首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability to control conformational properties of polypeptides in their films is of considerable interest for many possible applications of these materials. By rational choice of the solvent system for film fabrication, control over the conformation of the main chain, the intermolecular hydrogen bonding in the side chain is easily achieved in poly(alpha-L-glutamic acid) (PLGA) thin films. The spectral data from circular dichromism (CD), FT-IR, and solid state (13)C NMR spectroscopies suggest that the beta-sheet conformation is dominant in PLGA films cast from trifluoroacetic acid (TFA) solution, whereas the right-handed alpha-helix is dominant in those cast from pyridine or DMF solution. In comparison with films cast from TFA solutions, the films fabricated from pyridine or DMF solutions exhibit strong intermolecular hydrogen bondings between -COOH groups and have a more ordered arrangement of side chains. Moreover, the extent of alpha-helix conformation of the PLGA backbone in films cast from pyridine or DMF solution is several times higher than that observed in the PLGA powder precipitated from aqueous solution at pH 4. All spectroscopic studies indicate clearly that the solvents (used for casting these films) play a crucial role in directing the organization of PLGA in these thin films.  相似文献   

2.
We report the fabrication of high performance organic solar cells by spray‐coating the photoactive layer in air. The photovoltaic blends consist of a blend of carbazole and benzothiadiazole based donor–acceptor copolymers and the fullerene derivative PC70BM. Here, we formulate a number of photovoltaic inks using a range of solvent systems that we show can all be deposited by spray casting. We use a range of techniques to characterize the structure of such films, and show that spray‐cast films have comparable surface roughness to spin‐cast films and that vertical stratification that occurs during film drying reduces the concentration of PCBM towards the underlying PEDOT:PSS interface. We also show that the active layer thickness and the drying kinetics can be tuned through control of the substrate temperature. High power conversion efficiencies of 4.3%, 4.5% and 4.6% were obtained for solar cells made from a blend of PC70BM with the carbazole‐based co‐polymers PCDTBT, P2 and P1. By applying a low temperature anneal after the deposition of the cathode, the efficiency of spray‐cast solar‐cells based on a P2:PC70BM blend is increased to 5.0%. Spray coating holds significant promise as a technique capable of fabricating large‐area, high performance organic solar cells in air.  相似文献   

3.
The objective of this work was to investigate the effect of microbial transglutaminase (MTGase) treatment on the properties and microstructures of soy protein isolate (SPI) films cast with 0.6 plasticizer per SPI (gg(-1)) of glycerol, sorbitol and 1:1 mixture of glycerol and sorbitol, respectively. Tensile strength (TS), elongation at break (EB), water vapor transmission rate (WVTR) or water vapor permeability (WVP), moisture content (MC), total soluble matter (TSM), lipid barrier property and surface hydrophobicity of control and MTGase-treated films were evaluated after conditioning film specimens at 25 degrees C and 50% relative humidity (RH) for 48 h. The treatment by 4 units per SPI (Ug(-1)) of MTGase increased the TS and surface hydrophobicity by 10-20% and 17-56%, respectively, and simultaneously significantly (P< or =0.05) decreased the E, MC and transparency. The WVTR or TSM of SPI films seemed to be not significantly affected by enzymatic treatment (P>0.05). The MTGase treatment also slowed down the moisture loss rate of film-forming solutions with various plasticizers during the drying process, which was consistent with the increase of surface hydrophobicity of SPI films. Microstructural analyses indicated that the MTGase-treated films of SPI had a rougher surface and more homogeneous or compact cross-section compared to the controls. These results suggested that the MTGase treatment of film-forming solutions of SPI prior to casting could greatly modify the properties and microstructures of SPI films.  相似文献   

4.
Spray‐coating is a versatile coating technique that can be used to deposit functional films over large areas at speed. Here, spray‐coating is used to fabricate inverted perovskite solar cell devices in which all of the solution‐processible layers (PEDOT:PSS, perovskite, and PCBM) are deposited by ultrasonic spray‐casting in air. Using such techniques, all‐spray‐cast devices having a champion power conversion efficiency (PCE) of 9.9% are fabricated. Such performance compares favorably with reference devices spin‐cast under a nitrogen atmosphere that has a champion PCE of 12.8%. Losses in device efficiency are ascribed to lower surface coverage and reduced uniformity of the spray‐cast perovskite layer.  相似文献   

