首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The cells of Synechocystis sp. PCC 6803 were subjected under photoinhibitory irradiation (600 micromolm(-2)s(-1)) at various temperatures (20-40 degrees C) to study in vivo quality control of photosystem II (PSII). The protease biogenesis and its consequences on photosynthetic efficiency (chlorophyll fluorescence ratio Fv/Fm) of the PSII, D1 degradation and repair were monitored during illumination and darkness. The loss in Fv/Fm value and degradation of D1 protein occurred not only under high light exposure, but also continued when the cells were subjected under dark restoration process after high light exposure. No loss in Fv/Fm value or D1 degradation occurred during recovery under growth/low light (30 micromol m(-2) s(-1)). Further, it helped the resynthesis of new D1 protein, essential to sustain quality control of PSII. In vivo triggering of D1 protein required high light exposure to switch-on the protease biosynthesis to maintain protease pool which induced temperature-dependent enzymatic proteolysis of photodamaged D1 protein during photoinhition and dark incubation. Our findings suggested the involvement and overexpression of a membrane-bound FtsH protease during high light exposure which caused degradation of D1 protein, strictly regulated by high temperature (30-40 degrees C). However, lower temperature (20 degrees C) prevented further loss of photoinhibited PSII efficiency in vivo and also retarded temperature-dependent proteolytic process of D1 degradation.  相似文献   

2.
3.
Singlet oxygen, generated during photosynthesis, is a strong oxidant that can, potentially, damage various molecules of biological importance. We investigated the effects in vivo of singlet oxygen on the photodamage to photosystem II (PSII) in the cyanobacterium Synechocystis sp. PCC 6803. Increases in intracellular concentrations of singlet oxygen, caused by the presence of photosensitizers, such as rose bengal and ethyl eosin, stimulated the apparent photodamage to PSII. However, actual photodamage to PSII, as assessed in the presence of chloramphenicol, was unaffected by the production of singlet oxygen. These observations suggest that singlet oxygen produced by added photosensitizers acts by inhibiting the repair of photodamaged PSII. Labeling of proteins in vivo revealed that singlet oxygen inhibited the synthesis of proteins de novo and, in particular, the synthesis of the D1 protein. Northern blotting analysis indicated that the accumulation of psbA mRNAs, which encode the D1 protein, was unaffected by the production of singlet oxygen. Subcellular localization of polysomes with bound psbA mRNAs suggested that the primary target of singlet oxygen might be the elongation step of translation.  相似文献   

4.
The selective replacement of photodamaged D1 protein within the multisubunit photosystem II (PSII) complex is an important photoprotective mechanism in chloroplasts and cyanobacteria. FtsH proteases are involved at an early stage of D1 degradation, but it remains unclear how the damaged D1 subunit is recognized, degraded, and replaced. To test the role of the N-terminal region of D1 in PSII biogenesis and repair, we have constructed mutants of the cyanobacterium Synechocystis sp PCC 6803 that are truncated at the exposed N terminus. Removal of 5 or 10 residues blocked D1 synthesis, as assessed in radiolabeling experiments, whereas removal of 20 residues restored the ability to assemble oxygen-evolving dimeric PSII complexes but inhibited PSII repair at the level of D1 degradation. Overall, our results identify an important physiological role for the exposed N-terminal tail of D1 at an early step in selective D1 degradation. This finding has important implications for the recognition of damaged D1 and its synchronized replacement by a newly synthesized subunit.  相似文献   

5.
Meetam M  Keren N  Ohad I  Pakrasi HB 《Plant physiology》1999,121(4):1267-1272
A tetra-manganese cluster in the photosystem II (PSII) pigment-protein complex plays a critical role in the photosynthetic oxygen evolution process. PsbY, a small membrane-spanning polypeptide, has recently been suggested to provide a ligand for manganese in PSII (A.E. Gau, H.H. Thole, A. Sokolenko, L. Altschmied, R.G. Herrmann, E.K. Pistorius [1998] Mol Gen Genet 260: 56-68). We have constructed a mutant strain of the cyanobacterium Synechocystis sp. PCC 6803 with an inactivated psbY gene (sml0007). Southern-blot and polymerase chain reaction analysis showed that the mutant had completely segregated. However, the DeltapsbY mutant cells grew normally under photoautotrophic conditions. Moreover, growth of the wild-type and mutant cells were similar under high-light photoinhibition conditions, as well as in media without any added manganese, calcium, or chloride, three required inorganic cofactors for the oxygen-evolving complex of PSII. Analysis of steady-state and flash-induced oxygen evolution, fluorescence induction, and decay kinetics, and thermoluminescence profiles demonstrated that the DeltapsbY mutant cells have normal photosynthetic activities. We conclude that the PsbY protein in Synechocystis 6803 is not essential for oxygenic photosynthesis and does not provide an important binding site for manganese in the oxygen-evolving complex of PSII.  相似文献   

