首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During prolonged starvation the activity of aldolase in crude rabbit liver extracts decreases to less than one-half the value observed in extracts of livers from fed animals. The specific activity of the enzyme purified by adsorption on phosphocellulose and elution with substrate is also approximately one-half that of the purified native enzyme. Both the level of enzyme activity and the specific activity are restored to normal within 36 h of refeeding. After removal of active aldolase from the liver extracts by adsorption on phosphocellulose an additional immunoreactive protein can be isolated by adsorption on antialdolase-Sepharose and elution with 4 m MgCl2. This protein is devoid of catalytic activity and in livers of fasted rabbits accounts for nearly 40% of the total immunoreactive material. It has also been detected in extracts prepared from livers of fed rabbits, where it accounts for 10–20% of the total protein adsorbed by antialdolase-Sepharose. The low-activity enzyme isolated from livers of fasted rabbits cannot be reactivated by sulfhydryl compounds; it shows similar sensitivity to heat and denaturing agents as the enzyme isolated from livers of fed rabbits. The activity ratios with fructose 1,6-bisphosphate, fructose 1-phosphate, and triose phosphate are similar to those observed for the native liver enzyme.  相似文献   

2.
9-beta-D-arabinofuranosylguanine (Ara-G) is an important and relatively new guanosiue analog with activity in patients with T-cell malignancies. The biochemical and molecular events leading to resistance to Ara-G are not fully understood. Therefore we generated two Ara-G-resistant human MOLT-4 leukemic cell lines with different levels of resistance. The mitochondrial enzyme deoxyguanosine kinase (dGK) and the nuclear/cytosol enzyme deoxycytidine kinase (dCK) are key enzymes in the activation of Ara-G. Decreased levels of dGK protein and mRNA were found in both resistant cell sublines. The activity of dCK was decreased in the subline with higher resistance to Ara-G and these cells were highly cross-resistant to other nucleosides activated by dCK. Increased activity of the mitochondrial enzyme thymidine kinase 2 was observed in both resistant sublines and this could be related to the dGK deficiency. In search for other resistance mechanisms it was found that the resistant cells overexpress the mdr1 gene, while no changes were detected in the levels of multidrug resistance-associated protein 1 through 6, lung resistance-associated protein or topoisomerase IIalpha or IIbeta. Taken together, our findings demonstrate that multiple mechanisms are involved in the acquired resistance to Ara-G. However, low expression of dGK is the most apparent alteration in both resistant cell lines. Partial deficiency of dCK was found in the subline cells with higher resistance to Ara-G. Furthermore, Ara-G may select for high expression of the multidrug resistance (mdr1) which could be a specific resistance mechanism but more likely part of an overall cellular stress response.  相似文献   

3.
C1-tetrahydrofolate synthase (C1-THF synthase), a eukaryotic trifunctional enzyme, catalyzes three sequential folate-mediated one-carbon interconversions. These three reactions supply the activated one-carbon units required in the metabolism of purines, thymidylate, and several amino acids. In order to study the regulation of C1-THF synthase expression in mammals, we have purified the enzyme to homogeneity from rat liver, raised polyclonal antisera to it in rabbits, and developed a sensitive solid-phase immunoassay for the enzyme. The enzyme was purified approximately 600-fold to a specific activity of 24.6 U/mg protein based on 10-formyl-THF synthetase activity. Western blot analysis indicated that the antisera is specific for one protein in crude liver extracts which comigrates with purified C1-THF synthase. Using the solid-phase immunoassay, as little as 200 pg of immunoreacting protein can be detected in tissue homogenates. Several rat tissues were examined for the three C1-THF synthase enzymatic activities and immunoreactive protein. The results indicated that the level of C1-THF synthase is regulated in a tissue-specific manner. Enzyme assays revealed that certain tissues differ by more than 100-fold in enzyme activity, with liver and kidney containing the highest levels, and lung and muscle the lowest. However, immunoassay of these same tissues indicated only a 10-fold difference in C1-THF synthase concentration. This apparent masking of enzyme activity was observed in all tissues, but to varying degrees. These results emphasize the advantages of an immunoassay in studying the regulation of C1-THF synthase.  相似文献   

