首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Galactose metabolism in the red cells shows marked interspecies and even intraspecies variations. Red cells of guinea pig, dog and a group of rabbits metabolize galactose to a higher extent than those of other species, including human. In the rabbit, the difference in red cell galactokinase activity could not be correlated to the overall utilization of this sugar in the body.  相似文献   

2.
1. The rate of self-digestion of main membrane proteins, spectrin and band 3 protein, was studied for erythrocyte membranes of eight mammalian species: man, cow, pig, cat, rabbit, hamster, mouse and rat. 2. Spectrin and band 3 protein were most rapidly degraded in human and pig ghosts. The rates of proteolysis for other species were similar. 3. The rates of self-digestion were correlated neither with lifetime of red cells nor lifespan of animals of various species.  相似文献   

3.
Glucose 1,6-biphosphate (G1,6P2) was measured in human, pig, cow, rabbit, rat and sheep red blood cells. Mean values are variable among the species and range from 33 to 122 nmol/ml RBC for pig and rabbit erythrocytes, respectively. The activities of G1,6P2 synthase, phosphoglucomutase (PGM) and phosphoribomutase (PRM) have also been assayed in red cell haemolysates of the same species. The correlations between the biphosphate content and the occurrence of the three enzymatic activities have been studied in order to gain an insight into the regulation of the G1,6P2 turnover in mammalian erythrocytes.  相似文献   

4.
1. ATP-D-hexose-6-phosphotransferase activity was measured in red blood cells of man, rabbit, pig and cow. Mean values ranged from 0.60 to 1.06 units/g haemoglobin and no significant difference was obtained with different glucose concentrations. 2. The characteristics of glucose phosphorylating activities in red blood cells of the species studied were similar. 3. Chromatography on DEAE column revealed two different glucose phosphorylating activities in red cells of man, rabbit and pig, and only one in cow red cells. 4. The first hexokinase activity is the predominant form and is saturated with low glucose concentrations; the second is noticeably marked at high glucose concentrations.  相似文献   

5.
1. To compare glucose 1,6-bisphosphate synthesis in different types of cells, we partially purified (2000-fold) a glycerate 1,3 P2-dependent glucose 1,6-bisphosphate synthase from rabbit skeletal muscle. 2. In agreement with the results reported by others for mouse brain and pig skeletal muscle, the enzyme can be separated from bulk phosphoglucomutase (PGM) activity by DEAE-cellulose chromatography of crude cellular extract. This cannot be achieved on human hemolysates where glycerate 1,3-P2-dependent glucose 1,2-bisphosphate synthesis is displayed only by multifunctional PGM2 isoenzymes. 3. The Km values for glycerate 1,3-P2 (0.50 microM), glucose 1-phosphate (90 microM), Mg2+ (0.22 mM), and also pH optimum (7.8) and mol. wt (70,000) of the rabbit skeletal muscle enzyme are similar to those of the enzymes from mouse brain and human red blood cells, but they differ from those reported for the pig skeletal muscle enzyme.  相似文献   

6.
Adenosine transport by rat and guinea pig synaptosomes was studied to establish the basis for the marked differences in the potency of some transport inhibitors in these species. An analysis of transport kinetics in the presence and absence of nitrobenzylthioinosine (NBTI) using synaptosomes derived from several areas of rat and guinea pig brain indicated that at least three systems contributed to adenosine uptake, the Km values of which were approximately 0.4, 3, and 15 microM in both species. In both species, the system with the Km of 3 microM was potently (IC50 of approximately 0.3 nM) and selectively inhibited by NBTI. This NBTI-sensitive system accounted for a greater proportion of the total uptake in the guinea pig than in the rat and was inhibited by dipyridamole, mioflazine, and related compounds more potently in the guinea pig. Preliminary experiments with other species indicate that adenosine transport in the mouse is similar to that in the rat, whereas in the dog and rabbit, it is more like that in the guinea pig. In the rat, none of the systems appeared to require Na+, but the two systems possessing the higher affinities for adenosine were inhibited by veratridine- and K(+)-induced depolarization. The transport systems were active over a broad pH range, with maximal activity between pH 6.5 and 7.0. Our results are consistent with the possibility that adenosine transport systems may be differentiated into uptake and release systems.  相似文献   

