight captive wapiti (Cervus elaphus nelsoni) were injected with xylazine hydrochloride on two occasions during March and April 1984. Animals were grouped into a modified Latin square design and were given either successive injections of yohimbine hydrochloride and 4-aminopyridine (4-AP) to antagonize the sedative effects of xylazine hydrochloride or permitted an unantagonized recovery. Induction times ranged from 3 to 26 min with excited and wild animals requiring a supplementary dose. Time until walking was significantly (P less than 0.005) shorter in the group given successive injections (given i.v.) of the reversal drugs yohimbine hydrochloride (0.15 mg/kg) and 4-AP (0.30 mg/kg) than those animals during unantagonized recoveries. Marked increase in heart rate and respiratory rate were observed in animals within 3 min after successive injections of yohimbine hydrochloride and 4-AP. There was no occurrence of convulsions and animals did not relapse to profound sedation. Slight muscle tremors were observed in one animal which received a dose of 0.35 mg/kg of 4-AP. This drug combination can reduce markedly the duration of recovery from xylazine hydrochloride-induced sedation in wapiti.  相似文献   

9.
Telazol–xylazine and ketamine–xylazine are versatile and safe drug combinations that are used frequently for chemical immobilization of cervids. Although neither combination consistently offers rapid induction and recovery, we hypothesized that a combination of Telazol, ketamine, and xylazine (TKX) would provide a safe and effective alternative for immobilization of white-tailed deer (Odocoileus virginianus). During a 2-stage study, we evaluated the effectiveness of yohimbine and tolazoline as alpha2-adrenergic antagonists (2005–2006), and characterized the factors that affected chemical immobilization of male deer with a targeted dose of telazol (2.20 mg/kg), ketamine (1.76 mg/kg), and xylazine (0.44 mg/kg), using explosive-charged darts (2007–2010). During the first stage, we randomly assigned deer to antagonist treatments, including a control group that did not receive an antagonist (n = 8), a tolazoline (4 mg/kg) treatment (n = 16), and a yohimbine (0.11 mg/kg) treatment (n = 15). Recovery times were longer (P = 0.0013) for control (150.6 ± 21.7 min) and yohimbine (74.5 ± 13.1 min), compared with tolazoline (12.5 ± 12.3 min). Tolazoline resulted in faster and more complete recovery compared with the frequent incomplete antagonism and ataxia observed with yohimbine. During the second stage, 56 immobilization events (2007–2010) with TKX yielded a mean induction time of 7.8 minutes (SE = 0.44). Repeated-measures analyses indicated that induction and recovery were affected by body weight, with larger males taking longer to become recumbent (P = 0.08), but they recovered more rapidly (P = 0.003) following administration of tolazoline. Physiological parameters we measured under anesthesia were within normal ranges for white-tailed deer; however, initial temperature was higher (β = −0.86) for younger males (P = 0.014). Final physiological parameters were closely related to initial measurements, with rectal temperature being the most preserved (β = 0.90); heart and respiration rate declined (β < 0.60) during anesthesia. Our results indicate that TKX may be useful for chemically immobilizing white-tailed deer, and we recommend tolazoline as an antagonist for xylazine. © 2012 The Wildlife Society.  相似文献   

10.
Yohimbine hydrochloride (YH) effectively reversed the immobilizing effects of ketamine hydrochloride (KH) combined with xylazine hydrochloride (XH) in 48 wild polar bears (Ursus maritimus) handled in the summer. Single intravenous doses of YH ranging between 0.029 and 0.198 mg/kg resulted in a median time of 10 min (range: 1-123 min) to post-injection recovery from KH-XH immobilization. Convulsions and muscle twitching were observed in some bears after YH was administered and one death occurred. Median respiratory rate and heartbeat rate increased from 5 br/min to 12 br/min and 51 BPM to 79 BPM, respectively, soon after yohimbine was administered. The median time to recovery after KH-XH administration, including processing and handling time, was 113 min for bears administered yohimbine and 202 min for bears not administered YH. After YH-induced recovery, polar bears showed signs of reduced awareness and many remained recumbent for undetermined periods although they could coordinate movements, stand, and walk or run if disturbed. YH proved to be a useful antagonist to immobilization induced by KH-XH in a field situation.  相似文献   

11.
A combination of 100 mg ketamine hydrochloride (KH) and 20 mg xylazine hydrochloride (XH) was used to immobilize fishers (Martes pennanti). Four adult males were intramuscularly injected a total of five times at dosages between 22.4 to 29.0 mg/kg KH and 4.1 to 6.6 mg/kg XH. Mean (+/- SE) induction time and arousal time were 3.3 +/- 0.5 min and 76.8 +/- 12.1 min, respectively. Respiration, heart rate, and body temperature in response to sedation appeared normal. A 5:1 mixture of KH-XH appears to be a safe immobilizing agent for fishers.  相似文献   

