首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Laminin receptor (Lamr) in shrimp was previously proposed to be a potential receptor protein for Taura syndrome virus (TSV) based on yeast two-hybrid assays. Since shrimp Lamr bound to the VP1 capsid protein of TSV, we were interested to know whether capsid/envelope proteins from other shrimp viruses would also bind to Lamr. Thus, capsid/envelope encoding genes from 5 additional shrimp viruses were examined. These were Penaeus stylirostris densovirus (PstDNV), white spot syndrome virus (WSSV), infectious myonecrosis virus (IMNV), Macrobrachium rosenbergii nodavirus (MrNV), and yellow head virus (YHV). Protein interaction analysis using yeast two-hybrid assay revealed that Lamr specifically interacted with capsid/envelope proteins of RNA viruses IMNV and YHV but not MrNV and not with the capsid/envelope proteins of DNA viruses PstDNV and WSSV. In vitro pull-down assay also confirmed the interaction between Lamr and YHV gp116 envelope protein, and injection of recombinant Lamr (rLamr) protein produced in yeast cells protected shrimp against YHV in laboratory challenge tests.  相似文献   

2.
Three monoclonal antibodies (MAbs) raised against pathogenic yellow head virus (YHV) from Thailand were tested against tissues of shrimp from Thailand, Australia, Ecuador and India that were purported to be infected with yellow head complex viruses. MAbs V-3-2B and Y-18 were specific to gp116 and gp64 envelope proteins, respectively, while Y-19 was specific to a 20 kDa putative nucleoprotein p20. As a preliminary step, the site of reactivity of the 3 MAbs in YHV was determined by immuno-electron microscopy using ultra-thin sections of YHV-infected shrimp tissue and negatively stained, semi-purified YHV particles. As expected, MAb Y-19 reacted with viral nucleocapsids in ultra-thin sections but not with negatively stained, whole virions; MAb V-3-2B did react with negatively stained, whole virions, but not with virions or nucleocapsids in ultra-thin sections. Unexpectedly, MAb Y-18 did not react with whole or sectioned virions. By immunohistochemistry, MAbs Y-19 and Y-18 reacted with Penaeus monodon tissues infected with either YHV or with gill-associated virus (GAV) from Australia, while MAb V-3-2B reacted with YHV only. In addition, all the YHV and GAV tissue samples gave positive in situ hybridization reactions with a cDNA probe specific to the ORF1b gene of YHV. They also gave expected differential RT-PCR results for YHV and GAV. By contrast, 2 natural Thai shrimp specimens with no gross signs of disease gave similar immunohistochemical reactions and RT-PCR reactions to GAV. However, sequencing of their RT-PCR products showed that they shared 92.7% identity with GAV, but only 79.0% identity with YHV. Although specimens from Ecuador and India displayed histopathology suggestive of YHV infection, they gave negative immunohistochemical reactions with all 3 Mabs, and negative in situ hybridization results. Additional work is required to determine whether a virus from the yellow head complex was responsible for their observed histopathology. These data show that the 3 YHV MAbs could be used in diagnostic situations to differentiate some viruses in the yellow head virus complex.  相似文献   

3.
Suppression of PmRab7 by dsRNA Inhibits WSSV or YHV Infection in Shrimp   总被引:1,自引:0,他引:1  
Viral entry into host cells requires endocytosis machineries of the host for viral replication. PmRab7, a Penaeus monodon small GTPase protein, was investigated for its function in vesicular transport during viral infection. The double-stranded RNA of Rab7 was injected into a juvenile shrimp before challenging with white spot syndrome virus (WSSV) or yellow head virus (YHV). PmRab7 mRNA was specifically decreased at 48 h after dsRNA-Rab7 injection. Silencing of PmRab7 dramatically inhibited WSSV-VP28 mRNA and protein expression. Unexpectedly, the silencing of PmRab7 also inhibited YHV replication in the YHV-infected shrimp. These results suggested that PmRab7 is a common cellular factor required for WSSV or YHV replication in shrimp. Because PmRab7 should function in the endosomal trafficking pathway, its silencing prevents successful viral trafficking necessary for replication. Silencing of PmRab7 could be a novel approach to prevent both DNA virus (WSSV) and RNA virus (YHV) infection of shrimp.  相似文献   