7.
The polypeptide pattern of red blood cell (RBC) membranes from cow, sheep, horse, rabbit, guinea pig, rat, mouse, analyzed by polyacrylamide gel electrophoresis, was compared to human RBC counterpart. Some qualitative and quantitative differences were noted. Among the high molecular weight components the bands 2.1- 2.3 appeared slightly decreased in rabbit and rat and increased in sheep RBC membranes. Band 3 appeared to have a higher molecular weight in the cow, guinea pig and mouse RBCs, and a lower molecular weight in the sheep RBCs. Band 4.1 from the RBC membranes of cow, sheep, rabbit and guinea pig was splitted into two sub-bands, while band 4.2 overlapped with band 4.1 in horse and guinea pig RBC membranes. There are marked differences in the number and position of bands in the 4.5 region, while band 4.9 is present in higher amounts in horse, rabbit and guinea pig RBC membranes. Band 6 (glyceraldehyde 3-phosphate dehydrogenase) was undetectable in horse, rat and mouse RBC membranes and was decreased in sheep, rabbit and guinea pig. There are also major differences in the region of band 7 and below ("post-7"). Band 8 was undetectable in horse, cow and guinea pig, and was in higher amounts in rat. A band corresponding to a molecular weight of about 22 kD in the "post-8" region was present only in guinea pig RBC membranes.  相似文献   

8.
The effect of goat antiserum against isolated pig zonae pellucidae on fertilization in vivo was examined in the pig, cow, sheep, rabbit, rat, and mouse. As shown by indirect immunofluorescence, anti-pig zona serum reacted strongly with the zonae of pig, cow, sheep, and rabbit, but the reaction with the zonae of mouse and rat was weak. Passive immunization with anti-pig zona serum significantly, or completely, inhibited fertilization in all species. However, inhibition of fertilization was more pronounced in the pig, cow, sheep, rabbit, and mouse than in the rat. Inhibition of fertilization in the rabbit was also observed after passive immunization with antiserum absorbed with rabbit liver and kidney. All of the zonae recovered from the pig, cow, sheep, rat, and mouse after passive immunization with anti-pig zona serum exhibited strong fluorescence, regardless of the incidence of fertilization. It was concluded that the pig and other mammalian zonae pellucidae tested have tissue-specific antigens.  相似文献   

9.
We compared the intermediate filament expression of the various cell types in the fully differentiated neural retina from rat, mouse, rabbit, guinea pig, cow, pig, and cat. Many cell types had an intermediate filament complement conserved across species boundaries, such as Müller cells and retinal ganglion cells. In some species (rabbit, guinea pig, and cow), however, we were unable to visualize GFA (glial fibrillary acidic)-positive retinal astrocytes, although such profiles were clearly visible in the remainder. Horizontal cell staining proved to be extremely species-variable. In rat and mouse the processes of these cells were identically displayed with antibodies to vimentin and all three neurofilament triplet proteins. In cow they decorated with antibodies to vimentin and antibodies to the two lower molecular weight neurofilament proteins alone, whereas in pig, rabbit and guinea pig all three neurofilament proteins but not vimentin were present. Finally cat horizontal cells stained for all three neurofilament proteins, some finer processes being additionally stainable with vimentin. A further surprise was the visualization of profiles positive only for the two lower molecular weight neurofilament proteins in the inner nuclear layer of both rabbit and guinea pig retina but not the other species. The implications of these results will be discussed.  相似文献   