4.
Deoxycytidine kinase (dCK) is an essential nucleoside kinase critical for the production of nucleotide precursors for DNA synthesis. This enzyme catalyzes the initial conversion of the nucleosides deoxyadenosine (dA), deoxyguanosine (dG), and deoxycytidine (dC) into their monophosphate forms, with subsequent phosphorylation to the triphosphate forms performed by additional enzymes. Several nucleoside analog prodrugs are dependent on dCK for their pharmacological activation, and even nucleosides of the non-physiological L-chirality are phosphorylated by dCK. In addition to accepting dC and purine nucleosides (and their analogs) as phosphoryl acceptors, dCK can utilize either ATP or UTP as phosphoryl donors. To unravel the structural basis for substrate promiscuity of dCK at both the nucleoside acceptor and nucleotide donor sites, we solved the crystal structures of the enzyme as ternary complexes with the two enantiomeric forms of dA (D-dA, or L-dA), with either UDP or ADP bound to the donor site. The complexes with UDP revealed an open state of dCK in which the nucleoside, either D-dA or L-dA, is surprisingly bound in a manner not consistent with catalysis. In contrast, the complexes with ADP, with either D-dA or L-dA, adopted a closed and catalytically competent conformation. The differential states adopted by dCK in response to the nature of the nucleotide were also detected by tryptophan fluorescence experiments. Thus, we are in the unique position to observe differential effects at the acceptor site due to the nature of the nucleotide at the donor site, allowing us to rationalize the different kinetic properties observed with UTP to those with ATP.  相似文献   

5.
The determination of enzyme levels in cellular extracts by active site titrations or by catalytic activity measurements is relevant in both science and medicine. However, these techniques assume that enzymes exhibit the same response in crude sample matrices as they do in the purified state. We report here an example of how an enzyme-linked immunosorbent assay (ELISA) was used to determine the true enzyme concentration which was compared to the effective enzyme concentration obtained by ligand binding and catalytic assay methods in a crude bacterial cell extract. Rabbit antibodies specific for Lactobacillus casei thymidylate synthase (TS) were used to develop a highly specific and sensitive heterogeneous noncompetitive ELISA assay with a typical detection limit of 1.4 fmol of TS (100 pg) and a dynamic working range of 3 orders of magnitude. The antibodies showed identical responses for TS, its inhibitory binary complex with 5-fluoro-2'-deoxyuridylate, and its inhibitory ternary complex with 5-fluoro-2'-deoxyuridylate and 5,10-methylenetetrahydrofolate in the immunoassay. L. casei cell-free extracts were subjected to extraction with CM-Sephadex and the various fractions were analyzed by ELISA, active-site titrations, and catalytic assays which demonstrated that assays which assumed full catalytic or ligand-binding competence underestimated the true enzyme level.  相似文献   

6.
Mycoplasmas are unable to synthesize purine and pyrimidine bases de novo. Therefore, salvage of existing nucleosides and bases is essential for their survival. Four mycoplasma species were studied with regard to their ability to phosphorylate deoxynucleosides. High levels of thymidine kinase (TK), deoxycytidine kinase (dCK), deoxyguanosine kinase (dGK) and deoxyadenosine kinase (dAK) activities were detected in extracts from Mycoplasma pneumoniae, Mycoplasma mycoides subsp. mycoides SC (M. mymySC), Acholeplasma laidlawii (A. laidlawii) and Mycoplasma arginini (M. arginini). Nucleoside phosphotransferase activities were found at high levels in A. laidlawii and low levels in M. arginini. Pyrophosphate-dependent deoxynucleoside kinase activities were detected mainly in A. laidlawii and M. mymySC extracts. Two open reading frames were identified in the M. mymySC genome; one showed 25% sequence identity to human dGK and the other one had about 26% sequence identity to human TK1. The M. mymySC dGK-like enzyme was cloned, expressed in Escherichia coli and affinity-purified. This enzyme phosphorylated dAdo, dGuo and dCyd, and the highest catalytic rate was with dAdo as substrate. Therefore, we suggest that this enzyme should be named deoxyadenosine kinase. The physiological role of mycoplasma dAK and TK may be to support the unusually large dATP and dTTP pools required for replication of mycoplasma genomes.  相似文献   