4.
Five species of palaemonid shrimp, Macrobrachium rosenbergii, M. lanchesteri, M. sintangense, Palaemon styliferus and P. serrifer, were collected from Penaeus monodon farming areas in Thailand. Some of each species were artificially infected with yellow head virus (YHV) by injection and then monitored by RT-PCR and by immunohistochemistry using monoclonal antibodies specific to 116 kDa, 64 kDa, and 20 kDa proteins of YHV. Natural YHV infections were not detected in any of the shrimp examined. In YHV injection experiments, a high proportion of P. serrifer, P. styliferus and M. sintangense exhibited mild to moderate YHV infections at 3 d post-injection. The severity of infection was reduced in shrimp that survived to 10 and 30 d post-injection. Using immunohistochemistry and RT-PCR, a small proportion of M. lanchesteri showed very mild YHV infections at Day 3 but no infections at Days 10 and 30. No YHV infections resulted in M. rosenbergii. The evidence suggested that M. sintangense, P. styliferus and P. serrifer are susceptible to YHV and carry it for some time. In contrast, M, rosenbergii and M. lanchesteri appear to resist YHV infection and eliminate YHV efficiently. Because they display a range of responses to YHV, palaemonid shrimp may serve as a good model for studying YHV defense mechanisms in shrimp.  相似文献   

5.
Silencing of yellow head virus replication in penaeid shrimp cells by dsRNA   总被引:8,自引:0,他引:8  
RNA interference (RNAi) has been shown to inhibit viral replication in some animals and plants. Whether the RNAi is functional in shrimp remains to be demonstrated. In vitro transcribed dsRNAs of YHV helicase, polymerase, protease, gp116, and gp64 were transfected into shrimp primary cell culture and found to inhibit YHV replication. dsRNA targeted to nonstructural genes (protease, polymerase, and helicase) effectively inhibited YHV replication. Those targeted structural genes (gp116 and gp64) were the least effective. These findings are the first evidence that RNAi-mediated gene silencing is operative in shrimp cells. This could be a powerful tool for studying gene function and to develop effective control of viral infection in shrimp.  相似文献   

6.
Histological, cytochemical and ultrastructural changes in giant black tiger shrimp Penaeus monodon were investigated at various time intervals after injection with yellow head virus (YHV). Hemocytes, lymphoid organs (LO) and gills were the main focus of the study. After injection with YHV, onset of mortality varied from 36 h onward. By normal hematoxylin and eosin staining, the 3 tissues showed clear and increasing prevalence of nuclear condensation, pyknosis and karyorrhexis from approximately 36 h post-injection (p.i.) until death, although pathology was evident in the LO as early as 12 h p.i. in some shrimp. By nuclear DNA staining with 4',6-diamidino-2-phenylindole (DAPI) and by specific labeling of 3'-OH ends of nuclear DNA using a technique called terminal deoxynucleotidyl transferase-mediated deoxy-UTP nick-end labeling (TUNEL), cells of the 3 tissues showed evidence of chromatin condensation and DNA fragmentation, respectively. Both are generally considered to be characteristic of apoptosis. In addition to TUNEL labeling, evidence for DNA fragmentation was supported by the appearance of approximately 200 base pair DNA ladders at approximately 48 h p.i. in hemocytes of YHV-infected but not uninfected shrimp. Transmission electron microscopy (TEM) of LO tissue revealed features of apoptosis in tissues of YHV-infected shrimp only. These included marginated, condensed and fragmented chromatin without concurrent cytoplasmic damage. Histological, cytochemical, ultrastructural and biochemical data were consistent with the hypothesis that widespread and progressive apoptosis occurred in susceptible shrimp infected with YHV. Although no specific tests were carried out to determine whether this purported apoptosis was the cause of mortality, moribund shrimp had extensive deterioration of vital tissues such as the hemolymph, gills, heart and LO, suggesting that many essential bodily functions had been severely compromised. This probably resulted in the gross signs of lethargy and weakness seen, and it is reasonable to suggest that further, progressive deterioration could have led to the collapse of vital functions followed by death.  相似文献   

7.
8.
9.
Yellow head virus (YHV) is an invertebrate nidovirus that has caused mass mortality of cultured Penaeus monodon in Asia. In this study, we investigated whether mouse polyclonal antiserum raised against the YHV gp116 or gp64 structural glycoproteins could neutralize YHV infectivity as determined using an in vitro quantal assay in primary cultures of lymphoid organ cells. Anti-gp116 antiserum showed virus-neutralizing activity whereas anti-gp64 antiserum failed to inhibit infection. The results suggest that gpl16 antiserum blocks binding of virions to cellular receptors to facilitate YHV entry into lymphoid organ cells.  相似文献   