10.
C Monder  A Marandici 《Steroids》1991,56(1):12-16
Corticosteroid side-chain (CSC) isomerase catalyzes ketol-aldol interconversion of the corticosteroid side chain. The enzyme was present in the blood of mouse, rat, guinea pig, chicken, pig, horse, sheep, cow, and human. The patterns of substrate specificity, measuring 3H-1H exchange of 21-tritiated forms of 11-deoxycorticosterone, corticosterone, and cortisol, were species specific. Based on enzyme activity and immunostaining of mouse blood fractions, red blood cells had the most isomerase activity, plasma had less, and white blood cells had low but highly variable levels of enzyme. Purified mouse liver CSC isomerase was found to be adsorbed by red blood cells. The results suggest that circulating CSC isomerase is derived in part from tissue sources and is in part an intrinsic blood enzyme.  相似文献   

11.
Cation loss and hemolysis of various mammalian red cells suspended in isotonic non-electrolyte media were investigated. Sucrose buffered with 10 mM Tris-Hepes, pH 7.4 was used as the non-permeable non-electrolyte. Mammals from which the red cells were derived include the human, guinea pig, rat, rabbit, newborn calf, newborn piglet and pig, all of which contain K as the predominant cation species (HK type) and the dog, cat, sheep and cow, all of which possess Na as the predominant cation species (LK type). Of HK cells, a rapid efflux of K takes place from humans, rats and guinea pigs. Of LK type cells, the dog and cat exhibit an augmented membrane permeability to Na. The governing factors which influence cation permeability are the change in pH, temperature, and ionic strength. In response to increase in pH, the red cells of humans, dogs and cats become more permeable to cations, whereas the red cells of rat and rabbit are unaffected. In response to increase in temperature, HK type cells exhibit augmented K efflux, while the Na loss from the dog and cat cells manifest a well-defined maximum at near 37 degrees C. In all cases, a small substitution of sucrose by an equal number of osmoles of salts results in a dramatic decrease in cation loss. By contrast, the red cells of the rabbit, newborn calf, adult cow, newborn piglet, adult pig and sheep display no discernible increase in ion-permeability under the conditions alluded to above. In some species including the newborn calf, dog, and cat, an extensive hemolysis occurs usually within an hour in isotonic buffered sucrose solution. The osmolarity of sucrose solution affects these cells differently in that as the osmolarity increases from 200--500 mM, hemolytic rates of the calf and dog reach a saturation near 300 mM sucrose, whereas the hemolytic rate of the cat decreases progressively. Common features pertaining to this hemolysis are (1) the intracellular alkalinization process; and (2) the diminution of the cell volume which take place prior to and onset of hemolysis. SITS, a potent anion transport inhibitor, completely protects the cells from hemolysis by inhibiting chloride flux and the concomitant rise in intracellular pH.  相似文献   

12.
1. Subcellular fractionation of rat, guinea pig and human livers showed that aldehyde dehydrogenase metabolizing gamma-aminobutyraldehyde was exclusively localized in the cytoplasmic fraction in all three mammalian species. 2. Total gamma-aminobutyraldehyde activity of aldehyde dehydrogenase was found to be ca 0.41, 0.3 and 0.24 mumol NADH min-1 g-1 tissue, respectively in rat, guinea pig and human liver, with more than 95% of activity in the cytoplasm. 3. Partially purified cytoplasmic isozyme from rat liver showed similar chromatographic behavior and kinetic properties to the E3 isozyme isolated from human liver. 4. The rat isozyme was insensitive to disulfiram (40 microM) and to magnesium (160 microM) and had Km values of 5 microM (pH 7.4) for gamma-aminobutyraldehyde, 7.5 microM (pH 9.0) for propionaldehyde and 4 microM (pH 7.4) for NAD.  相似文献   

13.
Adenine (ATP, ADP, AMP) and pyridine nucleotides (NADP+, NADPH, NAD+, NADH) concentrations have been determined by HPLC in the erythrocytes from five different mammalian species (pig, rat, mouse, rabbit and cow) and compared to those in human red blood cells. Two different extraction procedures have been used and the results obtained are compared and discussed. A good correlation between the different abilities of the erythrocytes of the six species to utilize glucose and the NAD+/NADH ratio was found, with high NAD+/NADH ratio in the red blood cell of the species with high glucose utilization rates. The levels of all the glycolytic enzymes and some of the pentose phosphate shunt enzymes were also determined.  相似文献   

