首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Apomixis is a mode of asexual reproduction through seed. Progeny produced by apomixis are clonal replicas of a mother plant. The essential feature of apomixis is that embryo sacs and embryos are produced in ovules without meiotic reduction or egg cell fertilisation. Thus, apomixis fixes successful gene combinations and propagates high fitness genotypes across generations. A more profound knowledge of the mechanisms that regulate reproductive events in plants would contribute fundamentally to understanding the evolution and genetic control of apomixis. Molecular markers were used to determine levels of genetic variation within and relationship among ecotypes of the facultative apomict Hypericum perforatum L. (2n = 4x = 32). All ecotypes were polyclonal, being not dominated by a single genotype, and characterised by different levels of differentiation among multilocus genotypes. Flow cytometric analysis of seeds indicated that all ecotypes were facultatively apomictic, with varying degrees of apomixis and sexuality. Seeds set by haploid parthenogenesis and/or by fertilisation of aposporic egg cells were detected in most populations. The occurrence of both dihaploids and hexaploids indicates that apospory and parthenogenesis may be developmentally uncoupled and supports two distinct genetic factors controlling apospory and parthenogenesis in this species. Cyto-embryological analysis showed that meiotic and aposporic processes do initiate within the same ovule: the aposporic initial often appeared evident at the time of megaspore mother cell differentiation. Our observations suggest that the egg cell exists in an active metabolic state before pollination, and that its parthenogenetic activation leading to embryo formation may occur before fertilisation and endosperm initiation.  相似文献   

2.
Upon fertilisation by sperm, mammalian eggs are activated by a series of intracellular Ca(2+) oscillations that are essential for embryo development. The mechanism by which sperm induces this complex signalling phenomenon is unknown. One proposal is that the sperm introduces an exclusive cytosolic factor into the egg that elicits serial Ca(2+) release. The 'sperm factor' hypothesis has not been ratified because a sperm-specific protein that generates repetitive Ca(2+) transients and egg activation has not been found. We identify a novel, sperm-specific phospholipase C, PLC zeta, that triggers Ca(2+) oscillations in mouse eggs indistinguishable from those at fertilisation. PLC zeta removal from sperm extracts abolishes Ca(2+) release in eggs. Moreover, the PLC zeta content of a single sperm was sufficient to produce Ca(2+) oscillations as well as normal embryo development to blastocyst. Our results are consistent with sperm PLC zeta as the molecular trigger for development of a fertilised egg into an embryo.  相似文献   

3.
The experimental material comprised 7 ostrich families (7 males and 14 females) of which five families were at the age of 7 and two at the age of 5 years. In the course of the entire reproductive season, the following parameters were analysed: length of the laying period, mean laying rate, number of eggs laid by one female, proportion ofhatching eggs, egg weight and shape, egg weight lost during incubation, egg fertilisation, percentage of dead embryos and unhatched chicks, hatchability from fertilised and set eggs. Seven year-old ostriches were characterised by shorter laying period (134 days) but, at the same time, by higher proportions of hatching eggs. This group was also characterised by high egg fertilisation (79.7%) as well as high hatchability indices at simultaneous highest embryo mortality during incubation (11.6 %). Five year-old ostriches exhibited a longer laying period (175 days) during which females laid more eggs (49 pcs.). In addition, this group was characterised by a smaller proportion of hatching eggs, better egg fertilisation indices (83.5%) and hatchability results. Moreover, the determined higher egg shape index indicates that the 5 year-old females laid eggs which were more spherical. Recapitulating, the obtained results indicate that, under Polish conditions, better indices of laying performance, egg fertilisation and hatchability were observed in the group of 5 year-old ostriches.  相似文献   

4.
莴苣胚囊细胞分离   总被引:3,自引:0,他引:3  
用酶解和解剖方法分离了莴苣的卵细胞,助细胞,中央细胞和合子。莴苣子房先在酶液中酶解40~50min,然后在不含酶的分离液中用解剖针解剖子房。在解剖出的胚囊中,可看到卵细胞,两个助细胞和中央细胞的轮廓。将胚囊的合点端切破,轻轻挤压胚囊的珠孔端,四个细胞即可逸出。在最佳条件下,90min可从40个子房中分离出29个胚囊,进一步从中分离出11个卵细胞。分离出的胚囊细胞用显微操作仪收集备用。莴苣卵细胞的成功分离为进行离体受精探索创造了条件。  相似文献   

5.
蓝猪耳卵细胞和合子的分离   总被引:9,自引:0,他引:9  
蓝猪耳(Torenia fournieri)胚囊部分裸露出胚珠,在光学显微镜下能清楚观察到卵细胞和助细胞的形态结构.用解剖和酶解-解剖两种方法都能分离出生活卵细胞.用前种方法机械分离出的卵细胞数量较少(5%),但避免了酶对配子识别研究的干扰.在后种方法中加入0.1%纤维素酶和0.1%果胶酶既能使分离更加容易操作,又对卵细胞没有致命伤害,能在短时间内分离出较多的卵细胞(18%).用酶解-解剖方法也可分离出授粉14 h后的合子细胞.  相似文献   

