首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P M Anderson 《Biochemistry》1977,16(4):587-593
The binding of ornithine and inosine 5'-monophosphate (IMP), positive allosteric effectors, and of uridine 5'-monophosphate (UMP), a negative allosteric effector, to carbamyl-phosphate synthetase from Escherichia coli was studied by the technique of equilibrium dialysis. The monomeric form of the enzyme has one binding site for each of the three allosteric ligands. The binding of UMP is inhibited by ornithine, IMP, MgATP, and ammonia (also a positive allosteric effector). Bicarbonate, L-glutamine, and adenosine 5'-triphosphate (ATP) (Mg2+ absent) had no effect on the binding of UMP. The affinity of the enzyme for UMP was increased if phosphate buffer was replaced by 2-amino-2-hydroxymethyl-1,3-propanediol (Tris) buffer. The binding of ornithine was inhibited by UMP and ammonia, enhanced by MgATP, MgADP, and IMP, and not affected by bicarbonate, L-glutamine, or ATP (Mg2+ absent). Ornithine and ammonia probably bind to the same site on the enzyme. The binding of IMP is facilitated by ornithine and ammonia, but is inhibited by MgATP or ATP, indicating that adenine nucleotides can also bind to the IMP binding site. The results of these binding studies are consistent with a scheme previously proposed in which the allosteric effectors function by stabilizing one or the other of two different conformational states of the enzyme which are in equilibrium with each other (Anderson, P.M., and Marvin, S.V. (1970), Biochemistry 9, 171). According to this scheme, binding of the substrate MgATP is greatly facilitated when the enzyme exists in the conformational state stabilized by the positive allosteric effectors.  相似文献   

2.
Carbamyl phosphate synthetase from Escherichia coli has been shown to use only the A isomer of adenosine-5'-[2-thiotriphosphate] in both the ATPase reaction (MgATP HCO3- leads to MgADP + Pi) and the carbamyl phosphate synthesis reaction (2MgATP + HCO3- + L-glutamine leads to 2MgADP + Pi + carbamyl-P + L-glutamate). The B isomer was less than 5% as reactive. In the reverse reaction, only the A isomer of adenosine-5'-[2-thiotriphosphate] is synthesized from adenosine-5'-[2-thiodiphosphate] and carbamyl-P as determined by 31P NMR and a coupled enzymatic assay with Cd2+- hexokinase. It is therefore proposed that carbamyl phosphate synthetase uses the same diastereomer of MgATP at both ATP sites.  相似文献   

3.
The synthetase subunit of Escherichia coli carbamyl phosphate synthetase has two catalytic nucleotide-binding domains, one involved in the activation of HCO3- and the second in phosphorylation of carbamate. Here we show that a Glu841----Lys841 substitution in a putative ATP-binding domain located in the carboxyl half of the synthetase abolishes overall synthesis of carbamyl phosphate with either glutamine or NH3 as the nitrogen source. Measurements of partial activities indicate that while HCO3(-)-dependent ATP hydrolysis at saturating concentrations of substrate proceeds at higher than normal rates, ATP synthesis from ADP and carbamyl phosphate is nearly completely suppressed by the mutation. These results indicate Glu841 to be an essential residue for the phosphorylation of carbamate in the terminal step of the catalytic mechanism. The Lys841 substitution also affects the kinetic properties of the HCO3- activation site. Both kcat and Km for ATP increase 10-fold, while Km for HCO3- is increased 100-fold. Significantly, NH3 decreases rather than stimulates Pi release from ATP in the HCO3(-)-dependent ATPase reaction. The increase in kcat of the HCO3(-)-dependent ATPase reaction, and an impaired ability of the Lys841 enzyme to catalyze the reaction of NH3 with carboxy phosphate, strongly argues for interactions between the two catalytic ATP sites that couple the formation of enzyme-bound carbamate with its phosphorylation.  相似文献   