12.
Cardiopulmonary effects and the utility of a butorphanol/xylazine/ketamine combination were evaluated during twenty immobilizations of sixteen Baird's tapirs (Tapirus bairdii) between March 1996 and January of 1998 in Corcovado National Park (Costa Rica). The animals were attracted to a bait site and darted from tree platforms. The tapirs were estimated to weigh between 200 to 300 kg. Actual weights of three tapirs taken at later dates fell within the estimated range. A butorphanol, 48+/-1.84 (x +/- SE) mg/animal IM, and xylazine, 101+/-2.72 mg/animal IM, combination was used to immobilize the animals. In some instances, ketamine was used either IM or IV at 187+/-40.86 mg/animal to prolong the immobilization period in addition to the butorphanol/xylazine combination. Naltrexone was used IM to reverse butorphanol at 257+/-16.19 mg/animal. Either yohimbine, 34+/-0.61 or tolazoline at 12+/-10.27 mg/animal, was used to reverse xylazine. The mean time from dart impact to first visible effect was 4.63+/-0.50 min (x +/- SE). Mean time to sternal recumbency was 12.21+/-1.08 min. Mean time the tapirs were immobilized was 45.63+/-3.6 min. Mean time to return to sternal recumbency and standing in animals that received yohimbine and naltrexone was 3.16+/-1.06 and 5.33+/-1.45 min, respectively. Mean time to return to sternal recumbency and standing in animals that received tolazoline and naltrexone was 1.57+/-0.39 and 3.14+/-0.51 min, respectively. Cardiopulmonary parameters including heart rate, respiratory rate, body temperature, electrocardiogram, percent oxygen satoration, and indirect blood pressure were recorded. Arterial blood gas analysis was performed on four animals. A mild degree of hypoxemia was evidenced by low arterial oxygen saturations. Five of 14 (36%) animals measured had oxygen saturations below 90%. Bradycardia (heart rates <45 BPM) was an expected finding in 11 (55%) immobilizations. Induction, recovery and muscle relaxation of each immobilization was graded. Premature arousal, which occurred in six (30%) animals, was the only problem associated with the immobilizations. Butorphanol/xylazine is a recommended protocol for immobilization of calm, free-ranging tapirs lasting less than 30 min. Supplemental intravenous administration of ketamine is recommended for longer procedures. Nasal insufflation of oxygen is recommended.  相似文献   

13.
Seventy-seven anaesthetic events were carried out in 22 captive adult Black bucks (Antilope cervicapra) of either sex with a combination of 2 mg kg−1 ketamine hydrochloride with 0.25 mg kg−1 xylazine hydrochloride using a dart delivered from a blowpipe. Randomised anaesthetised animals received an intravenous injection of either yohimbine hydrochloride (0.125 or 0.25 mg kg−1) or tolazoline hydrochloride (1 or 2 mg kg−1) after 30–40 min of anaesthesia to antagonise the anaesthetic effects. Ketamine–xylazine induced smooth, rapid and reliable anaesthesia within 5–7 min of darting with no clinical adverse effects and causalities during or post-anaesthesia. Yohimbine failed to antagonise the anaesthetic effects of ketamine–xylazine in the Black buck. On the other hand, tolazoline was found to be very effective in hastening recovery in dose-dependent manner within 0.5–1.5 min. This study documents the first report of ketamine–xylazine anaesthesia and its antagonism by tolazoline in captive Black buck.  相似文献   

14.
Diazinon, an organophosphorous compound, produced hyperglycemia and reduced the glycogen content of the brain 2 h after its administration to rats (40 mg/kg, i.p.). The activities of the glycogenolytic enzymes, glycogen phosphorylase and phosphoglucomutase, were significantly increased, while that of glucose-6-phosphatase was not altered. Atropine (20 mg/kg, i.p.) given immediately after diazinon abolished the changes; tolazoline or propranolol (each at 10 mg/kg, i.p.) injected 30 min before the administration of diazinon significantly reduced the hyperglycemia and the increase in brain glycogenolysis. A combination of tolazoline and propranolol was more effective than either of them alone and completely abolished the hyperglycemia and the changes in brain glycogenolysis. It may be concluded that diazinon initially activates central cholinergic processes leading to hyperglycemia and increased cerebral glycogenolysis in animals.  相似文献   

15.
A S Freeman  B R Martin 《Life sciences》1983,32(10):1081-1089
The behavioral and pharmacological interactions between delta 9-tetrahydrocannabinol (delta 9-THC) and phencyclidine (PCP) were studied following coadministration of the drugs in smoke to mice. While delta 9-THC (25, 50 or 100 mg/cigarette) had little effect on spontaneous motor activity, all doses attenuated the hyperactivity elicited by PCP X HCl (25 and 50 mg/cigarette). delta 9-THC produced a dose-related hypothermia. PCP X HCl (50 mg/cigarette) had no effect on body temperature but enhanced hypothermia when combined with 25 mg of delta 9-THC. delta 9-THC (100 mg/cigarette) had no effect on the biodisposition of 3H-PCP and its pyrolytic product, 3H-phenylcyclohexene (3H-PC), when examined immediately after 3H-PCP X HCl (50 mg/ cigarette) exposure. At 30 min, brain, liver, lung and plasma contained higher concentrations of 3H-PC and fat and plasma contained lower concentrations of 3H-PCP in the mice exposed to both drugs compared to 3H-PCP X HCl alone. It appears, therefore, that delta 9-THC has the potential for altering the behavioral, pharmacological and pharmacokinetic sequelae of PCP abuse.  相似文献   