6.
The involvement of the PsbI protein in the assembly and repair of the photosystem II (PSII) complex has been studied in the cyanobacterium Synechocystis sp. PCC 6803. Analysis of PSII complexes in the wild-type strain showed that the PsbI protein was present in dimeric and monomeric core complexes, core complexes lacking CP43, and in reaction center complexes containing D1, D2, and cytochrome b-559. In addition, immunoprecipitation experiments and the use of a histidine-tagged derivative of PsbI have revealed the presence in the thylakoid membrane of assembly complexes containing PsbI and either the precursor or mature forms of D1. Analysis of PSII assembly in the psbI deletion mutant and in strains lacking PsbI together with other PSII subunits showed that PsbI was not required for formation of PSII reaction center complexes or core complexes, although levels of unassembled D1 were reduced in its absence. However, loss of PsbI led to a dramatic destabilization of CP43 binding within monomeric and dimeric PSII core complexes. Despite the close structural relationship between D1 and PsbI in the PSII complex, PsbI turned over much slower than D1, whereas high light-induced turnover of D1 was accelerated in the absence of PsbI. Overall, our results suggest that PsbI is an early assembly partner for D1 and that it plays a functional role in stabilizing the binding of CP43 in the PSII holoenzyme.  相似文献   

7.
The photosystem II (PSII) reaction center complex coordinates a cluster of Mn atoms that are involved in the accumulation of oxidizing equivalents generated by light-induced charge separations within the intrinsic portion of the PSII complex. A 33-kDa extrinsic protein, termed the Mn-stabilizing protein (MSP), has been implicated in the stabilization of two of the four Mn atoms of the cluster, yet the precise role of this protein in O2 evolution remains to be elucidated. Here we describe the construction of a mutant of the cyanobacterium Synechocystis sp. PCC6803 in which the entire gene encoding MSP has been deleted. Northern and immunoblot analyses indicate that other PSII proteins are expressed and accumulated, despite the absence of MSP. Fluorescence emission spectra at 77 K indicate PSII assembles in the mutant, but that the binding of MSP is required for the normal fluorescence characteristics of the PSII complex, and suggest a specific interaction between MSP and CP47. Fluorescence induction measurements indicate a reduced rate of forward electron transport to the primary electron donor, P680, in the mutant. It is concluded that in contrast to previous reports, MSP is not required for the assembly of active PSII complexes nor is it essential for H2O-splitting activity in vivo.  相似文献   

8.
《BBA》2022,1863(1):148507
Photosynthetic electron transfer comprises a series of light-induced redox reactions catalysed by multiprotein machinery in the thylakoid. These protein complexes possess cofactors susceptible to redox modifications by reactive small molecules. The gaseous radical nitric oxide (NO), a key signalling molecule in green algae and plants, has earlier been shown to bind to Photosystem (PS) II and obstruct electron transfer in plants. The effects of NO on cyanobacterial bioenergetics however, have long remained obscure. In this study, we exposed the model cyanobacterium Synechocystis sp. PCC 6803 to NO under anoxic conditions and followed changes in whole-cell fluorescence and oxidoreduction of P700 in vivo. Our results demonstrate that NO blocks photosynthetic electron transfer in cells by repressing PSII, PSI, and likely the NDH dehydrogenase-like complex 1 (NDH-1). We propose that iron?sulfur clusters of NDH-1 complex may be affected by NO to such an extent that ferredoxin-derived electron injection to the plastoquinone pool, and thus cyclic electron transfer, may be inhibited. These findings reveal the profound effects of NO on Synechocystis cells and demonstrate the importance of controlled NO homeostasis in cyanobacteria.  相似文献   

9.
10.
In order to investigate the metabolic importance of glycine decarboxylase (GDC) in cyanobacteria, mutants were generated defective in the genes encoding GDC subunits and the serine hydroxymethyl-transferase (SHMT). It was possible to mutate the genes for GDC subunits P, T, or H protein in the cyanobacterial model strain Synechocystis sp. PCC 6803, indicating that GDC is not necessary for cell viability under standard conditions. In contrast, the SHMT coding gene was found to be essential. Almost no changes in growth, pigmentation, or photosynthesis were detected in the GDC subunit mutants, regardless of whether or not they were cultivated at ambient or high CO2 concentrations. The mutation of GDC led to an increased glycine/serine ratio in the mutant cells. Furthermore, supplementation of the medium with low glycine concentrations was toxic for the mutants but not for wild type cells. Conditions stimulating photorespiration in plants, such as low CO2 concentrations, did not induce but decrease the expression of the GDC and SHMT genes in Synechocystis. It appears that, in contrast to heterotrophic bacteria and plants, GDC is dispensable for Synechocystis and possibly other cyanobacteria.  相似文献   