5.
He C  Sun J  Zhao T  Hong Z  Zhuang X  Chen X  Jing X 《Biomacromolecules》2006,7(1):252-258
The crystallization behaviors of the poly(ethylene glycol)-poly(epsilon-caprolactone) diblock copolymer with the PEG weight fraction of 0.50 (PEG(50)-PCL(50)) was studied by DSC, WAXD, SAXS, and FTIR. A superposed melting point at 58.5 degrees C and a superposed crystallization temperature at 35.4 degrees C were obtained from the DSC profiles running at 10 degrees C/min, whereas the temperature-dependent FTIR measurements during cooling from the melt at 0.2 degrees C/min showed that the PCL crystals formed starting at 48 degrees C while the PEG crystals started at 45 degrees C. The PEG and PCL blocks of the copolymer crystallized separately and formed alternating lamella regions according to the WAXD and SAXS results. The crystal growth of the diblock copolymer was observed by polarized optical microscope (POM). An interesting morphology of the concentric spherulites developed through a unique crystallization behavior. The concentric spherulites were analyzed by in situ microbeam FTIR, and it was determined that the morphologies of the inner and outer portions were mainly determined by the PCL and PEG spherulites, respectively. However, the compositions of the inner and outer portions were equal in the analysis by microbeam FTIR.  相似文献   

6.
Blends of poly (l-lactide) (PLLA) and poly (ε-caprolactone) (PCL) with and without paclitaxel were prepared via solution casting. DSC analysis as well as SEM analysis of the PLLA/PCL blend solution cast films showed that these blends are all phase separated.%PLLA crystallinity was found to increase with increasing PCL content (up till 15 wt.%). The PCL phase is found to homogeneously disperse in the PLLA matrix as spherical domains where the pore diameters of the PCL domains significantly increased with increasing PCL content. The degradation profiles matched with the slower degrading component PCL rather than PLLA and also increasing PCL content of the blends increased the degradation rate relatively. The increased crystallinity of the PLLA phase with increasing PCL contents confirmed that the degradation occurred through PCL phase. Cell proliferation on PLLA/PCL blends showed that all these blends were suitable for the support of cellular growth. Apoptosis assay with the paclitaxel-loaded PLLA/PCL blends showed an increase in cell death throughout 7 days of incubation where the cell death was increased with increasing PCL contents. This was attributed to the faster release of paclitaxel which was at least partially affected by the faster degradation rate at increasing PCL contents. The paclitaxel release was shown to be degradation controlled in the initial stages followed by a faster diffusion-controlled release in the later stages. These polymer blends were found to be very suitable paclitaxel release agents for which the paclitaxel release times can be altered with the composition of the blend and the film thickness.  相似文献   

7.
This study provides new evidence on a long postulated mechanism of phase separation in a polymer/fullerene mixture during spin coating for controlled nanodomains of oriented crystallization and heterojunctions that favor applications in polymer solar cells (PSCs). The simultaneous nanoscale phase separation and crystallization during spin coating of the mixture are traced using in situ grazing‐incidence small‐ and wide‐angle X‐ray scattering. Combined with the complimentary results from time‐resolved optical reflectance spectroscopy, transient stratification of the liquid film during the transition from the flow‐ to evaporation‐dominated stage of spin coating is disclosed; the vertical liquid–liquid phase separation incubates a supersaturated skin layer where fullerene aggregation and polymer crystallization occur and develop concomitantly. Shortly after the transition, the near‐surface structural development is largely pinned, leaving the solvent‐rich bottom layer to diminish via solvent diffusion and evaporation through the thickened skin layer that finally condenses into the spin‐coated film upon solvent depletion. The shear‐enhanced surface layering and supersaturation for the surface‐down nanostructural development are unexpected in all the existing structural models for PSCs. The mechanistic understanding of coupled vertical phase separation and local nanosegregation provides new insights and alternative strategy to the morphology control of spin‐cast PSC active layers in particular and various solution‐processed polymeric films in general.  相似文献   

