首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultraviolet B radiation (UVB) has been shown to damage human keratinocytes in part by inducing oxidative stress and cytokine production. Indeed, UVB-induced production of the pro-inflammatory and cytotoxic cytokine tumor necrosis factor alpha (TNF-alpha) has been implicated in the epidermal damage seen in response to acute solar radiation. Though the lipid mediator platelet-activating factor (PAF) is synthesized in response to oxidative stress, and keratinocytes express PAF receptors linked to cytokine biosynthesis, it is not known whether PAF is involved in UVB-induced epidermal cell cytokine production. These studies examined the role of the PAF system in UVB-induced epidermal cell TNF-alpha biosynthesis using a novel model system created by retroviral-mediated transduction of the PAF receptor-negative human epidermal cell line KB with the human PAF receptor (PAF-R). Treatment of PAF-R-expressing KB cells with the metabolically stable PAF-R agonist carbamoyl-PAF resulted in increased TNF-alpha mRNA and protein, indicating that activation of the epidermal PAF-R was linked to TNF-alpha production. UVB irradiation of PAF-R-expressing KB cells resulted in significant increases in both TNF-alpha mRNA and protein in comparison to UVB-treated control KB cells. However, UVB treatment up-regulated cyclooxygenase-2 mRNA levels to the same extent in both PAF-R-expressing and control KB cells. Pretreatment with the antioxidant vitamin E or the PAF-R antagonists WEB 2086 and A-85783 inhibited UVB-induced TNF-alpha production in the PAF-R-positive but not control KB cells. These studies suggest that the epidermal PAF-R may be a pharmacological target for UVB in skin.  相似文献   

2.
3.
Members of NADPH oxidase (Nox) enzyme family are important sources of reactive oxygen species (ROS) and are known to be involved in several physiological functions in response to various stimuli including UV irradiation. UVB-induced ROS have been associated with inflammation, cytotoxicity, cell death, or DNA damage in human keratinocytes. However, the source and the role of UVB-induced ROS remain undefined.Here, we show that Nox1 is involved in UVB-induced p38/MAPK activation and cytotoxicity via ROS generation in keratinocytes. Nox1 knockdown or inhibitor decreased UVB-induced ROS production in human keratinocytes. Nox1 knockdown impaired UVB-induced p38 activation, accompanied by reduced IL-6 levels and attenuated cell toxicity. Treatment of cells with N-acetyl-L-cysteine (NAC), a potent ROS scavenger, suppressed p38 activation as well as consequent IL-6 production and cytotoxicity in response to UVB exposure. p38 inhibitor also suppressed UVB-induced IL-6 production and cytotoxicity. Furthermore, the blockade of IL-6 production by IL-6 neutralizing antibody reduced UVB-induced cell toxicity.In vivo assay using wild-type mice, the intradermal injection of lysates from UVB-irradiated control cells, but not from UVB-irradiated Nox1 knockdown cells, induced inflammatory swelling and IL-6 production in the skin of ears. Moreover, administration of Nox1 inhibitor suppressed UVB-induced increase in IL-6 mRNA expression in mice skin.Collectively, these data suggest that Nox1-mediated ROS production is required for UVB-induced cytotoxicity and inflammation through p38 activation and inflammatory cytokine production, such as IL-6. Thus, our findings suggest Nox1 as a therapeutic target for cytotoxicity and inflammation in response to UVB exposure.  相似文献   

4.
We have previously demonstrated that treatment of the human keratinocyte cell line NCTC 2544 with a UVB dose equivalent to 1h exposure (100 mJ/cm2) results in a significant increase of IL-8 production. In this study, we use specific inhibitors to investigate the role of both PKA- and PKC-mediated pathways in the regulation of UVB-induced IL-8 expression in NCTC 2544 cell line. We show here that the treatment of irradiated human keratinocytes with PKA inhibitors [H89 and PKA inhibitor (PKAi)] induced a significant decrease of IL-8 production at both mRNA and protein levels. However, the regulation of IL-8 production seems to be mediated via a cAMP-independent PKA pathway, since drugs known to enhance cAMP concentrations [PGE2, cholera toxin and dibutyryl cAMP] decrease IL-8 production in irradiated cells by down-regulating NF-kappa B activation in response to UVB radiation. Using PMA (a potent pharmacological activator of PKC) and calphostin C (a specific PKC inhibitor), we demonstrated an up-regulation of IL-8 in NCTC 2544 cells and a down-regulation of the cytokine in UVB-irradiated cells, respectively. We also observed that in our experimental conditions, staurosporine, an inhibitor of both PKC and PMA-stimulated cellular responses, does not involve PKC inhibition in irradiated cells and significantly decreased NF-kappa B activity in response to UVB radiation. Finally, we concluded that a cAMP-independent PKA activation and a PKC-associated pathway are probably involved in the regulation of UVB-induced IL-8 synthesis in human keratinocytes.  相似文献   