7.
A rocket immunoelectrophoretic procedure has been developed for the assay of cathepsin D (EC 3.4.23.5) immunoreactive protein, in a 10-100 ng range, directly on crude soluble liver homogenate extracts. By this method, the drop in activity of rat liver cathepsin D effected by repeated doses of cycloheximide, a protein synthesis inhibitor, reflects a parallel change in total enzyme protein content, the specific activity being stable in the course of the treatment. These observations are compatible with the hypothesis that ongoing enzyme degradation, coupled with impaired synthesis, accounts for such a decline of cathepsin D.  相似文献   

8.
Two-Site Immunoassay for Acetylcholinesterase in Brain, Nerve, and Muscle   总被引:6,自引:3,他引:3  
Two-site methods were developed for immunoassay of acetylcholinesterase (AChE; EC 3.1.1.7) in crude extracts of rat and human tissues. A radiometric assay for human AChE utilized a specific monoclonal AChE antibody adsorbed to polystyrene microtiter wells at alkaline pH. AChE bound strongly to this antibody after 24 h at 4 degrees C. Bound enzyme was detected with an 125I-labeled antibody against a different AChE epitope. The assay signal was quasi-linearly related to AChE concentration in purified and crude samples, with a detection threshold near 100 pg. Tetrameric and dimeric AChE behaved equivalently in the assay. Two-site methods with a different pair of species-selective antibodies worked equally well for immunoassay of rat AChE. Assays of the rat enzyme showed that immunoreactivity was lost as rapidly as enzyme activity during heating to 54 degrees C. On the other hand, immunoreactivity was preserved despite loss of enzyme activity after exposure to anticholinesterases or trypsin. A biotinylated second antibody detected by alkaline-phosphatase-conjugated avidin was used to develop an AChE enzyme-linked immunosorbent assay (ELISA) with a sensitivity similar to that of the radiometric assay. Either the ELISA or the radiometric immunoassay may be useful whenever proteolysis or other mechanisms are suspected of dissociating enzyme activity and immunoreactivity. In denervated muscle and ligated peripheral nerve, application of the two-site method showed closely parallel variations in immunoreactivity and enzyme activity.  相似文献   

9.
The native structures of protein phosphatases have not been clearly established. Several tissues contain high molecular weight enzymes which are converted to active species of Mr approximately 35,000 by denaturing treatments or partial proteolysis. We have used a monoclonal antibody directed against purified bovine cardiac Mr = 38,000 protein phosphatase to determine whether this species is the native catalytic subunit or a proteolytic product of a larger polypeptide. Monoclonal antibody was obtained from a cloned hybrid cell line produced by the fusion of Sp2 myeloma cells with spleen cells from a mouse immunized with phosphatase coupled to hemocyanin. This antibody was specific for the Mr = 38,000 phosphatase as determined by immunoblot analysis of purified enzyme or cardiac tissue extracts after native or sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A single immunoreactive protein of Mr = 38,000 was present in cardiac tissue extracts including extracts prepared from freeze-clamped rat heart rapidly denatured in hot sodium dodecyl sulfate buffer. Precipitation of cardiac extract with 80% ethanol did not alter the Mr of the phosphatase nor did it liberate new immunoreactive material not observed in the extract. Ethanol precipitation caused the dissociation of both phosphatase activity and immunoreactivity from a high Mr form to a form of Mr between 30,000 and 40,000. An immunoreactive protein of Mr = 38,000 was identified in several bovine and rat tissues as well as tissues from rabbits, mice and chickens and human HT-29 cells. From these data we conclude that the Mr = 38,000 cardiac phosphatase is a native catalytic subunit of higher molecular complexes which are dissociated by ethanol precipitation. A very similar, or identical, protein is present in several tissues and species suggesting that this catalytic subunit is a ubiquitous enzyme important in many dephosphorylation reactions.  相似文献   

10.
Representatives of five allozymic classes of Drosophila alcohol dehydrogenase have been compared with respect to their activity levels on two alcohol substrates, quantities of ADH protein, and stability in crude extracts. Within each allozymic class, strains from widely diverse geographic locations differ in their enzyme activity levels but are identical for a measure known as "activity ratio," which is obtained by dividing the average activity reading on isopropanol by that obtained with ethanol. They are also similar in the rate at which ADH activity declines in crude extracts held at 25 degrees C. For several of the fast-resistant and fast-moderate strains, differences in ADH activity are associated with differences in the amount of enzyme present. The catalytic efficiencies of the fast-resistant forms are considerably lower than those of the fast-moderate allozymes. The origin and persistence of the rare but ubiquitous fast-resistant allozyme is discussed.  相似文献   