6.
7.
In contrast to animals, plant gametes form in distinct haploid generations, termed gametophytes. The female gametophyte of Arabidopsis consists of two gametic cells, the egg and central cell, which are flanked by accessory cells. The gametic cells differ with respect to morphology, molecular attributes and, importantly, their fate: whereas the egg cell, upon fertilisation, gives rise to the embryo, the central cell forms the endosperm. To ensure correct endosperm formation, not only the egg cell but also the central cell has to fuse with a sperm cell. The respective sperm cell pair is delivered by a single pollen tube. In some plant species, the two male gametes appear to express a different bias towards the female gametes. Such a preference consequently determines their respective contribution to either embryo or endosperm development. In Arabidopsis and many other species the sperm cells are indistinguishable and it has been discussed whether they possess an inherent preference for either of the female gametes. The recent isolation of mutants that form an aberrant number of either male or female gametes stimulates discussion, albeit with different results. Furthermore, some data indicate that the central cell is competent to initiate endosperm formation without a paternal contribution. These data support the theory that the endosperm is of gametophytic rather than sporophytic origin.  相似文献   

8.
The first cleavage of the fertilised mouse egg divides the zygote into two cells that have a tendency to follow distinguishable fates. One divides first and contributes its progeny predominantly to the embryonic part of the blastocyst, while the other, later dividing cell, contributes mainly to the abembryonic part. We have previously observed that both the plane of this first cleavage and the subsequent order of blastomere division tend to correlate with the position of the fertilisation cone that forms after sperm entry. But does sperm entry contribute to assigning the distinguishable fates to the first two blastomeres or is their fate an intrinsic property of the egg itself? To answer this question we examined the distribution of the progeny of early blastomeres in embryos never penetrated by sperm - parthenogenetic embryos. In contrast to fertilised eggs, we found there is no tendency for the first two parthenogenetic blastomeres to follow different fates. This outcome is independent of whether parthenogenetic eggs are haploid or diploid. Also unlike fertilised eggs, the first 2-cell blastomere to divide in parthenogenetic embryo does not necessarily contribute more cells to the blastocyst. However, even when descendants of the first dividing blastomere do predominate, they show no strong predisposition to occupy the embryonic part. Thus blastomere fate does not appear to be decided by differential cell division alone. Finally, when the cortical cytoplasm at the site of sperm entry is removed, the first cleavage plane no longer tends to divide the embryo into embryonic and abembryonic parts. Together these results indicate that in normal development fertilisation contributes to setting up embryonic patterning, alongside the role of the egg.  相似文献   

9.
Isolation of fixed and fresh embryo sacs has been reported. However,the isolation of protoplasts of embryo sac elements is reported here for the first time.The protoplasts of egg cell, synergids, central cell and antipodal cells have been isolated with the retaining of their viability. Though this is a preliminary work, it indicatesthe potentiality of isolation of naked female gametes of angiosperms, which may beused in genetic manipulation and plant biotechnology. Nicotiana tabacum was grown in the greenhouse of the Department of Biology,Peking University. From opened and unpollinated flowers, the ovaries were removedand sterilized with 70% alcohol. The ovules were dissected out from those ovaries andfollowed by incubation (4–8 hrs. 28℃) in anenzyme solution containing 2% driselase, 0.65 M mannitol and 0.25% potassium dextran sulfate. Ovules from 3 4 ovariescould be incubated with 1 ml of enzyme solution in a 3 cm petri dish. All these manipulations and the following procedures were carried out under sterile conditions. Afterincubation, ovules were washed 3 times with a washing solution of 0.65 M mannitol.The isolated embryo, sacs and their protoplasts were obtained by gently squashing digested ovules in a small volume of washing solution on a slide. When the fresh ovules were incubated 3–3.5 hrs in the enzyme solution, the embryosacs may be successfully isolated in an intact manner, either for mature or immatureembryo sacs. The isolated embryo sac looked plump, viable and very distinct in itsstructure. If the isolated embryo sacs were incubated in 0.01% fluorescein diacetate(FDA) used as a test for the viability of the embryo sac, and observed under fluorescein microscope, the cytoplasm of all embryo sac elements, including egg cell, synergids,central cell and antipodal cells, showed strong fluorescence. It is proved that these iso-lated embryo sacs are still viable. When the incubation of ovules was prolonged as to 8 hrs in certain cases, theboundary wall of the embryo sac may be partially digested and the protoplasts of embryo sac elements came out from micropylar or chalazal end after squashing. The difference of the protoplasts derived from different embryo sac elements could be recognized by their relative size and other characteristics. The egg protoplast is smallerthan that of the synergid. However, the protoplasts of antipodal cells were. obviouslysmaller than that of egg. But the central cell protoplast was the largest among theseprotoplasts and possessed two polar nuclei and a very large central vacuole. All theseisolated protoplasts of embryo sac elements were also proved viable with FDA method. The importance of isolated protoplasts of embryo sac elements is discussed withrespect to genetic manipulations.  相似文献   

