首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The induction of a Crassulacean acid like metabolism (CAM) was evidenced after 21–23 days of drought stress in the C4 succulent plant Portulaca oleracea L. by changes in the CO2 exchange pattern, in malic acid content and in titratable acidity during the day–night cycle. Light microscopy studies also revealed differences in the leaf structure after the drought treatment. Following the induction of the CAM-like metabolism, the regulatory properties of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31), the enzyme responsible for the diurnal fixation of CO2 in C4 plants but nocturnal in CAM plants, were studied. The enzyme from stressed plants showed different kinetic properties with respect to controls, notably its lack of cooperativity, higher sensitivity to L-malate inhibition, higher PEP affinity and lower enzyme content on a protein basis. In both conditions, PEPC's subunit mass was 110 kDa, although changes in the isoelectric point and electrophoretic mobility of the native enzyme were observed. In vivo phosphorylation and native isoelectrofocusing studies indicated variations in the phosphorylation status of the enzyme of samples collected during the night and day, which was clearly different for the control and stressed groups of plants. The results presented suggest that PEPC activity and regulation are modified upon drought stress treatment in a way that allows P. oleracea to perform a CAM-like metabolism. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Crassulacean acid metabolism (CAM) was investigated in leaves and stems of the succulent C4 dicot Portulaca oleracea L. Diurnal acid fluctuations, CO2 gas exchange, and leaf resistance were monitored under various photoperiod and watering regimes. No CAM activity was seen in well watered plants grown under 16-hour days. Under 8-hour days, however, well watered plants showed a CAM-like pattern of acid fluctuation with amplitudes of 102 and 90 microequivalents per gram fresh weight for leaves and stems, respectively. Similar patterns were also observed in detached leaves and defoliated stems. Leaf resistance values indicated that stomata were open during part of the dark period, but night acidification most likely resulted from refixation of respiratory CO2. In water-stressed plants maximum acid accumulations were reduced under both long and short photoperiods. At night, these plants showed short periods of net CO2 uptake and stomatal opening which continued all night long during preliminary studies under natural environmental conditions. Greatest acid fluctuations, in P. oleracea, with amplitudes of 128 microequivalents per gram fresh weight, were observed in water-stressed plants which had been rewatered, especially when grown under short days. No net CO2 uptake took place, but stomata remained open throughout the night under these conditions. These results indicate that under certain conditions, such as water stress or short photoperiods, P. oleracea is capable of developing an acid metabolism with many similarities to CAM.  相似文献   

3.
Portulaca oleracea is a C4 plant; however, under drought it can change its carbon fixation metabolism into a crassulacean acid metabolism (CAM)‐like one. While the C3‐CAM shift is well known, the C4‐CAM transition has only been described in Portulaca. Here, a CAM‐like metabolism was induced in P. oleracea by drought and then reversed by re‐watering. Physiological and biochemical approaches were undertaken to evaluate the drought and recovery responses. In CAM‐like plants, chlorophyll fluorescence parameters were transitory affected and non‐radiative energy dissipation mechanisms were induced. Induction of flavonoids, betalains and antioxidant machinery may be involved in photosynthetic machinery protection. Metabolic analysis highlights a clear metabolic shift, when a CAM‐like metabolism is induced and then reversed. Increases in nitrogenous compounds like free amino acids and urea, and of pinitol could contribute to withstand drought. Reciprocal variations in arginase and urease in drought‐stressed and in re‐watered plants suggest urea synthesis is strictly regulated. Recovery of C4 metabolism was accounted by CO2 assimilation pattern and malate levels. Increases in glycerol and in polyamines would be of importance of re‐watered plants. Collectively, in P. oleracea multiple strategies, from induction of several metabolites to the transitory development of a CAM‐like metabolism, participate to enhance its adaptation to drought.  相似文献   

4.
Crassulacean acid metabolism (CAM) was examined under natural environmental conditions in the succulent C4 dicot Portulaca oleracea L. Two groups of plants were monitored; one was watered daily (well watered), while the other received water once every 3 to 4 weeks to produce a ψ of −8 bars (drought stressed). Gas exchange, transpiration rate, and titratable acidity were measured for 24-hour periods during the growing season. CAM activity was greatest in drought-stressed plants during late August which had 13 hour days and day/night temperatures of 35/15°C. Under these conditions net CO2 uptake occurred slowly throughout the night. Diurnal fluctuations of titratable acidity took place in both leaves and stems with amplitudes of 17 and 47 microequivalents per gram fresh weight, respectively. Transpiration data indicated greater opening of stomata during the night than the day. CAM was less pronounced in drought-stressed P. oleracea plants in July and September; neither dark CO2 uptake nor positive carbon balance occurred during the July measurements. In contrast, well-watered plants appeared to rely on C4 photosynthesis throughout the season, although some acid fluctuations occurred in stems of these plants during September.  相似文献   