11.
McSorley T  Ort S  Hazra S  Lavie A  Konrad M 《FEBS letters》2008,582(5):720-724
Intracellular phosphorylation of dCK on Ser-74 results in increased nucleoside kinase activity. We mimicked this phosphorylation by a Ser-74-Glu mutation in bacterially produced dCK and investigated kinetic parameters using various nucleoside substrates. The S74E mutation increases the kcat values 11-fold for dC, and 3-fold for the anti-cancer analogues dFdC and AraC. In contrast, the rate is decreased for the purine substrates. In HEK293 cells, we found that by comparing transiently transfected dCK(S74E)-GFP and wild-type dCK-GFP, mimicking the phosphorylation of Ser-74 has no effect on cellular localisation. We note that phosphorylation may represent a mechanism to enhance the catalytic activity of the relatively slow dCK enzyme.  相似文献   

12.
Human deoxycytidine kinase (dCK) is a key enzyme in the 5'-phosphorylation of purine and pyrimidine deoxynucleosides with deoxycytidine as the most efficient substrate. The ability of dCK to degrade 2'-deoxyribonucleosides to free nucleobases and 2-deoxy-alpha-d-ribofuranose-1-phosphate was demonstrated by 1H-31P correlation spectroscopy and by isotope enzyme kinetic methods. The reaction depended on inorganic phosphate, and dCK showed maximum cleavage activity between pH 7 and pH 8. In this pH range, [HPO4(2-)] is the dominant phosphate species, most likely being the phosphate donor. All natural deoxyribonucleosides could be cleaved and the Vmax of the phosphorylytic reaction compared to the kinase reaction was about 2-10%. The formation of free nucleobases occurred only with reduced dCK, because the reaction was highly dependent on the presence of reducing agents such as dithiotreitol. Thus, recombinant dCK can act as a phosphorylase, similar to the nucleoside phosphorylase family of enzymes. This catalytic activity is important for the design of in vitro experiments with dCK, such as crystallization and NMR spectroscopy.  相似文献   

13.
5'-Phosphorylation, catalyzed by human deoxycytidine kinase (dCK), is a crucial step in the metabolic activation of anticancer and antiviral nucleoside antimetabolites, such as cytarabine (AraC), gemcitabine, cladribine (CdA), and lamivudine. Recently, crystal structures of dCK (dCKc) with various pyrimidine nucleosides as substrates have been reported. However, there is no crystal structure of dCK with a bound purine nucleoside, although purines are good substrates for dCK. We have developed a model of dCK (dCKm) specific for purine nucleosides based on the crystal structure of purine nucleoside bound deoxyguanosine kinase (dGKc) as the template. dCKm is essential for computer aided molecular design (CAMD) of novel anticancer and antiviral drugs that are based on purine nucleosides since these did not bind to dCKc in our docking experiments. The active site of dCKm was larger than that of dCKc and the amino acid (aa) residues of dCKm and dCKc, in particular Y86, Q97, D133, R104, R128, and E197, were not in identical positions. Comparative docking simulations of deoxycytidine (dC), cytidine (Cyd), AraC, CdA, deoxyadenosine (dA), and deoxyguanosine (dG) with dCKm and dCKc were carried out using the FlexX docking program. Only dC (pyrimidine nucleoside) docked into the active site of dCKc but not the purine nucleosides dG and dA. As expected, the active site of dCKm appeared to be more adapted to bind purine nucleosides than the pyrimidine nucleosides. While water molecules were essential for docking experiments using dCKc, the absence of water molecules in dCKm did not affect the ability to correctly dock various purine nucleosides.  相似文献   