11.
We characterized the photosynthetic properties of the pmgA mutant of Synechocystis PCC 6803, which cannot change its photosystem stoichiometry under a high-light condition (200 micromol x m(-2) x s(-1)), in order to clarify the physiological significance of the regulation of photosystem stoichiometry. We found that (1) PSII activity was inhibited more in wild-type cells on the first day under the high-light conditions than in mutant cells. (2) The growth of the mutants following the initial imposition of high light was faster than that of wild-type cells. (3) However, growth was severely inhibited in the mutants after the third day of exposure to high light. (4) The growth inhibition in the mutants under the extended high-light conditions was reversed by the addition of sublethal concentrations of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), which seemed to mimic photoinhibition of PSII. These results suggest that the main role of adjusting the photosystem stoichiometry with respect to light intensity is not to maintain efficient photosynthesis, but to down regulate electron transfer. Failure to down regulate electron flow leads to cell death under prolonged exposure to high light in this cyanobacterium.  相似文献   

12.
13.
14.
15.
Cells of Synechocystis sp. PCC 6803 lacking photosystem I (PSI-less) and containing only photosystem II (PSII) or lacking both photosystems I and II (PSI/PSII-less) were compared to wild type (WT) cells to investigate the role of the photosystems in the architecture, structure, and number of thylakoid membranes. All cells were grown at 0.5μmol photons m(-2)s(-1). The lumen of the thylakoid membranes of the WT cells grown at this low light intensity were inflated compared to cells grown at higher light intensity. Tubular as well as sheet-like thylakoid membranes were found in the PSI-less strain at all stages of development with organized regular arrays of phycobilisomes on the surface of the thylakoid membranes. Tubular structures were also found in the PSI/PSII-less strain, but these were smaller in diameter to those found in the PSI-less strain with what appeared to be a different internal structure and were less common. There were fewer and smaller thylakoid membrane sheets in the double mutant and the phycobilisomes were found on the surface in more disordered arrays. These differences in thylakoid membrane structure most likely reflect the altered composition of photosynthetic particles and distribution of other integral membrane proteins and their interaction with the lipid bilayer. These results suggest an important role for the presence of PSII in the formation of the highly ordered tubular structures.  相似文献   

16.
The cyanobacterial small CAB-like proteins (SCPs) are single-helix membrane proteins mostly associated with the photosystem II (PSII) complex that accumulate under stress conditions. Their function is still ambiguous although they are assumed to regulate chlorophyll (Chl) biosynthesis and/or to protect PSII against oxidative damage. In this study, the effect of SCPs on the PSII-specific light-induced damage and generation of singlet oxygen ((1)O(2)) was assessed in the strains of the cyanobacterium Synechocystis sp. PCC 6803 lacking PSI (PSI-less strain) or lacking PSI together with all SCPs (PSI-less/scpABCDE(-) strain). The light-induced oxidative modifications of the PSII D1 protein reflected by a mobility shift of the D1 protein and by generation of a D1-cytochrome b-559 adduct were more pronounced in the PSI-less/scpABCDE(-) strain. This increased protein oxidation correlated with a faster formation of (1)O(2) as detected by the green fluorescence of Singlet Oxygen Sensor Green assessed by a laser confocal scanning microscopy and by electron paramagnetic resonance spin-trapping technique using 2, 2, 6, 6-tetramethyl-4-piperidone (TEMPD) as a spin trap. In contrast, the formation of hydroxyl radicals was similar in both strains. Our results show that SCPs prevent (1)O(2) formation during PSII damage, most probably by the binding of free Chl released from the damaged PSII complexes.  相似文献   

17.
The Synechocystis sp. strain PCC 6803, which has a T192H mutation in the D2 protein of photosystem II, is an obligate photoheterotroph due to the lack of assembled photosystem II complexes. A secondary mutant, Rg2, has been selected that retains the T192H mutation but is able to grow photoautotrophically. Restoration of photoautotrophic growth in this mutant was caused by early termination at position 294 in the Slr2013 protein. The T192H mutant with truncated Slr2013 forms fully functional photosystem II reaction centers that differ from wild-type reaction centers only by a 30% higher rate of charge recombination between the primary electron acceptor, QA-, and the donor side and by a reduced stability of the oxidized form of the redox-active Tyr residue, YD, in the D2 protein. This suggests that the T192H mutation itself did not directly affect electron transfer components, but rather affected protein folding and/or stable assembly of photosystem II, and that Slr2013 is involved in the folding of the D2 protein and the assembly of photosystem II. Besides participation in photosystem II assembly, Slr2013 plays a critical role in the cell, because the corresponding gene cannot be deleted completely under conditions in which photosystem II is dispensable. Truncation of Slr2013 by itself does not affect photosynthetic activity of Synechocystis sp. strain PCC 6803. Slr2013 is annotated in CyanoBase as a hypothetical protein and shares a DUF58 family signature with other hypothetical proteins of unknown function. Genes for close homologues of Slr2013 are found in other cyanobacteria (Nostoc punctiforme, Anabaena sp. strain PCC 7120, and Thermosynechococcus elongatus BP-1), and apparent orthologs of this protein are found in Eubacteria and Archaea, but not in eukaryotes. We suggest that Slr2013 regulates functional assembly of photosystem II and has at least one other important function in the cell.  相似文献   