4.
The kinetic mechanism of carbamoyl-phosphate synthetase II from Syrian hamster kidney cells has been determined at pH 7.2 and 37 degrees C. Initial velocity, product inhibition, and dead-end inhibition studies of both the biosynthetic and bicarbonate-dependent adenosinetriphosphatase (ATPase) reactions are consistent with a partially random sequential mechanism in which the ordered addition of MgATP, HCO3-, and glutamine is followed by the ordered release of glutamate and Pi. Subsequently, the binding of a second MgATP is followed by the release of MgADP, which precedes the random release of carbamoyl phosphate and a second MgADP. Carbamoyl-phosphate synthetase II catalyzes beta gamma-bridge:beta-nonbridge positional oxygen exchange of [gamma-18O]ATP in both the ATPase and biosynthetic reactions. Negligible exchange is observed in the strict absence of HCO3- (and glutamine or NH4+). The ratio of moles of MgATP exchanged to moles of MgATP hydrolyzed (nu ex/nu cat) is 0.62 for the ATPase reaction, and it is 0.39 and 0.16 for the biosynthetic reaction in the presence of high levels of glutamine and NH4+, respectively. The observed positional isotope exchange is suppressed but not eliminated at nearly saturating concentrations of either glutamine or NH4+, suggesting that this residual exchange results from either the facile reversal of an E-MgADP-carboxyphosphate-Gln(NH4+) complex or exchange within an E-MgADP-carbamoyl phosphate-MgADP complex, or both. In the 31P NMR spectra of the exchanged [gamma-18O]ATP, the distribution patterns of 16O in the gamma-phosphorus resonances in all samples reflect an exchange mechanism in which a rotationally unhindered molecule of [18O3, 16O]Pi does not readily participate. These results suggest that the formation of carbamate from MgATP, HCO3-, and glutamine proceeds via a stepwise, not concerted mechanism, involving at least one kinetically competent covalent intermediate, such as carboxyphosphate.  相似文献   

5.
P M Anderson  J D Carlson 《Biochemistry》1975,14(16):3688-3694
Carbamyl phosphate synthetase from Escherichia coli reacts stoichiometrically (one to one) with [14C]cyanate to give a 14C-labeled complex which can be isolated by gel filtration. The formation of the complex is prevented if L-glutamine is present or if the enzyme is first reacted with 2-amino-4-oxo-5-chloropentanoic acid, a chloro ketone analog of glutamine which has been shown to react with a specific SH group in the glutamine binding site. The rate of complex formation is increased by ADP and decreased by ATP and HCO3-. The isolated complex is inactive with respect to glutamine-dependent synthetase activity. However, the reaction of cyanate with the enzyme is reversible. The rate of dissociation of the isolated complex is not affected by pH (over the pH range 6-10), is greatly increased by ATP and HCO3-, and is decreased by ADP. The allosteric effectors ornithine and UMP have no effect on either the rate of formation or the rate of dissociation of the complex; however, the apparent affinity of the enzyme for ATP is decreased by UMP and increased by ornithine. The site of reaction of cyanate with carbamyl phosphate synthetase, which is composed of a light and a heavy subunit, is with an SH group in the light subunit to give an S-carbamylcysteine residue. The binding of L-[14C]glutamine to the enzyme and the inhibition of glutamine-dependent synthetase activity by the chloroketone analog are both prevented by the presence of cyanate. The reaction with cyanate is considered to be with the same essential SH group which is located in the glutamine binding site and is alkylated by 2-amino-4-oxo-5-chloropentanoic acid. The bicarbonate-dependent effects of ATP suggest that formation of the activated carbon dioxide intermediate is accompanied by changes in the heavy subunit which functionally alter the properties of the glutamine binding site on the light subunit. The allosteric effects of ornithine and UMP are probably not related to this intersubunit interaction.  相似文献   

6.
P M Anderson 《Biochemistry》1977,16(4):583-586
Carbamyl-phosphate synthetase from Escherichia coli is an allosteric enzyme which undergoes reversible association reactions in phosphate buffer. The positive allosteric effectors, ornithine, inosine 5'-monophosphate (IMP), and ammonia, facilitate oligomer formation, whereas uridine 5'-monophosphate (UMP), a negative effector, prevents or decreases oligomer formation. When the enzyme is immobilized by reaction with activated Sepharose, under conditions where the enzyme exists only as a monomer, nearly full catalytic activity is retained and the effects of ornithine, IMP, and UMP on the catalytic activity as a function of MgATP concentration are not significantly altered. Gel-filtration chromatography on Sephadex G-200 of catalytic quantities of the enzyme in the presence of all substrates showed that the elution volume was the same as that measured for the enzyme under conditions where it is known to exist in the monomer form. The specific activity of the enzyme does not increase when the concentration of the enzyme is increased 100-fold from a concentration at which the enzyme exists as monomer to a level at which the enzyme exists predominantly as oligomer. These results indicate that the monomer form of the enzyme is the principle active species and that oligomer formation is not directly related to enzyme activity or enzyme regulation.  相似文献   