16.
Ketamine hydrochloride (KH) and xylazine hydrochloride (XH) used in combination (KH-XH) were effective immobilants for captive and wild black bears (Ursus americanus). Single intramuscular injections of 1.5-17.1 mg of KH per kg body weight combined in an approximate ratio of 2:1 with 0.9-10.0 mg of XH per kg body weight immobilized bears for 1.5-197 min. Dosages most frequently used were 4.5-9 mg KH/kg with 2-4.5 mg XH kg. Supplemental administrations maintained tractability for up to 31 h. Immobilization was characterized by smooth induction, relaxed muscles, occasional groaning and vomition, no eye closure, no defecation, and a smooth recovery phase of variable length. Male and female bears responded similarly to KH-XH. Induction times for small bears (less than or equal to 25 kg) were shorter than for larger bears.  相似文献   

17.
We compared a viscous fingering formation of hydrochloric acid (HCl) in rabbit corpus, antral and duodenal mucins and with dextran under neutral and acidic conditions with respect to relative viscosity, molecular mass, and carbohydrate composition. The effect of desialyzation of duodenal mucin on the viscous fingering formation of HCl was also examined. HCl (0.1 N) was injected into 1% solutions of mucins and dextran and a subsequent viscous fingering formation was assessed based on an influx volume rate of HCl. A low influx volume rate indicates a high ability of the solutions to produce viscous fingers. The influx volume rate of HCl was lowest in duodenal mucin followed bl corpus mucin, antral mucin, and dextran at pH 7. The influx volume rate of HCl was inversely correlated with the relative viscosity of the solution. Maximum molecular masses were large in the order of corpus, antral, and duodenal mucins, and they were larger than dextran T2000. Rabbit gastrointestinal mucins were very polydisperse system. Duodenal mucin contains more sialic acid than gastric mucins; the influx volume rate of HCl increased in desialylated duodenal mucin. It is suggested that the higher ability of gastric mucins to prevent HCl diffusion than dextran were due to the differences in the molecular mass. The ability of duodenal mucin to prevent HCl diffusion was probably attributed to its high sialic acid content, which may reflect a physiological role of duodenal mucin in the duodenum that has to deal with HCl influx from the stomach.  相似文献   

18.
即时浸酸显著提高滞育性家蚕卵辅酶Ⅰ和Ⅱ含量   总被引:1,自引:0,他引:1  
即时浸酸在阻止家蚕Bombyx mori卵滞育发动的同时, 提高了其呼吸耗氧量, 抑制了山梨醇积累。本研究利用HPLC法测定了家蚕滞育卵和5 min即时浸酸滞育性卵中辅酶Ⅰ和Ⅱ含量。结果表明: 产下后24-72 h, 家蚕滞育卵中NAD, NADH, NADP和NADPH含量分别下降了30%, 37%, 50%和4%; 而即时浸酸滞育性卵中分别增加了77%, 46%, 142%和241%。不过, 即时浸酸并未显著改变滞育性家蚕卵中NADH/NAD和NADPH/NADP比值。据此推测, 即时浸酸提高滞育性家蚕卵辅酶Ⅰ含量与其呼吸耗氧量增加有关; 即时浸酸显著提高辅酶Ⅱ含量与山梨醇积累抑制无关, 而主要与生物合成加强有关。  相似文献   

19.
The mean time to initial reversal response (MTIRR) and the mean time to perching (MTP) were measured in 34 raptors sedated with xylazine hydrochloride with dosages ranging from 1.0 to 20 mg/kg intravenously (i.v.) and 2.5 to 20.0 mg/kg intramuscularly (i.m.). Yohimbine hydrochloride, given i.v. (0.2 mg/kg), 30 min after the injection of the xylazine, shortened the MTIRR and MTP compared to the controls. No adverse effects were noted due to the use of yohimbine. Yohimbine appeared to be a safe and effective antagonist for xylazine sedation in raptors.  相似文献   

20.
Six bengal tigers (Panthera tigris tigris) were immobilized five times at 2-wk intervals with ketamine hydrochloride (ketamine) and xylazine hydrochloride (xylazine) mixtures at different dose levels. Hematology and serum chemistry analyses on blood samples collected at each immobilization remained normal during the study. There were acute changes in hematocrit, chloride, potassium, glucose, and bilirubin as a function of xylazine dose level. The effect of yohimbine hydrochloride (yohimbine) on the depth and duration of immobilization was evaluated in a crossover design with every animal serving as its own control at each dose. Administration of yohimbine resulted in recovery of the animals within 4-8 min in contrast to greater than 60 min with no yohimbine treatment. There were no adverse effects noted with the yohimbine treatment and the tigers did not exhibit a relapse over the next 24 hr. Yohimbine at a dose of 5-15 mg per adult tiger provided effective reversal of 50-150 mg of xylazine per tiger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号