5.
R. A. Kennedy  W. M. Laetsch 《Planta》1973,115(2):113-124
Summary The photosynthetic products of Portulaca oleracea differ greatly depending on leaf age and length of exposure to 14CO2. Mature leaves of P. oleracea fix 14CO2 primarily into organic and amino acids during a 10-s exposure period. Less than 2% of the 14CO2 fixed appears in phosphorylated compounds. In contrast, incorporation into amino acids can account for over 60% of the total 14CO2 fixed by young leaves in an equal time period, and incorporation into alanine alone can account for up to one half of this amount. Senescent leaves display a quantitative shift of primary products toward phosphorylated compounds with a concomitant reduction of the label residing in malate and asparate. About 8 times more phosphoglyceric acid is produced in senescent leaves than in mature leaves. The aspartate/ malate ratio is not constant and depends on the length of time the leaves are exposed to 14CO2 and the age of the leaves under study. It appears as if the stage of leaf development is one of the most important factors determining the operation of a particular enzyme system in C4 plants.  相似文献   

6.
Lerman JC 《Plant physiology》1974,53(4):581-584
The content of 13C varies in plants with Crassulacean acid metabolism. Differences up to 3.5‰ in the 13C/12C ratios were observed between leaves of different age in the same plant of Bryophyllum daigremontianum. Soluble and insoluble carbon in the same leaf differed up to 8‰, the largest difference occurring in the leaves with the highest Crassulacean acid metabolism activity. Models to account for the isotope discrimination by C3, C4, and Crassulacean acid metabolism plants are proposed.  相似文献   

7.
A powerful technique is described to localize the activities of a range of enzymes in a wide variety of plant tissues. The method is based on the coupling of the enzymatic reaction to the reduction of NAD and subsequent reduction and precipitation of nitroblue tetrazolium. Enzymes that did not reduce NAD could be visualized by coupling their activities to glucose-6-phosphate dehydrogenase activity via one or more intermediary 'coupling' enzymes. The method is shown to be applicable for the detection of the activities of hexokinase, fructokinase, sucrose synthase, uridine 5'-diphospho-glucose pyrophosphorylase, ADP-glucose pyrophosphorylase, phosphoglucomutase, and phosphoglucose isomerase. It could be used for all tissues tested, including green leaves, stems, roots, fruits, and seeds. The method is specific, very sensitive, and has a high spatial resolution, giving information at the cellular and the subcellular level. The localization of sucrose synthase, invertase, and uridine 5'-diphospho-glucose pyrophosphorylase in transgenic potato plants, carrying a cytokinin biosynthesis gene, is studied and compared with wild-type plants.  相似文献   

8.
Robert A. Kennedy 《Planta》1976,128(2):149-154
Summary Ribulose diphosphate (RuDP) and (PEP) phosphoenolpyruvate carboxylase enzyme activities were studied in young, mature, and senescent Portulaca oleracea leaves. While the absolute amount of both the C3 (RuDP) and C4 (PEP) carboxylase is less in senescent leaves than in mature leaves, RuDP carboxylase activity is reduced to a lesser degree. In senescent leaves, PEP carboxylase activity equals 10% of that in mature tissue, but RuDP carboxylase is 27% of that in mature leaves. The same ontogenetic series was also used to determine photorespiration rates and responses to several gas treatments. Young and mature leaves were unaffected by changes in the light regime or oxygen concentrations, and exhibited typical C4-plant light/dark 14CO2 evolution ratios. Senescent leaves, on the other hand, have photorespiration ratios similar to C3-plants. In addition, senescent leaves were affected by minus CO2, 100% O2 and N2 in a manner expected of C3-plants, but not C4-plants. These results are discussed in terms of a relative increase in activity of the C3 cycle in later developmental stages in this plant.Abbreviation RuDP ribulose diphosphate - PEP phosphoenolpyruvate - PGA phosphoglyceric acid  相似文献   