10.
A monoclonal antibody specific to yellow head virus (YHV) was produced from a mouse immunized with gill extracts prepared from laboratory-reared Penaeus monodon dually infected with YHV and white spot syndrome virus (WSSV). One clone designated V3-2B specifically bound to native and SDS-treated viral specific antigens. Immunocytochemical studies of infected gills revealed viral specific immunoreactivities in the cytoplasm of gill tissue and in haemocytes. No antibody binding was observed in gills from non-infected shrimp. In addition, immunocytochemical examination of tissues from shrimp experimentally infected with YHV gave a positive reaction, while tissues from uninfected control shrimp or shrimp experimentally infected with WSSV did not. Western blot analysis indicated that the antibody reacted with a protein of approximately 135 kD that was present only in shrimp infected with YHV. In dot-blot indirect immunoperoxidase assays, the antibody was able to detect viral associated antigen in diluted haemolymph up to 1:50 dilution and in an ammonium sulfate precipitate of haemolymph up to 1:1000 dilution. The results suggested that this antibody might be useful for development of effective diagnostic techniques for both heavy and mild YHV infections in shrimp.  相似文献   

11.
Monoclonal antibodies specific to 22, 67 and 135 kDa proteins of yellow-head virus (YHV) were produced from a mouse immunized with partially purified YHV isolated from the haemolymph of experimentally YHV-infected Penaeus monodon. Four groups of monoclonal antibodies were identified. One group of antibodies bound only to native protein of YHV while the others were specific to 135, 67 and 22 kDa proteins in both native and denatured forms. All antibodies could be used to detect YHV infection by means of dot blot and immunohistochemistry. However, antibodies specific to the 22 kDa protein gave the best immunohistochemistry results in terms of intensity and sharpness of staining.  相似文献   

12.
This work constitutes the second report from a continuing investigation of shrimp genes that may be involved in apoptosis associated death resulting from yellow head virus (YHV) infection. Here, we describe from the black tiger shrimp Penaeus monodon, a ribophorin I-like gene that is probably a subunit of the oligosaccharyltransferase complex (OST), a key enzyme in N-linked glycosylation that occurs in the endoplasmic reticulum. The OST complex also contains DAD1 (defender against apoptotic death 1) that has been reported to control apoptosis and that we have previously reported from P. monodon. The full length ribophorin I of P. monodon comprised 2157 bp with the ORF of 1806 bp corresponding to 601 deduced amino acids and three putative N-linked glycosylation sites. Analysis revealed hydrophobic properties implying that it could be a membrane protein. Tissue distribution analysis using real-time RT-PCR with SYBR Green revealed that ribophorin I was endogenously expressed in all examined tissues of normal shrimp. However, unlike DAD1 that was down-regulated after YHV challenge, ribophorin I expression was up-regulated and remained high until the moribund stage.  相似文献   

13.
A comparative proteomic analysis was employed to identify altered proteins in the yellow head virus (YHV) infected lymphoid organ (LO) of Penaeus monodon. At 24 h post-infection, the infected shrimps showed obvious signs of infection, while the control shrimps remained healthy. Two-dimensional electrophoresis of proteins extracted from the LO revealed significant alterations in abundance of several proteins in the infected group. Protein identification by MALDI-TOF MS and nanoLC-ESI-MS/MS revealed significant increase of transglutaminase, protein disulfide isomerase, ATP synthase beta subunit, V-ATPase subunit A, and hemocyanin fragments. A significant decrease was also identified for Rab GDP-dissociation inhibitor, 6-phosphogluconate dehydrogenase, actin, fast tropomyosin isoform, and hemolymph clottable protein. Some of these altered proteins were further investigated at the mRNA level using real-time RT-PCR, which confirmed the proteomic data. Identification of these altered proteins in the YHV-infected shrimps may provide novel insights into the molecular responses of P. monodon to YHV infection.  相似文献   

14.
Yellow head virus infects cultured shrimps and causes severe mortality resulting in a great economic loss. Haemolymph injection of dsRNA(pro) corresponding to the protease motif of YHV genome resulted in a complete inhibition of YHV replication. The effect of dsRNA lasted for at least 5 days. Injecting sequence-unrelated dsRNA(gfp) or dsRNA(TSV-pol) also resulted in an inhibition of YHV replication but at a comparatively much less extent. Shrimp mortality was monitored for 10 days when more than 90% shrimps receiving no dsRNA died within 8 dpi. However, those receiving dsRNA(pro) showed no mortality. A partial mortality was observed among the shrimps receiving dsRNA(gfp) or dsRNA(TSV-pol). Thus, Penaeus monodon possesses the sequence-specific protection to YHV infection, most likely through the RNAi pathway, in addition to sequence-independent protection. It gives a new notion that dsRNA induction of antiviral immunity in shrimp goes through two pathways, sequence-independent and sequence-dependent.  相似文献   