14.
1. Aldehyde dehydrogenase activity was determined in whole blood samples from 17 selected vertebrates of 5 classes, using 3,4-dihydroxyphenylacetaldehyde (the aldehyde derived from dopamine) as substrate. 2. Aldehyde dehydrogenase activity in blood was widely but unevenly distributed among the species studied. 3. Mean aldehyde dehydrogenase activities in the range of 40-140 nmol/min.ml blood (measured at 37 degrees C, pH 8.8) were found in blood from man, monkey, rabbit, guinea pig and mouse (C57BL and NMRI strains), with the highest activity in rabbit blood. 4. Much lower aldehyde dehydrogenase activities (0.5-7.5 nmol/min.ml blood) were found in blood from Sprague-Dawley and Wistar rat, dog, cat, horse, pig, chicken, caiman, frog and rainbow trout, whereas the activities in blood from DBA mouse, cow, sheep and crucian carp were close to the detection limit.  相似文献   

15.
We developed a highly sensitive and convenient method of nested polymerase chain reaction (PCR) targeted to mitochondrial deoxyribonucleic acid (DNA) to identify animal species quickly in cultured cells. Fourteen vertebrate species, including human, cynomolgus monkey, African green monkey, mouse, rat, Syrian hamster, Chinese hamster, guinea pig, rabbit, dog, cat, cow, pig, and chicken, could be distinguished from each other by nested PCR. The first PCR amplifies mitochondrial DNA fragments with a universal primer pair complementary to the conserved regions of 14 species, and the second PCR amplifies the DNA fragments with species-specific primer pairs from the first products. The species-specific primer pairs were designed to easily distinguish 14 species from each other under standard agarose gel electrophoresis. We further developed the multiplex PCR using a mixture of seven species-specific primer pairs for two groups of animals. One was comprised of human, mouse, rat, cat, pig, cow, and rabbit, and the other was comprised of African green monkey, cynomolgus monkey, Syrian hamster, Chinese hamster, guinea pig, dog, and chicken. The sensitivity of the PCR assay was at least 100 pg DNA/reaction, which was sufficient for the detection of each species of DNA. Furthermore, the nested PCR method was able to identify the species in the interspecies mixture of DNA. Thus, the method developed in this study will provide a useful tool for the authentication of animal species.  相似文献   

16.
An SDS-electrophoretic comparison of atrial and ventricular myosin light chain isotypes was performed in mouse, rat, rabbit, dog, pig, rhesus monkey, baboon, human and cow heart. Light chains 1 and 2 in atria and ventricles differed in all species with the possible exception of the rhesus monkey. Relative migration of atrial and ventricular LC-2 isotypes was similar in all species but LC-1 isotypes varied in relative migration rates suggesting increased primary sequence heterogeneity. Order of migration was VLC-1 less than ALC-1 less than ALC-2 less than VLC-2 in mouse, rat, rabbit, dog, baboon and cow and ALC-1 less than VLC-1 less than ALC-2 less than VLC-2 in pig and human heart. No obvious relationship existed between electrophoretic pattern and phylogenetic evolution.  相似文献   

17.
Red blood cells from human, pig, cow, rabbit, rat and sheep were investigated for the occurrence of phosphoglucomutase multiple forms, G1,6P2 level, PGM, PRM and G1,6P2 synthetic activities. In all cases a species specific pattern of PGM isoenzymes was detected by starch gel electrophoresis. G1,6P2 mean values range from 33 to 122 nmol/ml RBC for pig and rabbit erythrocytes, respectively. The study of the correlation between the biphosphate content and the occurrence of the three measured enzymatic activities indicates a possible role of PRM activity (property of PGM2 isoenzymes) in the erythrocytic G1,6P2 catabolism.  相似文献   