8.
He C  Sun J  Ma J  Chen X  Jing X 《Biomacromolecules》2006,7(12):3482-3489
The crystallization behavior and morphology of the crystalline-crystalline poly(ethylene oxide)-poly(epsilon-caprolactone) diblock copolymer (PEO-b-PCL) was studied by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR), small-angle X-ray scattering (SAXS), and hot-stage polarized optical microscope (POM). The mutual effects between the PEO and PCL blocks were significant, leading to the obvious composition dependence of the crystallization behavior and morphology of PEO-b-PCL. In this study, the PEO block length was fixed (Mn = 5000) and the weight ratio of PCL/PEO was tailored by changing the PCL block length. Both blocks could crystallize in PEO-b-PCL with the PCL weight fraction (WFPCL) of 0.23-0.87. For the sample with the WFPCL of 0.36 or less, the PEO block crystallized first, resulting in the obvious confinement of the PCL block and vice versa for the sample with WFPCL of 0.43 or more. With increasing WFPCL, the crystallinity of PEO reduced continuously while the variation of the PCL crystallinity exhibited a maximum. The long period of PEO-b-PCL increased with increasing WFPCL from 0.16 to 0.50 but then decreased with the further increase of WFPCL due to the interaction of the respective variation of the thicknesses of the PEO and PCL crystalline lamellae. Only the PEO spherulites were observed in samples with WFPCL of 0.16-0.36 by POM, in contrast to only the PCL spherulites in samples with WFPCL of 0.56-0.87. For samples with WFPCL of 0.43 and 0.50, a unique concentric spherulite was observed. The morphology of the inner and outer portions of the concentric spherulites was determined by the PCL and PEO spherulites, respectively. The growth rate of the PEO spherulites reduced rapidly with increasing WFPCL from 0 to 0.50. However, when increasing WFPCL from 0.43 to 0.87, the variation of the growth rate of the PCL spherulites exhibited a maximum rather than a monotonic change.  相似文献   

9.
The main objective of this study was to develop a local, oral mucoadhesive metronidazole benzoate (MET) delivery system that can be applied and removed by the patient for the treatment of periodontal diseases. Mucoadhesive micromatricial chitosan/poly(ε-caprolactone) (CH/PCL) films and chitosan films were prepared. thermal behavior, morphology, and particle size measurements were used to evaluate the prepared films. The effect of different molar masses of CH and different ratios of medium Mwt molar mass chitosan (MCH):PCL on water absorption, in vitro bioadhesion, mechanical properties, and in vitro drug release was examined. In vivo performance of the selected formulation was also evaluated. Differential scanning calorimetry examination revealed that MET existed mainly in amorphous form. Under microscopic examination, PCL microparticles were homogeneously dispersed in the films. The use of different molar masses of CH and different ratios of (MCH):PCL affected the size of the entrapped particles. Addition of PCL significantly decreased percentage water uptake and bioadhesion force compared with pure CH film. With regard to mechanical properties, the 2-layered film containing 1∶0.625 MCH:PCL had the best tensile properties. At fixed CH:PCL ratio (1∶1.25), the slowest drug release was obtained from films containing high molar mass CH. On the other hand, the 2-layered film that consisted of 1∶0.625 MCH:PCL had the slowest MET release. In vivo evaluation of the selected film revealed that metronidazole concentration in saliva over 6 hours ranged from 5 to 15 μg/mL, which was within and higher than the reported range of minimum inhibitory concentration for metronidazole. A significant in vitro/in vivo correlation under the adopted experimental conditions was obtained. Published: September 14, 2007  相似文献   

10.
Biodegradable polyesters such as poly(epsilon-caprolactone) (PCL) have a number of biomedical applications; however, their usage is often limited by a lack of biological functionality. In this paper, a PCL-based polymer containing pendent groups activated by 4-nitrophenyl chloroformate (NPC) and reactive toward primary amines has been cast into thin films. The reactivity of the films toward poly(l-lysine) and the cell adhesion peptide, GRGDS, was assessed, and their cell adhesive capabilities were characterized. ATR-FTIR analysis found that NPC functional groups were present on the surface of the cast film, and the synthesis, conjugation, and visualization of a fluorescent molecule on these films further demonstrated the success of this functionalization methodology. The immersion of these films into a solution of either poly(l-lysine) (PLL) or GRGDS in PBS (pH 7.4) and subsequent 3T3 fibroblast adhesion studies demonstrated significant improvement in cell adhesion and spreading over films cast from unmodified PCL. This investigation has shown that this novel NPC-containing polymer can be utilized in many applications where increased cellular adhesion is required, or the coupling of specific molecules to polymer surfaces is of interest.  相似文献   