15.
The cellular signal-transduction process is largely controlled by protein phosphorylation. Shrimp infected with yellow head virus show dramatic changes in their hemocyte phosphoproteomic patterns, and aberrant activation of phosphorylation-based signaling networks has been implicated in a number of diseases. In this study, we focused on phosphorylation of Penaeus monodon myosin regulatory light chain (PmMRLC) that is induced at an early hour post YHV infection and is concomitant with cellular actin remodeling. In shrimp cell cultures, this phosphorylation was inhibited by the myosin light chain kinase (MLCK) inhibitors ML-7 and ML-9, suggesting that PmMLC phosphorylation is MLCK pathway-dependent. Blocking PmMRLC phosphorylation resulted in increased replication of YHV and reduction of phagocytic activities of shrimp hemocytes called semigranular cells (SGC) and granular cells (GC). Injection of MLCK inhibitors prior to YHV challenge resulted in dose-dependent elevation in quantity of YHV-positive GC and cytoplasmic YHV protein, coincident with high shrimp mortality. Altogether, we demonstrated that PmMRLC phosphorylation increases after YHV infection in shrimp and that inhibition of the phosphorylation leads to increased YHV replication, reduced hemocyte phagocytic activity (probably through actin remodeling) and subsequent shrimp death. Thus, further studies on the MLCK activation pathway may lead to new strategies in development and implementation of therapy for YHV infections in shrimp.  相似文献   

16.
17.
RNA interference (RNAi) is a promising strategy to combat shrimp viral pathogens at lab-scale experiments. Development of effective orally delivered agents for double-stranded (ds)RNA is necessary for RNAi application at farm level. Since continuous shrimp cell lines have not been established, we are developing a dsRNA-delivery system in Spodoptera frugiperda (Sf9) cells for studying in vitro RNAi-mediated gene silencing of shrimp virus. Sf9 cells challenged with yellow head virus (YHV) were used for validating nanoparticles as effective dsRNA carriers. Inexpensive and biodegradable polymers, chitosan and its quarternized derivative (QCH4), were formulated with long dsRNA (>100 bp) targeting YHV. Their morphology and physicochemical properties were examined. When treated with chitosan- and QCH4-dsRNA complexes, at least 50% reduction in YHV infection in Sf9 cells relative to the untreated control was evident at 24h post infection with low cytoxicity. Inhibitory effects of chitosan- and QCH4-dsRNA complexes were comparable to that of dsRNA formulated with Cellfectin(?), a commercial lipid-based transfection reagent. The natural and quaternized chitosan prepared in this study can be used for shrimp virus-specific dsRNA delivery in insect cultures, and have potential for future development of dsRNA carriers in shrimp feed.  相似文献   

18.
The gene sequence encoding VP3 capsid protein of Taura syndrome virus (TSV) was cloned into pGEX-6P-1 expression vector and transformed into Escherichia coli BL21. After induction, recombinant GST-VP3 (rVP3) fusion protein was obtained and further purified by electro-elution before use in immunizing Swiss mice for production of monoclonal antibodies (MAb). One MAb specific to glutathione-S-transferase (GST) and 6 MAb specific to VP3 were selected using dot blotting and Western blotting. MAb specific to VP3 could be used to detect natural TSV infections in farmed whiteleg shrimp Penaeus vannamei by dot blotting and Western blotting, without cross reaction to shrimp tissues or other shrimp viruses, such as white spot syndrome virus (WSSV), yellow head virus (YHV), monodon baculovirus (MBV) and hepatopancreatic parvovirus (HPV). These MAb were also used together with those specific for WSSV to successfully detect TSV and WSSV in dual infections in farmed P. vannamei.  相似文献   

19.
20.
The greatest threat to the future of world shrimp aquaculture is disease, in particular the virulent untreatable viruses, infectious hypodermal and haematopoietic necrosis virus (IHHNV), taura syndrome virus (TSV), yellow head virus (YHV), and white spot syndrome virus (WSSV). To overcome these hazards, the industry of the future must be based on: (i) specific pathogen-free and genetically improved shrimp stocks; (ii) biosecure systems including enclosed, reduced water-exchange/increased water-reuse culture systems; (iii) biosecure management practices; and (iv) co-operative industry-wide disease control strategies. Specific pathogen-free shrimp are those that are known to be free of specified pathogens and such stocks will ensure that seed shrimp are not the conduit for introduction of pathogens and that if pathogens are encountered the stocks will not be severely affected. Commercially acceptable biosecure culture systems that are under cover and use recirculated sea water will need to be developed for shrimp production. Adherence to operating protocols that incorporate strict biosecurity practices, including restricted access and disinfection strategies, will need to become standard. Co-operative efforts will include: early warning surveillance; co-ordination of harvest and water exchange schedules of contaminated ponds; processor co-operation to ensure that processing wastes are not threats; quick response to outbreaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号