18.
The light reactions of oxygenic photosynthesis are mediated by multisubunit pigment-protein complexes situated within the specialized thylakoid membrane system. The biogenesis of these complexes is regulated by transacting factors that affect the expression of the respective subunit genes and/or the assembly of their products. Here we report on the analysis of the PratA gene from the cyanobacterium Synechocystis sp. PCC 6803 that encodes a periplasmic tetratricopeptide repeat protein of formerly unknown function. Targeted inactivation of PratA resulted in drastically reduced photosystem II (PSII) content. Protein pulse labeling experiments of PSII subunits indicated that the C-terminal processing of the precursor of the reaction center protein D1 is compromised in the pratA mutant. Moreover, a direct interaction of PratA and precursor D1 was demonstrated by applying yeast two-hybrid analyses. This suggests that PratA represents a factor facilitating D1 maturation via the endoprotease CtpA. The periplasmic localization of PratA supports a model that predicts the initial steps of PSII biogenesis to occur at the plasma membrane of cyanobacterial cells.  相似文献   

19.
The D1 protein of the photosystem II reaction center is thought to be the most light-sensitive component of the photosynthetic machinery. To understand the mechanisms underlying the light sensitivity of D1, we performed in vitro random mutagenesis of the psbA gene that codes for D1, transformed the unicellular cyanobacterium Synechocystis sp. PCC 6803 with mutated psbA, and selected phototolerant transformants that did not bleach in high intensity light. A region of psbA2 coding for 178 amino acids of the carboxyl-terminal portion of the peptide was subjected to random mutagenesis by low fidelity polymerase chain reaction amplification or by hydroxylamine treatment. This region contains the binding sites for Q(B), D2 (through Fe), and P680. Eighteen phototolerant mutants with single and multiple amino acid substitutions were selected from a half million transformants exposed to white light at 320 micromol m(-2) s(-1). A strain transformed with non-mutagenized psbA2 became bleached under the same conditions. Site-directed mutagenesis has confirmed that one or more substitutions of amino acids at residues 234, 254, 260, 267, 322, 326, and 328 confers phototolerance. The rate of degradation of D1 protein was not appreciably affected by the mutations. Reduced bleaching of mutant cyanobacterial cells may result from continued buildup of photosynthetic pigment systems caused by changes in redox signals originating from D1.  相似文献   

20.
To identify important residues in the D2 protein of photosystem II (PSII) in the cyanobacterium Synechocystis sp. strain PCC 6803, we randomly mutagenized a region of psbDI (coding for a 96-residue-long C-terminal part of D2) with sodium bisulfite. Mutagenized plasmids were introduced into a Synechocystis sp. strain PCC 6803 mutant that lacks both psbD genes, and mutants with impaired PSII function were selected. Nine D2 residues were identified that are important for PSII stability and/or function, as their mutation led to impairment of photoautotrophic growth. Five of these residues are likely to be involved in the formation of the Q(A)-binding niche; these are Ala249, Ser254, Gly258, Ala260, and His268. Three others (Gly278, Ser283, and Gly288) are in transmembrane alpha-helix E, and their alteration leads to destabilization of PSII but not to major functional alterations of the remaining centers, indicating that they are unlikely to interact directly with cofactors. In the C-terminal lumenal tail of D2, only one residue (Arg294) was identified as functionally important for PSII. However, from the number of mutants generated it is likely that most or all of the 70 residues that are susceptible to bisulfite mutagenesis have been altered at least once. The fact that mutations in most of these residues have not been picked up by our screening method suggests that these mutations led to a normal photoautotrophic phenotype. A novel method of intragenic complementation in Synechocystis sp. strain PCC 6803 was developed to facilitate genetic analysis of psbDI mutants containing several amino acid changes in the targeted domain. Recombination between genome copies in the same cell appears to be much more prevalent in Synechocystis sp. strain PCC 6803 than was generally assumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号