11.
He C  Sun J  Deng C  Zhao T  Deng M  Chen X  Jing X 《Biomacromolecules》2004,5(5):2042-2047
Poly(ethylene glycol)-poly(epsilon-caprolactone) diblock copolymers PEG-PCL were synthesized by ring-opening polymerization of epsilon-caprolactone using monomethoxy poly(ethylene glycol) as the macroinitiator and calcium ammoniate as the catalyst. Obvious mutual influence between PEG and PCL crystallization was studied by altering the relative block length. Fixing the length of the PEG block (Mn = 5000) and increasing the length of the PCL block, the crystallization temperature of the PCL block rose gradually from 1 to about 35 degrees C while that of the PEG block dropped from 36 to -6.6 degrees C. Meanwhile, the melting temperature of the PCL block went up from 30 to 60 degrees C, while that of the PEG block declined from 60 to 41 degrees C. If the PCL block was longer than the PEG block, the former would crystallize first when cooling from a molten state and led to obviously imperfect crystallization of PEG and vice versa. And they both crystallized at the same temperature, if their weight fractions were equal. We found that the PEG block could still crystallize at -6.6 degrees C even when its weight fraction is only 14%. A unique morphology of concentric spherulites was observed for PEG5000-PCL5000. According to their morphology and real-time growth rates, it is concluded that the central and outer sections in the concentric spherulites were PCL and PEG, respectively, and during the formation of the concentric spherulite, the PEG crystallized quickly from the free space of the PCL crystal at the earlier stage, followed by outgrowing from the PCL spherulites in the direction of right angles to the circle boundaries until the entire area was occupied.  相似文献   

12.
Hydroxypropylated and oxidised potato starch (HONPS) was used together with glycerol and water to produce thermoplastic starch. The amount of glycerol was kept constant at 22 parts by weight per 100 parts of dry starch. The thermoplastic starch was converted into films/sheets using three different processing techniques; casting, compression moulding and film blowing. The last two methods represent typical thermoplastic conversion techniques requiring elevated processing temperatures. By means of size-exclusion chromatography, it was found that compression moulding and film blowing led to some degradation of high-molecular weight amylopectin as well as of high-molecular weight amylose-like molecules. The degradation was significantly less pronounced for the cast films. The morphology of the specimens was quite complex and phase separations on different levels were identified. In the cast films and, to a lesser extent, in the compression-moulded specimens, a fine network structure could be distinguished. Such a structure could however not be ascertained in the film-blown material and this is discussed in terms of the thermo-mechanical treatment of the starch materials.  相似文献   

13.
The addition of polystyrene (PS), a typical insulator, is empirically shown to increase the power conversion efficiencies (PCEs) of a solution‐deposited bulk heterojunction (BHJ) molecular blend film used in solar cell fabrication: p‐DTS(FBTTh2)2/PC71BM. The performance is further improved by small quantities of diiodooctane (DIO), an established solvent additive. In this study, how the addition of PS and DIO affects the film formation of this bulk heterojunction blend film are probed via in situ monitoring of absorbance, thickness, and crystallinity. PS and DIO additives are shown to promote donor crystallite formation on different time scales and through different mechanisms. PS‐containing films retain chlorobenzene solvent, extending evaporation time and promoting phase separation earlier in the casting process. This extended time is insufficient to attain the morphology for optimal PCE results before the film sets. Here is where the presence of DIO comes into play: its low vapor pressure further extends the time scale of film evolution and allows for crystalline rearrangement of the donor phase long after casting, ultimately leading to the best BHJ organization.  相似文献   

14.
Cross-linked high amylose starch cast films were prepared to study the effect of cross-linking degree on various properties in normal environmental conditions. Mechanical tensile properties (Young's modulus, elongation at break, tensile strength), water vapour transmission rate (WVTR) and oxygen permeability coefficients of cast films were determined as a function of cross-linking degree and percentage of free humidity. Cross-linking degree and degree of crystallinity are closely related and seem to have non-negligible opposite effect on the properties of interest. By using increased amounts of cross-linking agents, the effect of cross-linking degree tends to reduce the degree of crystallinity modulating thus mechanical properties, water vapour permeability and oxygen permeability coefficients. Yield strength, tensile strength at break, WVTR versus cross-linking degree showed a non-monotonous behaviour. Maximal values for these properties were reached for moderate cross-linking degree. Optimal crystalline/amorphous ratio in the films may induce interactions and balanced effects, which would be responsible for the non-linear behaviour of some of the investigated properties. By cross-linking with epichlorohydrin in the range 1–10 g crosslinker/100 g polymer, the mechanical properties of films are still related to water content and water vapour permeability remains high compared to some synthetic polymeric materials.  相似文献   