5.
6.
In mammals, UVB radiation is of biological relevance primarily for the cells of the epidermis. We report here the existence of a UVB response that is specific for proliferating human epidermal keratinocytes. Unlike other cell types that also display a UVB response, keratinocytes respond to UVB irradiation with a transient but potent downregulation of the Ras-extracellular signal-regulated kinase (ERK) signaling cascade. The downregulation of ERK precedes a profound decrease in the steady-state levels of cyclin D1, a mediator of the proliferative action of ERK. Keratinocytes exhibit high constitutive activity of the Ras-ERK signaling cascade even in culture medium lacking supplemental growth factors. The increased activity of Ras and phosphorylation of ERK in these cells are maintained by the autocrine production of secreted molecules that activate the epidermal growth factor receptor (EGFR). Irradiation of keratinocytes increases the phosphorylation of EGFR on tyrosine residues Y845, Y992, Y1045, Y1068, Y1086, Y1148, and Y1173 above the basal levels and leads to the increased recruitment of the adaptor proteins Grb2 and ShcA and of a p55 form of the regulatory subunit of the phosphatidylinositide 3-kinase to the UVB-activated EGFR. Paradoxically, however, UVB causes, at the same time, the inactivation of Ras and a subsequent dephosphorylation of ERK. By contrast, the signaling pathway leading from the activated EGFR to the phosphorylation of PKB/Akt1 is potentiated by UVB. The UVB response of keratinocytes appeared to be a manifestation of the more general ribotoxic stress response inasmuch as the transduction of the UVB-generated inhibitory signal to Ras and ERK required the presence of active ribosomes at the time of irradiation.  相似文献   

7.
Based on our recent observation that enhanced IL-18 expression positively correlates with malignant skin tumors, such as SCC and melanoma, we examined the possible role of UVB, known to be associated with skin cancer development, in the enhancement of IL-18 production using primary human epidermal keratinocytes and human keratinocyte cell line HaCaT. After cells were exposed to UVB irradiation in vitro, IL-18 production was examined by Northern blot analysis and ELISA, and it was found that IL-18 production is enhanced by UVB irradiation in a dose- and time-dependent manner. In addition, we confirmed that it is functionally active form of IL-18 using the inhibitor of caspase-1. The effect of UVB irradiation was blocked by antioxidant, N-acetyl-L-cysteine (NAC), which suggested the involvement of reactive oxygen intermediates (ROI) in the signal transduction of UVB irradiation-enhanced IL-18 synthesis. We also found that UVB irradiation increased AP-1 binding activity by using EMSA with AP-1-specific oligonucleotide. Furthermore, inhibitors of UVB-induced AP-1 activity, such as PD98059, blocked enhanced IL-18 production, indicating that AP-1 activation is required for UVB-induced IL-18 production. Taken together, our results suggest that UVB irradiation-enhanced IL-18 production is selectively mediated through the generation of ROI and the activation of AP-1.  相似文献   

8.
Ultraviolet B (UVB) radiation causes much of the cutaneous damage after both acute and long-term exposure, and is also the most important etiologic agent in human skin cancer. UVB exposure initially induces an inflammatory response characterized by edema, dermal infiltration of leukocytes, sunburn cell formation, as well as the induction of cyclooxygenase-2 (COX-2) gene expression and subsequent increase in the production and release of prostaglandins. This process of inflammation induced by UVB exposure has been linked to tumor formation. Recently, a specific COX-2 inhibitor, Celecoxib, was developed, which inhibits COX-2-induced inflammation without inhibiting the cytoprotective function of cyclooxygenase-1 (COX-1). The present study compared the effects of topical treatment with Celecoxib (a specific COX-2 inhibitor) and Ibuprofen (a nonspecific COX inhibitor) on the acute UVB-induced cutaneous inflammatory response. We show that the specific inhibition of COX-2 effectively reduced many parameters of UVB-mediated inflammation, including edema, dermal neutrophil infiltration and activation, prostaglandin E2 (PGE2) levels and the formation of sunburn cells. By inhibiting this inflammatory response, topical Celecoxib treatment may ultimately be effective in preventing UVB-induced tumor development in the skin.  相似文献   