9.
10.
Leaves of C(4) grasses (such as maize [Zea mays], sugarcane [Saccharum officinarum], and sorghum [Sorghum bicolor]) form a classical Kranz leaf anatomy. Unlike C(3) plants, where photosynthetic CO(2) fixation proceeds in the mesophyll (M), the fixation process in C(4) plants is distributed between two cell types, the M cell and the bundle sheath (BS) cell. Here, we develop a C(4) genome-scale model (C4GEM) for the investigation of flux distribution in M and BS cells during C(4) photosynthesis. C4GEM, to our knowledge, is the first large-scale metabolic model that encapsulates metabolic interactions between two different cell types. C4GEM is based on the Arabidopsis (Arabidopsis thaliana) model (AraGEM) but has been extended by adding reactions and transporters responsible to represent three different C(4) subtypes (NADP-ME [for malic enzyme], NAD-ME, and phosphoenolpyruvate carboxykinase). C4GEM has been validated for its ability to synthesize 47 biomass components and consists of 1,588 unique reactions, 1,755 metabolites, 83 interorganelle transporters, and 29 external transporters (including transport through plasmodesmata). Reactions in the common C(4) model have been associated with well-annotated C(4) species (NADP-ME subtypes): 3,557 genes in sorghum, 11,623 genes in maize, and 3,881 genes in sugarcane. The number of essential reactions not assigned to genes is 131, 135, and 156 in sorghum, maize, and sugarcane, respectively. Flux balance analysis was used to assess the metabolic activity in M and BS cells during C(4) photosynthesis. Our simulations were consistent with chloroplast proteomic studies, and C4GEM predicted the classical C(4) photosynthesis pathway and its major effect in organelle function in M and BS. The model also highlights differences in metabolic activities around photosystem I and photosystem II for three different C(4) subtypes. Effects of CO(2) leakage were also explored. C4GEM is a viable framework for in silico analysis of cell cooperation between M and BS cells during photosynthesis and can be used to explore C(4) plant metabolism.  相似文献   

11.
12.
The characteristics of oscillations in photosynthetic carbon fixation and chlorophyll fluorescence in leaves of the C4 plant Amaranthus caudatus L. were compared to those shown by the C3 plant Spinacia oleracea L. As in spinach, oscillations could be observed in Amaranthus when leaves were illuminated after periods of darkening, particularly at temperatures below 20°C, less so or not at all at higher temperatures. However, in contrast to spinach, pronounced oscillations occurred in Amaranthus after a sudden dark/light transition only at low, not at high photon flux densities. Whereas in spinach maxima in carbon uptake were observed slightly after minima in chlorophyll fluorescence had occurred, in Amaranthus maxima in carbon uptake were close to maxima in chlorophyll fluorescence. Since the quantum efficiency of electron transport through photosystem II of the chloroplast electron-transport chain was higher during the minima of chlorophyll fluorescence than during the maxima, the observations suggest that in Amaranthus photosynthetic water oxidation did not occur as synchronously with carbon uptake as in spinach. It is proposed that, in contrast to spinach, photosynthetic oscillations in Amaranthus are related to the diffusional transport of photosynthetic intermediates between mesophyll and bundle-sheath cells.Abbreviations Fo, Fm, Fs initial, maximal and steady-state chlorophyll a fluorescence - PFD photon flux density - QA primary quinone acceptor of PSII We are grateful to Professors D.A. Walker, FRS, Robert Hill Institute, University of Sheffield, Sheffield, UK., and Agu Laisk, Chair of Plant Physiology, University of Tartu, Tartu, Estonia, for helpful discussions and to Ms. S. Neimanis for help with the experiments. Our work was performed within the research of the Sonderforschungsbereich 251 of the University of Würzburg. It was supported by the Stiftung Volkswagenwerk. A.S.R. acknowledges also support by the Alexander-von-Humboldt-Stiftung and U.G. by the Graduate College of the University of Würzburg.  相似文献   

13.
Changes in levels of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31, orthophosphate: oxaloacetate carboxy-lyase, phosphorylating) were followed in leaves and stems of CAM-expressing and non-expressing Portulaca oleracea L. plants. CAM expression was induced by growing plants under an 8-h photoperiod and water stress conditions (SD-WS). Leaves and stems of these plants (designated CAM) expressed nocturnal acidification with an oscillation pattern and an amplitude characteristic of CAM plants. Generally, PEPC activity increased by ca 3-fold during the period of CAM induction. Over the day/night cycle. PEPC activity oscillated in a pattern typical of CAM plants. Treatment of the other plant group (designated as non-CAM) by growth under a 16-h photoperiod and well-watered conditions (LD-WW) did not induce expression of the tested criteria of CAM in plants. In these plants, nocturnal acidification as well as changes in the magnitude of PEPC, activity and fluctuation pattern were undetectable. SDS-PAGE of leaf extracts of the CAM-expressing plants and the corresponding densitometric scans show progressive increase in the amount of PEPC subunit protein (ca 95 kDa) during the period of CAM induction. These results show that induction of CAM-like characteristics in the C4 plant Portulaca oleracea is also accompanied by increased PEPC activity, which may be partly due to an increase in enzyme synthesis.  相似文献   

14.
Activities and subunit levels of three C4 enzymes were determined for F1 hybrids between C4 and C3-C4Flaveria species. For phosphoenolpyruvate carboxylase and pyruvate orthophosphate, dikinase, enzyme amounts in the hybrids were close to the mid-parent means. However, activity and subunit levels of NADP-malic enzyme were approximately one-half the mid-parent mean.  相似文献   

15.
The reciprocal relationship between diurnal changes in organic acid and storage carbohydrate was examined in the leaves of three Crassulacean acid metabolism plants. It was found that depletion of leaf hexoses at night was sufficient to account quantitatively for increase in malate in Ananas comosus but not in Sedum telephium or Kalanchoë daigremontiana. Fructose and to a lesser extent glucose underwent the largest changes. Glucose levels in S. telephium leaves oscillated diurnally but were not reciprocally related to malate fluctuations.