15.
《Chirality》2017,29(3-4):107-114
Conjugated homopolymer poly(9,9‐bis(3‐((S )‐2‐methylbutylpropanoate))fluorene) (PSF) with chiral pendants was synthesized and characterized. Dissolution experiments show that PSF is well dissolved in racemic limonene at high temperature and begins aggregating upon sequential cooling treatment. The corresponding assemblies were transferred to quartz plate by the spin‐coating method. Comparably, film casting from chloroform solution was also prepared. Upon annealing thermal treatments, these PSF films exhibited perfect mirror circular dichroism (CD) Cotton effects and dissymmetry ratios. Optical absorption spectroscopy (UV‐vis), CD, and fluorescence spectroscopy results reveal that chiral side chains successfully induced M ‐ and P ‐helical structures in aggregates and films, and this significant difference was ascribed to their differential supramolecular conformations.  相似文献   

16.
A compliant film was prepared by chemical crosslinking of fibroin from silk fiber of wild silkworm, Antheraea pernyi. The silk fiber was dissolved in concentrated aqueous lithium thiocyanate and desalinated by dialysis. The film was cast from the regenerated aqueous solution, and crosslinked by polyethylene glycol diglycidyl ether (PEG-DE). This film showed high water resistively while maintaining random coil and -helix structure, unlike films prepared by organic solvent treatment that causes β-sheet formation. The films containing about 20 wt.% crosslinker were remarkably compliant and tenacious. These features, combined with the living-cell affinity of the wild silkworm fibroin, are expected to be useful in biomedical applications.  相似文献   

17.
Shogren R 《Biomacromolecules》2007,8(11):3641-3645
The effect of orientation on the properties of amylose and starch films was studied in order to determine if film strength, flexibility, and water resistance could be improved. Potato amylose and high (70%) amylose corn starch were peracetylated, cast into films, stretched in hot glycerol 1-6 times the original length, and deacetylated. Molecular orientation of potato amylose films was much higher than for high-amylose corn starch films as determined by optical birefringence. For potato amylose films, orientation resulted in large increases in tensile strength and elongation but little change in modulus. For high-amylose corn starch films, tensile strength and modulus did not change with draw ratio but elongation to break increased from about 8% to 27% as draw ratio increased from 1 to 5. Scanning electron micrographs revealed many small crazes in the drawn starch films, suggesting that the improved film toughness was due to energy dissipation during deformation of the crazes. Annealing of drawn films at 100% humidity resulted in partial crystallization and improved wet strength.  相似文献   

18.
Polymer:fullerene blends were screened in a combinatorial approach using inkjet printing thin film libraries for photovoltaic devices. The application of inkjet printing enabled a fast and simple experimental workflow from film preparation to the study of structure‐property‐relationships with a very high material efficiency. Inkjet printing requires less material for the preparation of thin film libraries in comparison to other dispensing techniques, like spin‐coating. Two polymers (PCPDTBT, PSBTBT) and two fullerene derivatives (mono‐PCBM, bis‐PCBM) were investigated in various blend ratios, concentrations, solvent ratios, and film thicknesses. Morphological and optical properties of the inkjet printed films were investigated and compared with spin‐coated films. This study shows the principle of an experimental setup from solution preparation to film characterization for the combinatorial investigation of large polymer:fullerene libraries.  相似文献   

19.
Perovskite materials due to their exceptional photophysical properties are beginning to dominate the field of thin‐film optoelectronic devices. However, one of the primary challenges is the processing‐dependent variability in the properties, thus making it imperative to understand the origin of such variations. Here, it is discovered that the precursor solution aging time before it is cast into a thin film, is a subtle but a very important factor that dramatically affects the overall thin‐film formation and crystallinity and therein factors such as grain growth, phase purity, surface uniformity, trap state density, and overall solar cell performance. It is shown that progressive aging of the precursor promotes efficient formation of larger seeds after the fast nucleation of a large density of small seeds. The hot‐casting method then leads to the growth of large grains in uniform thin‐films with excellent crystallinity validated using scanning microscopy images and X‐ray diffraction patterns. The high‐quality films cast from aged solution is ideal for thin‐film photovoltaic device fabrication with reduced shunt current and good charge transport. This observation is a significant step toward achieving highly crystalline thin‐films with reliability in device performance and establishes the subtle but dramatic effect of solution aging before fabricating perovskite thin‐films.  相似文献   

20.
Micrometer and submicrometer diameter fibers of recombinant dragline spider silk analogues, synthesized via protein engineering strategies, have been electrospun from 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and compared with cast films via Raman spectroscopy in order to assess changes in protein conformation that may result from the electrospinning process. Although the solvent casting process was shown to result in predominantly beta-sheet conformation similar to that observed in the bulk, the electrospinning process causes a major change in conformation from beta-sheet to alpha-helix. A possible mechanism involving electric field-induced stabilization of alpha-helical segments in HFIP solution during the electrospinning process is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号