9.
Interferon gamma (IFN-gamma) is a potential immunoregulatory cytokine, which is secreted mainly by cells of immune origin. In this study, we examined the capacity of human gingival fibroblasts as non-professional immune cells to express IFN-gamma messenger RNA (mRNA) and to produce the protein. Cultures of fibroblast cells were established from gingival biopsies from three children. The expression of mRNA for IFN-gamma was studied by in situ hybridization, and the level of IFN-gamma was determined by cell-released capturing ELISA. Treatment of the cells with phytohaemagglutinin (PHA) (2.5, 5.0, and 10 microg/ml) increased the number of IFN-gamma mRNA expressing cells and the protein production at 1, 6, and 24 h. Non-stimulated cells did not reveal measurable levels of IFN-gamma mRNA or the protein. The inflammatory cytokines interleukin 1beta (IL-1beta) (100 microg/ml) and tumour necrosis factor alpha (TNFalpha) (10 ng/ml) did not affect IFN-gamma mRNA expression or protein production. Treatment of the cells with 1 microM phorbol 12-myristate-13-acetate (PMA) stimulated IFN-gamma mRNA expression but had no effect on IFN-gamma protein production. We conclude that human gingival fibroblasts not only transcribe IFN-gamma mRNA but also produce the IFN-gamma protein in response to PHA. The finding that human gingival fibroblasts, produce the cytokine IFN-gamma, further support the concept that these cells take an active part in the modulation of the inflammatory and immune response in the periodontal tissue.  相似文献   

10.
Hyaluronan controls keratinocyte proliferation and regeneration. We examined effect of UV on the expression of hyaluronan synthases (HASs) and hyaluronidases in cultured normal human newborn foreskin epidermal keratinocytes, NHEK(F). HAS3 mRNA was expressed predominantly and HAS2 mRNA expressed in lesser amounts and both were up-regulated after a single irradiation with moderate UVB but hyaluronidases was unchanged. Increased accumulation of hyaluronan in the culture medium mirrored the UVB-induced increase in the mRNA levels of HAS3 and HAS2. Unexpectedly, hyaluronan derived from UVB-irradiated and non-irradiated cells had identical size distribution. Increased expression of KGF and IL-1β was detected just prior to the increase of HAS3 and HAS2 mRNAs after UVB irradiation. Antibody-neutralization study revealed that KGF and/or IL-1β were at least involved in the up-regulation of HAS3 and HAS2 expressions. UVB-irradiated cells may enhance hyaluronan production to maintain homeostasis through up-regulation of HAS3 and HAS2 genes via cytokine response mechanism.  相似文献   

11.
Ultraviolet B light (UVB) causes cutaneous inflammation and cell death, but the agents responsible are not defined. These studies examined the role of the platelet-activating factor (PAF) signaling system in UVB-mediated effects. Expression of the PAF receptor in the PAF receptor-negative epidermoid cell line KB augmented apoptosis in response to UVB irradiation. Overexpression of the PAF receptor in primary human keratinocytes also enhanced UVB-mediated apoptosis in vitro, and it enhanced apoptosis in an in vivo model of human keratinocytes grafted onto severe combined immune-deficient (SCID) mice. To define the mechanism by which UVB activates the PAF receptor, we used mass spectrometry to demonstrate significant amounts of the C4 PAF analogs 1-alkyl-2-(butanoyl and butenoyl)-sn-glycero-3-phosphocholine, as well as native PAF in an epidermal cell line after UVB irradiation. Supplementing the cells with the precursor phospholipid 1-hexadecyl-2-arachidonoyl-sn-glycero-3-phosphocholine (HAPC) increased the amount of C4 PAF analogs recovered after UVB exposure. We irradiated HAPC directly and found, even in the absence of a photosensitizer, fragmentation to C4-PAF receptor ligands. We conclude UVB photo-oxidizes cellular phospholipids, creating PAF analogs that stimulate the PAF receptor to induce further PAF synthesis and apoptosis. PAF signaling may participate in the cutaneous inflammation that occurs during photo-aggravated dermatoses.  相似文献   