7.
Mora P  Rubio V  Fresquet V  Cervera J 《FEBS letters》1999,446(1):133-136
Replacement by alanine of Ser-948, Thr-974 and Lys-954 of Escherichia coli carbamoyl phosphate synthetase (CPS) shows that these residues are involved in binding the allosteric inhibitor UMP and the activator IMP. The mutant CPSs are active in vivo and in vitro and exhibit normal activation by ornithine, but the modulation by both UMP and IMP is either lost or diminished. The results demonstrate that the sites for UMP and IMP overlap and that the activator ornithine binds elsewhere. Since the mutated residues were found in the crystal structure of CPS near a bound phosphate, Ser-948, Thr-974 and Lys-954 bind the phosphate moiety of UMP and IMP.  相似文献   

8.
The interaction between Escherichia coli carbamoyl-phosphate synthetase (CPS) and a fluorescent analogue of an allosteric effector molecule, 1,N6-ethenoadenosine 5'-monophosphate (epsilon-AMP), has been detected by using fluorescence techniques and kinetic measurements. From fluorescence anisotropy titrations, it was found that epsilon-AMP binds to a single site on CPS with Kd = 0.033 mM. The nucleotide had a small activating effect on the rate of synthesis of carbamoyl phosphate but had no effect on the Km for ATP. To test whether epsilon-AMP binds to an allosteric site, allosteric effectors (UMP, IMP, and CMP), known to bind at the UMP/IMP site, were added to solutions containing the epsilon-AMP-CPS complex. With addition of these effector molecules, a progressive decrease of the fluorescence anisotropy was observed, indicating that bound epsilon-AMP was displaced by the allosteric effectors examined. From these titrations, the dissociation constants for UMP, IMP, CMP, ribose 5-phosphate, 2-deoxyribose 5-phosphate, and orthophosphate were determined. When MgATP, a substrate, was employed as a titrant, the observed decrease in anisotropy was consistent with the formation of a ternary complex (epsilon-AMP-CPS-MgATP). The effect of ATP binding, monitored at the allosteric site, was magnesium dependent, and free magnesium in solution was required to obtain a hyperbolic binding isotherm. Solvent accessibility of epsilon-AMP in binary (epsilon-AMP-CPS) and ternary (epsilon-AMP-CPS-MgATP) complexes was determined from acrylamide quenching, showing that the base of epsilon-AMP is well shielded from the solvent even in the presence of MgATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Ornithine is an allosteric activator of carbamoyl phosphate synthetase (CPS) from Escherichia coli. Nine amino acids in the vicinity of the binding sites for ornithine and potassium were mutated to alanine, glutamine, or lysine. The residues E783, T1042, and T1043 were found to be primarily responsible for the binding of ornithine to CPS, while E783 and E892, located within the carbamate domain of the large subunit, were necessary for the transmission of the allosteric signals to the active site. In the K loop for the binding of the monovalent cation potassium, only E761 was crucial for the exhibition of the allosteric effects of ornithine, UMP, and IMP. The mutations H781K and S792K altered significantly the allosteric properties of ornithine, UMP, and IMP, possibly by modifying the conformation of the K-loop structure. Overall, these mutations affected the allosteric properties of ornithine and IMP more than those of UMP. The mutants S792K and D1041A altered the allosteric regulation by ornithine and IMP in a similar way, suggesting common features in the activation mechanism exhibited by these two effectors.  相似文献   

10.
Studies on the effect of a series of alpha, omega-diadenosine 5'-polyphosphate (ApnA; n = 2 to 6) on carbamyl phosphate synthetase showed that only Ap5A is an effective inhibitor. Ap5A also inhibits two partial reactions catalyzed by the enzyme: bicarbonate-dependent ATPase and ATP synthesis from carbamyl phosphate and ADP. The data indicate that Ap5A binds to the enzyme sites that interact with ATP. Of a variety of ATP-utilizing enzymes (kinases, hydrolases, synthetases), only adenylate kinase (Leinhard, G. E., and Secemski, I. I. (1973) J. Biol. Chem. 248, 1121--1123) and carbamyl phosphate synthetase are inhibited by Ap5A. The present findings provide strong evidence that carbamyl phosphate synthetase has two separate binding sites for ATP in which the gamma-phosphate moeities of ATP are bound in close proximity to the bicarbonate binding site of the enzyme.  相似文献   