14.
Uroporphyrinogen decarboxylase activity was measured in hemoglobin-free lysates from two patients with hepatoerythropoietic porphyria (HEP) and from 12 unrelated patients with familial porphyria cutanea tarda (PCT). In HEP patients, enzyme activities were 5% of normal, and familial studies clearly confirmed that patients with HEP are cases of homozygous PCT. Immunoreactive uroporphyrinogen decarboxylase was measured by developing a direct and noncompetitive enzyme immunoassay (EIA). For the 12 familial PCT patients, we found an immunoreactive protein decreased (51%) to the same extent as the catalytic activity (48%) [cross-reactive immunological material ( CRIM ) negative]. The children from the HEP family were also CRIM negative, contrasting with another HEP family previously described as CRIM positive; our data support the hypothesis of a heterogeneity in familial uroporphyrinogen decarboxylase deficiency.  相似文献   

15.
Since skin collagenase is required for initiation of the degradation of types I and III collagens, the major collagens of the human dermis, we examined its expression during embryonic and fetal development. When using skin fibroblasts cultured from human embryos and fetuses, immunoreactive collagenase concentrations were strongly correlated with estimated gestational age (p less than 0.001), with levels at 7-8 weeks of gestation that were about one-twentieth of those in the 29-week cell cultures. In crude culture medium, the apparent catalytic efficiency (activity per unit immunoreactive protein) was variable, an observation attributable in part to variable expression of a collagenase-inhibitory protein. Following chromatographic purification, four of ten fetal collagenases were found to have greater than or equal to 4-fold decrease in specific activity, suggesting that these particular fetal collagenases may be structurally and/or catalytically altered. Since the decreased levels of immunoreactive protein suggested that decreased enzyme synthesis was the major mechanism, we examined collagenase synthesis in a cell-free translation system. Here, we quantitated collagenase expression in the culture medium of intact cells prior to harvesting mRNA. Compared with the intact adult cells, the fetal cells had 3-17 times less collagenase activity in the medium, while in cell-free translation there was a 2- to 3-fold decrease in collagenase synthesis. These data suggest that decreased in vitro expression is correlated with decreased levels of translatable collagenase mRNA but that other factors, such as the collagenase inhibitor and altered specific activity of the enzyme, may be important in modulating collagenase activity.  相似文献   

16.
Mani RS  Usova EV  Cass CE  Eriksson S 《Biochemistry》2006,45(11):3534-3541
Human deoxycytidine kinase (dCK) phosphorylates both pyrimidine and purine deoxynucleosides, including numerous nucleoside analogue prodrugs. Energy transfer studies of transfer between Trp residues of dCK and the fluorescent probe N-(1-pyrene)maleimide (PM), which specifically labels Cys residues in proteins, were performed. Two of the six Cys residues in dCK were labeled, yielding a protein that was functionally active. We determined the average distances between PM-labeled Cys residues and Trp residues in dCK in the absence and presence of various pyrimidine and purine nucleoside analogues with the Trp residues as energy donors and PM-labeled Cys residues as acceptors. The transfer efficiency was determined from donor intensity quenching and the F?rster distance R(0) at which the efficiency of energy transfer is 50%, which was 19.90 A for dCK-PM. The average distance R between the Trp residues and the labeled Cys residues in dCK-PM was 18.50 A, and once substrates bound, this distance was reduced, demonstrating conformational changes. Several of the Cys residues of dCK were mutated to Ala, and the properties of the purified mutant proteins were studied. PM labeled a single Cys residue in Cys-185-Ala dCK, suggesting that one of the two Cys residues labeled in wild-type dCK was Cys 185. The distance between the single PM-labeled Cys residue and the Trp residues in Cys-185-Ala dCK was 20.75 A. Binding of nucleosides had no effect on the pyrene fluorescence of Cys-185-Ala dCK, indicating that the conformational changes observed upon substrate binding to wild-type dCK-PM involved the "lid region" of which Cys 185 is a part. The substrate specificity of Cys-185-Ala dCK was altered in that dAdo and UTP were better substrates for the mutant than for the wild-type enzyme.  相似文献   

17.
α-l-Fucosidase is a glycosidase involved in the degradation of fucoglycoconjugates and has a diagnostic significance because it has been described to be altered in several known diseases. However, in vitro studies on enzymatic activities may not reflect the real protein levels in tissues. This paper describes a simple method to quantify α-l-fucosidase protein levels in human crude extracts, combinding the slot-blot technique and a nonradioactive immunoassay. Taking advantage of the similarities in different mammalian fucosidases, a polyclonal antiserum was raised against commercial purified α-l-fucosidase from bovine kidney that cross-reacted with the human colon enzyme. The method is able to detect as little as 0.75 ng α-l-fucosidase. To illustrate the direct application of this technique, we analysed and quantified α-l-fucosidase protein levels in 18 human colon crude samples. This technique could prove useful in clinical pathology, allowing fast and accurate measurement of α-l-fucosidase in crude extracts.  相似文献   