10.
Summary Megasporogenesis and megagametogenesis of Plumbago zeylanica were studied using isolated megasporocytes, megaspores, and embryo sacs labeled with Hoechst 33258 for nuclear and organellar (presumably plastid) DNA. Megasporogenesis conforms to the tetrasporic Plumbago type, producing a coenomegaspore with four megaspore nuclei. Organeller DNA is polarized in the micropylar end of the coenomegaspore and embryo sac, reflecting the site of egg cell formation. The three remaining nuclei are somewhat displaced to the chalazal pole, producing a variable number of accessory cells and a 4N secondary central cell nucleus. Ultimately, the mature embryo sac consists of two to five cells including an egg cell, a central cell, zero to two lateral cells, and zero to one antipodal cell depending on the degeneration of the lateral or chalazal nuclei during megagametogenesis.  相似文献   

11.
The enzymatic maceration method was used to isolate an intact embryo sac ofCrinum asiaticum and its component cells. Best results were obtained when using enzyme solutions that contained pectinase hemicellulase, cellulase and pectolyase. Aseptic ovules were incubated in the enzyme solution for 1.5 hr at 25 C. This allowed the isolation of embryo sacs to yield up to 20% of the amount present. An isolated embryo sac usually consists of an egg cell, synergids, antipodals and a central cell. Some embryo sacs can be digested as gametophytic protoplast. The size, shape and position of the isolated embryo sac seemingly possessed similarities with those of the fixed embryo sac in the ovary. An isolated embryo sac can be in a living state when the result of the fluorochromatic reaction (FCR) and protoplasmic streaming is positive. When cultured in proper media, 68% of the isolated gametophytic protoplasts were observed to have sustained their positive FCR for more than 1 month.  相似文献   

12.
将洋葱的胚珠置于酶液中酶解50-110 min后剥去其珠被,可清楚地看到珠心中的胚囊轮廓。用解剖针将珠心从中部横切,然后挤压其珠孔部位,卵器细胞从胚珠的切口处逸出。再用显微操作仪的玻璃针将卵细胞和两个助细胞分开,达到分离洋葱卵细胞的目的。酶对分离卵细胞具有重要作用,在最佳的酶液浓度[0.02%果胶酶Y23、0.08%果胶酶(Serva)、0.05%纤维素酶和0.05%半纤维素酶]下酶解胚珠110 min后,解剖1 h可从24个胚珠中分离出10个卵细胞(41.67%)。随着胚囊的发育,两个助细胞的体积出现明显的二形性。洋葱生活卵细胞的分离为开展洋葱离体受精建立了基础,也为研究洋葱卵器细胞的发育创造了条件。  相似文献   

13.
In higher plants, double fertilisation initiates seed development. One sperm cell fuses with the egg cell and gives rise to the embryo, the second sperm cell fuses with the central cell and gives rise to the endosperm. The endosperm develops as a syncytium with the gradual organisation of domains along an anteroposterior axis defined by the position of the embryo at the anterior pole and by the attachment to the placenta at the posterior pole. We report that ontogenesis of the posterior pole in Arabidopsis thaliana involves oriented migration of nuclei in the syncytium. We show that this migration is impaired in mutants of the three founding members of the FERTILIZATION INDEPENDENT SEED (FIS) class, MEDEA (MEA), FIS2 and FERTILIZATION INDEPENDENT ENDOSPERM (FIE). A screen based on a green fluorescent protein (GFP) reporter line allowed us to identify two new loci in the FIS pathway, medicis and borgia. We have cloned the MEDICIS gene and show that it encodes the Arabidopsis homologue of the yeast WD40 domain protein MULTICOPY SUPRESSOR OF IRA (MSI1). The mutations at the new fis loci cause the same cellular defects in endosperm development as other fis mutations, including parthenogenetic development, absence of cellularisation, ectopic development of posterior structures and overexpression of the GFP marker.  相似文献   