Analysis of isolated protoplasts and vacuoles from leaves of A. comosus and S. telephium revealed that vacuoles contain a large percentage (>50%) of the protoplast glucose, fructose and malate, citrate, isocitrate, ascorbate and succinate. Sucrose, a major constituent of intact leaves, was not detectable or was at extremely low levels in protoplasts and vacuoles from both plants.

In isolated vacuoles from both A. comosus and S. telephium, hexose levels decreased at night at the same time malate increased. Only in A. comosus, however, could hexose metabolism account for a significant amount of the nocturnal increase in malate. We conclude that, in A. comosus, soluble sugars are part of the daily maintenance carbon cycle and that the vacuole plays a dynamic role in the diurnal carbon assimilation cycle of this Crassulacean acid metabolism plant.

  相似文献   

16.
17.
Casati P  Lara MV  Andreo CS 《Plant physiology》2000,123(4):1611-1622
The expression of phosphoenolpyruvate carboxylase (PEPC) and NADP-malic enzyme (NADP-ME) in Egeria densa leaves was studied under low temperature and light (LTL) following incubation under high temperature and light (HTL), conditions previously shown to induce high and low CO(2) compensation points, respectively. Transfer from LTL to HTL conditions induced increases in the activities and amounts of both enzymes. One NADP-ME isoform was observed in induced and uninduced samples. Two isoforms of PEPC were expressed, with the lower M(r) isoform being induced by HTL. NADP-ME showed properties similar to those of the isoform in C(3) species. The inducible PEPC isoform has a low K(m) for both substrates. PEPC kinetic and regulatory properties (V(max) and K(m) for phosphoenolpyruvate, and I(50) for L-malate) are different in samples taken in the dark from those in the light, indicating that some modification of PEPC may be occurring during the day. Finally, abscisic acid induced the expression of PEPC and NADP-ME in a manner similar to temperature induction, except that the activities of both PEPC isoforms were increased. A different signaling system may exist in this species in response to high temperature or abscisic acid, both of which induce changes in photosynthetic metabolism.  相似文献   

18.
19.
Light- and CO2-saturated photosynthesis of nonhardened rye (Secale cereale L. cv. Musketeer) was reduced from 18.10 to 7.17 mol O2·m–2·s–1 when leaves were transferred from 20 to 5°C for 30 min. Following cold-hardening at 5°C for ten weeks, photosynthesis recovered to 15.05 mol O2·m–2·s–1,comparable to the nonhardened rate at 20°C. Recovery of photosynthesis was associated with increases in the total activity and activation of enzymes of the photosynthetic carbon-reduction cycle and of sucrose synthesis. The total hexose-phosphate pool increase by 30% and 120% for nonhardened and cold-hardened leaves respectively when measured at 5°C. The large increase in esterified phosphate in coldhardened leaves occurred without a limitation in inorganic phosphate supply. In contrast, the much smaller increase in esterified phosphate in nonhardened leaves was associated with an inhibition of ribulose-1,5-bisphosphate carboxylase/oxygenase and sucrose-phosphate synthase activation. It is suggested that the large increases in hexose phosphates in cold-hardened leaves compensates for the higher substrate threshold concentrations needed for enzyme activation at low temperatures. High substrate concentrations could also compensate for the kinetic limitations imposed by product inhibition from the accumulation of sucrose at 5°C. Nonhardened leaves appear to be unable to compensate in this fashion due to an inadequate supply of inorganic phosphate.Abbreviations DHAP dihydroxyacetone phosphate - Fru6P fructose-6-phosphate - Fru 1,6BP fructose-1,6-bisphosphate - Fru1,6BPase fructose-1,6-bisphosphatase - Glc6P glucose-6-phosphate - PGA 3-phosphoglycerate - PPFD photosynthetic photon flux density - CH cold-hardened rye grown at 5°C - NH nonhardened rye grown at 24°C - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - SPS sucrose-phosphate synthase - UDPGlc uridine 5-diphosphoglucose This work was supported by operating grants from the Swedish Natural Sciences Research Council to G.Ö. and P.G.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号