12.
The infiltration of both monocyte and activated T cells in the skin is one of critical steps in the development of UVB-induced inflammation. Upregulation of adhesion molecules such as intercellular adhesion molecule 1 (ICAM-1) on the surface of keratinocytes plays an important role in this process. In this study, we examined the molecular mechanism responsible for UVB-induced expression of ICAM-1 and subsequent monocyte adhesion by keratinocyte. We observed that (1) UVB induced protein and mRNA expression of ICAM-1 in a dose- and time-dependent manner in human keratinocyte cell HaCaT; (2) UVB induced the translocation of NF-kappaB and inhibition of NF-kappaB by NF-kappaB inhibitors suppressed UVB-induced mRNA and protein expression of ICAM-1; (3) UVB increased the intracellular level of reactive oxygen species (ROS) by HaCaT cells; (4) UVB-induced increase of intracellular ROS level was suppressed by pretreatment with diphenyl iodonium (DPI) and N-acetyl cysteine (NAC); and (5) inhibition of UVB-induced ROS production by DPI or NAC suppressed UVB-mediated translocation of NF-kappaB, expression of ICAM-1 and subsequent monocyte adhesion in HaCaT cells. These results suggest that UVB-induced ROS is involved in the translocation of NF-kappaB which is responsible for expression of ICAM-1 and subsequent increased monocyte adhesion in human keratinocyte.  相似文献   

13.
Oxidized phospholipids have been shown to exhibit pleiotropic effects in numerous biological contexts. For example, 1-O-hexadecyl-2-azelaoyl-sn-glycero-3-phosphocholine (azPC), an oxidized phospholipid formed from alkyl phosphatidylcholines, is a peroxisome proliferator–activated receptor gamma (PPARγ) nuclear receptor agonist. Although it has been reported that PPARγ agonists including thiazolidinediones can induce plasma volume expansion by enhancing renal sodium and water retention, the role of azPC in renal transport functions is unknown. In the present study, we investigated the effect of azPC on renal proximal tubule (PT) transport using isolated PTs and kidney cortex tissues and also investigated the effect of azPC on renal sodium handling in vivo. We showed using a microperfusion technique that azPC rapidly stimulated Na+/HCO3 cotransporter 1 (NBCe1) and luminal Na+/H+ exchanger (NHE) activities in a dose-dependent manner at submicromolar concentrations in isolated PTs from rats and humans. The rapid effects (within a few minutes) suggest that azPC activates NBCe1 and NHE via nongenomic signaling. The stimulatory effects were completely blocked by specific PPARγ antagonist GW9662, ERK kinase inhibitor PD98059, and CD36 inhibitor sulfosuccinimidyl oleate. Treatment with an siRNA against PPAR gamma completely blocked the stimulation of both NBCe1 and NHE by azPC. Moreover, azPC induced ERK phosphorylation in rat and human kidney cortex tissues, which were completely suppressed by GW9662 and PD98059 treatments. These results suggest that azPC stimulates renal PT sodium-coupled bicarbonate transport via a CD36/PPARγ/mitogen-activated protein/ERK kinase/ERK pathway. We conclude that the stimulatory effects of azPC on PT transport may be partially involved in volume expansion.  相似文献   

14.
Ligands of peroxisome proliferator-activated receptor-gamma (PPAR(gamma)) are thought to possess anti-inflammatory properties mediated via both PPAR(gamma) dependent and independent mechanisms. This work investigates the effects of PPAR(gamma) ligands on the regulation of cyclooxygenase-2 (COX-2) in the human lung epithelial cell line, A549. The synthetic ligand troglitazone activated the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase pathway (MAPK), whereas the endogenous ligand, 15-deoxy-Delta(12,14)-prostaglandin J2 (15d-PGJ2), only activated the PI3K pathway. 15d-PGJ2 had no detectable effects on COX-2, mPGES expression, or PGE2 production. However, troglitazone induced time-dependent COX-2 expression, which was insensitive to PPAR(gamma) antagonists, but was abrogated by inhibitors of PI3K and the ERK MAP kinase pathway. Furthermore, troglitazone induced mPGES expression and PGE2 production. Neither troglitazone nor 15d-PGJ2 was able to convincingly activate NF-kappaB in A549 cells. Further heterogeneity in the responses to troglitazone and 15d-PGJ2 was observed in the regulation of gene expression as assessed by microarray analysis. In summary, this study provides compelling evidence that troglitazone (like 15d-PGJ2) can exert functional effects independently of actions via PPAR(gamma). Moreover, we have identified unique biochemical and functional actions of troglitazone that are not shared by 15d-PGJ2, which may influence the therapeutic potential of this compound in inflammatory settings.  相似文献   