14.
15.
At fertilisation, Ca(2+) signals activate embryonic development by stimulating metabolism, exocytosis and endocytosis, cytoskeletal remodelling, meiotic resumption and recruitment of maternal RNAs. Mitochondria present in large number in eggs have long been thought to act as a relay in Ca(2+) signalling at fertilisation. However, only recently have studies on ascidians and mouse proven that sperm-triggered Ca(2+) waves are transduced into mitochondrial Ca(2+) signals that stimulate mitochondrial respiration. Mitochondrial Ca(2+) uptake can substantially buffer cytosolic Ca(2+) concentration and the concerted action of heterogeneously distributed mitochondria in the mature egg may modulate the spatiotemporal pattern of sperm-triggered Ca(2+) waves. Regulation of fertilisation Ca(2+) signals could also be achieved through mitochondrial ATP production and mitochondrial oxidant activity but these hypotheses remain to be explored. A critically poised dynamic interplay between Ca(2+) signals and mitochondrial metabolism is stimulated at fertilisation and may well determine whether the embryo can proceed further into development. The monitoring of Ca(2+) signals and mitochondrial activity during fertilisation in living zygotes of diverse species should confirm the universality of the role for sperm-triggered Ca(2+) waves in the activation of mitochondrial activity at fertilisation.  相似文献   

16.
The organization of isolated embryo sacs and eggs of Plumbago zeylanica was described before and after fertilization using microscopic cytochemistry and scanning electron microscopy. Major developmental events of fertilization, including preferential fertilization and early embryogenesis, are described in isolated embryo sacs. The two sperms, one unassociated with vegetative nucleus (Sua) and the other physically associated with the vegetative nucleus (Svn), fuse with nuclei of egg and central cell, respectively. The zygote divides asymmetrically to form a two-celled embryo, consisting of a massive suspensor occupying most of the micropylar portion of the embryo during early embryogenesis. Plastids are distributed in the perinuclear and micropylar regions of the egg cell and in cytoplasmic strands of the central cell before fertilization. Calcofluor white-positive fibrillar material in the filiform apparatus (presumed β-1,4 linked glucans) was investigated using scanning electron microscopy. The egg of P. zeylanica can easily be divided into three cytologically distinct regions: 1) perinuclear cytoplasm, 2) lateral cytoplasm, and 3) micropylar cytoplasm. Cytological differences are evident in the organization of the cell walls, general degree of vacuolization, and the distribution of heritable organelles, storage bodies, and microtubules. The present study supports the concept that the egg of P. zeylanica plays combined synergid and gamete functions.  相似文献   

17.
18.
A block to polyspermy is required for successful fertilisation and embryo survival in mammals. A higher incidence of polyspermy is observed during in vitro fertilisation (IVF) compared with the in vivo situation in several species. Two groups of mechanisms have traditionally been proposed as contributing to the block to polyspermy in mammals: oviduct‐based mechanisms, avoiding a massive arrival of spermatozoa in the proximity of the oocyte, and egg‐based mechanisms, including changes in the membrane and zona pellucida (ZP) in reaction to the fertilising sperm. Additionally, a mechanism has been described recently which involves modifications of the ZP in the oviduct before the oocyte interacts with spermatozoa, termed “pre‐fertilisation zona pellucida hardening”. This mechanism is mediated by the oviductal‐specific glycoprotein (OVGP1) secreted by the oviductal epithelial cells around the time of ovulation, and is reinforced by heparin‐like glycosaminoglycans (S‐GAGs) present in oviductal fluid. Identification of the molecules contributing to the ZP modifications in the oviduct will improve our knowledge of the mechanisms of sperm‐egg interaction and could help to increase the success of IVF systems in domestic animals and humans.  相似文献   

19.
20.
The microtubular and actin cytoskeletons have been investigated during megagametogenesis in Arabidopsis thaliana using immunofluorescence labelling of isolated coenocytic and mature embryo sacs. We found both actin and microtubules (MTs) to occur in abundance throughout megagametogenesis and in all constituent cells of the mature embryo sac. During many stages, the patterns of distribution of these cytoskeletal elements are congruent and may prove to be co-aligned. Many changes in the arrays of MTs and microfilaments take place and indicate varying roles of the cytoskeleton in the different stages and cell types of megagametogenesis. Two major populations of MTs recur throughout embryo sac formation: (1) Elaborate nuclear-based networks are found during the two-nucleate and four-nucleate developmental stages as well as in the egg cell. These arrays may function in positioning the nuclei. (2) Cytoplasmic MTs in longitudinal orientation in the two-nucleate embryo sac, synergids and part of the egg cell, or in a reticulate pattern in the four-nucleate embryo sac, egg and central cell probably participate in organization of the cytoplasm. Synergid MTs converge at the filiform apparatus. Preprophase bands of MTs are absent throughout megagametogenesis but phragmoplast arrays occur during cellularization of the embryo sac. Well developed arrays of cortical MTs are restricted to the antipodal cells. A large concentration of MTs in the part of the egg cell adjacent to the synergids is well placed for being involved with sperm cell movement within the degenerative synergid. On the basis of the morphology of the cytoskeleton, we concur with views that the shape of megagametophyte is largely determined by the surrounding tissues, including the integumentary tapetum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号