18.
本文将国外脊椎动物血清补体溶血活性标准测定方法,运用到荷斯坦种公牛研究中,首次建立了测定荷斯坦种公牛血清补体溶血ACH50的方法。种公牛血清经相应靶红细胞吸附后,可溶解悬浮在EGTAMgGVB缓冲液中的正常的兔血红细胞、人A,B,AB,O型红细胞,小鼠、大鼠、鸡红细胞,但对绵羊、山羊、猪红细胞溶血活性较低;对奶牛红细胞无溶血活性。且发现种公牛血清的溶血活性和靶红细胞的动物种类在系统发育上和种公牛的亲缘关系远近没有直接联系。种公牛血清在EGTAMgGVB缓冲液中对兔血红细胞发生溶血的最适条件是:温度是37℃,最适pH是7.3-7.4,最适Mg2 的浓度是4mmol/L,最适孵育时间为90min。溶血活性是二价离子依赖、热敏感(溶血活性热灭活温度是56℃)。种公牛血清对兔血红细胞的溶血活性在受到酵母聚糖、甲胺、肼、EDTA、鸡抗酵母聚糖牛血清结合物抗血清处理时,溶血活性可全部或部分消失,溶血活性抑制程度与补体抑制剂浓度相关。我们运用建立的标准溶血方法并以兔血红细胞作为指示细胞检测不同年龄的53头种公牛血清补体替代途径的溶血活性,溶血值在13.2-44.3u/ml之间,还发现不同年龄组公牛之间溶血活性有随年龄增加而逐步增大趋势,但差异不显著(P>0.05),在4-5岁公牛群中达到最大值。对种公牛血清补体系统溶血水平进行系统研究,一方面可以填补国内在此领域研究空白,另一方面也利于种公牛疾病监测、控制,此外也为兽医临床诊断试剂的研制提供新的技术手段。  相似文献   

19.
Mouse, rat, rabbit, hamster, cow, pig, sheep, guinea-pig, dog and human erythrocytes were studied. A 0.9% or stronger solution of sodium chloride completely prevented haemolysis; sheep and pig erythrocytes appeared the more fragile, while human and dog erythrocytes were not haemolized in concentrations of 0.4% or more. Haemolysis of human, rabbit, cow, hamster, guineapig, pig and sheep erythrocytes was not observed in solutions of 0.4% or more of glucose. Except for sheep, human and dog erythrocytes, haemolysis was depressed in rate but not completely prevented by phosphate-buffer solution of pH 7.0.  相似文献   

20.
Five sows, five cows, five hens, six guinea pigs, six rabbits, and six rats were used in a study to determine if hepatic microsomal triglyceride transfer protein activity differed among species that varied in site of fatty acid synthesis and rate of hepatic triglyceride export. No differences in plasma nonesterified fatty acids were seen among species. Plasma concentrations of glucose were highest in the hen, intermediate in the rat, guinea pig, and rabbit and lowest in the sow and cow. Liver triglyceride was low in all species with the only significant difference being between the hen and the guinea pig (4.7 and 1.1%, DM basis, respectively). No microsomal triglyceride transfer protein activity was found in muscle. The cow, rat, and guinea pig had the lowest levels and the hen and rabbit the highest levels of duodenal microsomal triglyceride transfer protein activity. Hepatic microsomal triglyceride transfer protein activity was significantly higher in the sow than the other species. Hepatic microsomal triglyceride transfer protein activity was 1.51, 1.63, 2.36, 2.72, 2.95, and 6.70 nmole triolein transferred/h/mg microsomal protein for the guinea pig, rabbit, cow, rat, hen, and sow, respectively. Microsomal triglyceride transfer protein activity in duodenal tissue was 18.0, 18.6, 19.2, 33.4, 113, and 161% of hepatic microsomal triglyceride transfer protein activity for the sow, cow, rat, guinea pig, hen, and rabbit, respectively. Hepatic microsomal triglyceride transfer protein activity scaled to liver weight and metabolic body size was 2.69, 3.36, 4.58, 5.83, 7.49, and 22.3 nmole triolein transferred in the liver/min/kg body weight0.75 for the rabbit, guinea pig, rat, hen, cow, and sow, respectively. There was little relationship between previously published rates for triglyceride export and hepatic microsomal triglyceride transfer protein activity measured in this experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号