18.
Several 1-deazapurine nucleosides were tested for their biological activity, anti-HIV-1, cytotoxicity and inhibition of adenosine deaminase (ADA). A2780 human ovarian cancer cells and the deoxycytidine kinase (dCK) deficient variant AG6000, used to determine whether dCK plays a role in their activation, showed a similar sensitivity to the analogs. This is in line with substrate specificity tests, which revealed a very low affinity of dCK.  相似文献   

19.
L-nucleoside analogs represent an important class of small molecules for treating both viral infections and cancers. These pro-drugs achieve pharmacological activity only after enzyme-catalyzed conversion to their tri-phosphorylated forms. Herein, we report the crystal structures of human deoxycytidine kinase (dCK) in complex with the L-nucleosides (-)-beta-2',3'-dideoxy-3'-thiacytidine (3TC)--an approved anti-human immunodeficiency virus (HIV) agent--and troxacitabine (TRO)--an experimental anti-neoplastic agent. The first step in activating these agents is catalyzed by dCK. Our studies reveal how dCK, which normally catalyzes phosphorylation of the natural D-nucleosides, can efficiently phosphorylate substrates with non-physiologic chirality. The capability of dCK to phosphorylate both D- and L-nucleosides and nucleoside analogs derives from structural properties of both the enzyme and the substrates themselves. First, the nucleoside-binding site tolerates substrates with different chiral configurations by maintaining virtually all of the protein-ligand interactions responsible for productive substrate positioning. Second, the pseudo-symmetry of nucleosides and nucleoside analogs in combination with their conformational flexibility allows the L- and D-enantiomeric forms to adopt similar shapes when bound to the enzyme. This is the first analysis of the structural basis for activation of L-nucleoside analogs, providing further impetus for discovery and clinical development of new agents in this molecular class.  相似文献   

20.
In crude extracts of adipose tissue the protein kinase dissociates slowly at 30 degrees into regulatory and catalytic subunits in the presence of 700 mug per ml of histone or 0.5 M NaCl. If the kinase is first dissociated by adding 10 muM adenosine 3':5'-monophosphate (cAMP), reassociation occurs instantaneously after removal of the cAMP by Sephadex G-25 chromatography. In contrast, in crude xtracts of heart, the protein kinase dissociates rapidly in the presence of 700 mug per ml of histone or 0.5 M NaCl and reassociates slowly after removal of cAMP. These differences are accounted for by the existence of two types of protein kinases in these tissues, referred to as types I and II. DEAE-cellulose chromatography of extracts of adipose tissue produces only one peak of cAMP-dependent protein kinase activity (type II) which elutes between 0.15 and 0.25 M NaCl. Similar chromatography of heart extracts resolves enzyme activity into two peaks; a type I enzyme which elutes between 0.05 and 0.1 M and predominates (greater than 75% of total activity), and a type II enzyme which elutes between 0.15 and 0.25 M NaCl. The dissociation properties of the types I and II enzymes from heart and adipose tissue are retained after partial purification by DEAE-cellulose and Sepharose 6B chromatography. Rechromatography of the separated peaks of the cardiac enzymes does not change the elution pattern. Sucrose density gradient centrifugation and gel filtration studies indicate that the molecular weights of these enzymes are very similar. The type II enzyme isolated by DEAE-cellulose chromatography of heart extracts resembles the adipose tissue enzyme, i.e. it undergoes slow dissociation at 30 degrees in the presence of histone or 0.5 M NaCl. The adipose tissue kinase and the heart type II kinase are not identical, however, since they do not elute at exactly the same point on DEAE-cellulose columns. A survey of several tissues indicates the presence of type I and II protein kinases similar to the enzymes in adipose tissue and heart as determined by DEAE-cellulose chromatography of crude extracts and by dissociation of the enzymes with histone. The presence of MgATP prevents dissociation of type I enzyme from heart by 0.5 M NaCl or histone. The profile of the enzyme on DEAE-cellulose, however, is not changed...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号