15.
Previous reports have revealed that calmodulin antagonism by melatonin is followed by microtubule enlargements and neurite outgrowths in neuroblastoma N1E-115 cells. In addition, activation of protein kinase C (PKC) by this neurohormone is also followed by increased vimentin phosphorylation, and reorganization of vimentin intermediate filaments (IFs) in N1E-115 cells. In this work, we further characterize the activation of PKC by melatonin in neuroblastoma N1E-115 cells. We studied the Ca(2+)-dependent effects of melatonin on PKC activity and distribution of PKC-alpha in isolated N1E-115 cell IFs. Also, the effects of melatonin on PKC-alpha translocation in comparison to PKC-epsilon, were studied in intact N1E-115 cells. The results showed that both melatonin and the PKC agonist phorbol-12-myristate-13-acetate increased PKC activity in isolated IFs. The effects of the hormone were Ca(2+)-dependent, while those caused by the phorbol ester were produced with or without Ca(2+). Also, in isolated in situ IFs, the hormone changed the distribution of PKC-alpha. In intact N1E-115 cells, melatonin elicited PKC-alpha translocation and no changes were detected in PKC-epsilon. Phorbol-12-myristate-13-acetate modified the subcellular distribution of both PKC isoforms. The results showed that melatonin selectively activates the Ca(2+)-dependent alpha isoform of PKC and suggest that PKC-alpha activation by melatonin underlies IF rearrangements and participates in neurite formation in N1E-115 cells.  相似文献   

16.
17.
This study was conducted to examine the relationship between the peroxisome proliferator-associated receptor-γ (PPARγ) and MUC1 mucin, two anti-inflammatory molecules expressed in the airways. Treatment of A549 lung epithelial cells or primary mouse tracheal surface epithelial (MTSE) cells with phorbol 12-myristate 13-acetate (PMA) increased the levels of tumor necrosis factor (TNF)-α in cell culture media compared with cells treated with vehicle alone. Overexpression of MUC1 in A549 cells decreased PMA-stimulated TNF-α levels, whereas deficiency of Muc1 expression in MTSE cells from Muc1 null mice increased PMA-induced TNF-α levels. Treatment of A549 or MTSE cells with the PPARγ agonist troglitazone (TGN) blocked the ability of PMA to stimulate TNF-α levels. However, the effect of TGN required the presence of MUC1/Muc1, since no differences in TNF-α levels were seen between PMA and PMA plus TGN in MUC1/Muc1-deficient cells. Similarly, whereas TGN decreased interleukin-8 (IL-8) levels in culture media of MUC1-expressing A549 cells treated with Pseudomonas aeruginosa strain K (PAK), no differences in IL-8 levels were seen between PAK and PAK plus TGN in MUC1-nonexpressing cells. EMSA confirmed the presence of a PPARγ-binding element in the MUC1 gene promoter. Finally, TGN treatment of A549 cells increased MUC1 promoter activity measured using a MUC1-luciferase reporter gene, augmented MUC1 mRNA levels by quantitative RT-PCR, and enhanced MUC1 protein expression by Western blot analysis. These combined data are consistent with the hypothesis that PPARγ stimulates MUC1/Muc1 expression, thereby blocking PMA/PAK-induced TNF-α/IL-8 production by airway epithelial cells.  相似文献   

18.
19.
20.
Previously, it has been shown that the binding of epidermal growth factor (EGF) by a wide range of cells decreases as cell density increases. In this report, we demonstrate that KB cells treated chronically with phorbol esters continue to exhibit decreases in EGF receptor binding as cell density increases. This finding suggests that protein kinase-C may not be essential for density-induced down regulation of EGF receptors, since phorbol esters are known to down regulate protein kinase-C. We also report that short-term and long-term effects of phorbol esters on the binding of EGF are affected by density. As shown previously for several cell lines, the phorbol ester 12-0-tetradecanoylphorbol-13-acetate transiently reduces EGF binding. We now show that the magnitude of this reduction diminishes as cell density increases. In addition, we determined that long-term treatment of KB cells with phorbol ester increases EGF binding. Again, this effect is diminished at high cell densities. Finally, we report that the increases in EGF binding induced by long-term treatment with phorbol esters are due to increases in the number of EGF receptors.Abbreviations EGF epidermal growth factor - FGF fibroblast growth factor - PBS phosphate buffered saline - PDBu 4-phorbol-12,13-dibutyrate - PDGF platelet-derived growth factor - PK-C protein kinase-C - TGF- transforming growth factor- - TPA 12-0-tetradecanoylphorbol-13-acetate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号