11.
H S Kim  L Lee  D R Evans 《Biochemistry》1991,30(42):10322-10329
The ATP analogue 5'-[p-(fluorosulfonyl)benzoyl]adenosine (FSBA) was used to chemically modify the ATP binding sites of the carbamyl phosphate synthetase domain of CAD, the multifunctional protein that catalyzes the first steps in mammalian pyrimidine biosynthesis. Reaction of CAD with FSBA resulted in the inactivation of the ammonia- and glutamine-dependent CPSase activities but had no effect on its glutaminase, aspartate transcarbamylase, or dihydroorotase activities. ATP protected CAD against inactivation by FSBA whereas the presence of the allosteric effectors UTP and PRPP afforded little protection, which suggests that the ATP binding sites were specifically labeled. The inactivation exhibited saturation behavior with respect to FSBA with a K1 of 0.93 mM. Of the two ATP-dependent partial activities of carbamyl phosphate synthetase, bicarbonate-dependent ATPase was inactivated more rapidly than the carbamyl phosphate dependent ATP synthetase, which indicates that these partial reactions occur at distinct ATP binding sites. The stoichiometry of [14C]FSBA labeling showed that only 0.4-0.5 mol of FSBA/mol of protein was required for complete inactivation. Incorporation of radiolabeled FSBA into CAD and subsequent proteolysis, gel electrophoresis, and fluorography demonstrated that only the carbamyl phosphate synthetase domain of CAD is labeled. Amino acid sequencing of the principal peaks resulting from tryptic digests of FSBA-modified CAD located the sites of FSBA modification in regions that exhibit high homology to ATP binding sites of other known proteins. Thus CAD has two ATP binding sites, one in each of the two highly homologous halves of the carbamyl phosphate domain which catalyze distinct ATP-dependent partial reactions in carbamyl phosphate synthesis.  相似文献   

12.
Regulation of Escherichia coli carbamyl phosphate synthetase by UMP and IMP was examined in studies with various analogs of these nucleotides. Whereas UMP inhibits enzyme activity, the arabinose analog of UMP was found to be an activator. dUMP neither activates nor inhibits, but binds to the enzyme in a manner similar to UMP as evaluated by direct binding studies, sedimentation behavior, and ultraviolet difference spectral measurements. dUMP decreases inhibition by UMP and activation by IMP, but has no effect on activation by L-ornithine. The findings are in accord with the view that IMP and UMP bind to the same region of the enzyme; a possible general model for such overlapping binding sites is considered. Additional evidence is presented that inorganic phosphate can modulate regulation of the activity by nucleotides. Phosphate (and arsenate) markedly increase inhibition by UMP, decrease activation by IMP, but do not affect activation by L-ornithine. The extent of activation by IMP and by L-ornithine and that of inhibition by UMP are decreased when Mg2+ concentrations are increased relative to a fixed concentration of ATP. The findings suggest that the allosteric effectors may affect affinity of the enzyme for divalent metal ions as well as, as previously shown, the affinity of the enzyme for Mg-ATP.  相似文献   

13.
The catalytic activity of carbamoyl phosphate synthetase (CPS) from Escherichia coli is allosterically regulated by UMP, IMP, and ornithine. Thirteen amino acids within the domain that harbors the overlapping binding sites for IMP and UMP were mutated to alanine and characterized. The four residues that interact directly with the phosphate moiety of IMP in the X-ray crystal structure (K954, T974, T977, and K993) were shown to have the greatest impact on the dissociation constants for the binding of IMP and UMP and the associated allosteric effects on the kinetic constants of CPS. Of the four residues that interact with the ribose moiety of IMP (S948, N1015, T1017, and S1026), S1026 was shown to be more important for the binding of IMP than UMP. Five residues (V994, I1001, D1025, V1028, and I1029) were mutated in the region of the allosteric domain that surrounds the hypoxanthine ring of IMP. With the exception of V994A, these mutations had a modest influence on the binding and subsequent allosteric effects by UMP and IMP.  相似文献   

14.
P M Anderson 《Biochemistry》1986,25(19):5576-5582
Carbamoyl-phosphate synthetase from Escherichia coli is subject to allosteric activation by ornithine, allosteric inhibition by uridine 5'-phosphate (UMP), and reversible concentration-dependent self-association. Positive allosteric effectors, magnesium adenosine 5'-triphosphate (MgATP), K+, and inorganic phosphate facilitate association. The purpose of this study was to determine the state of association of carbamoyl-phosphate synthetase in the presence and absence of different substrates and effectors and to consider the basis for the observed effects of enzyme concentration on specific activity. Studies employing gel filtration chromatography have shown that when the concentration of carbamoyl-phosphate synthetase is low (less than 0.01 mg/mL), the enzyme exists as monomer under all conditions, including the presence of UMP in phosphate buffer and the presence of all substrates plus ornithine (conditions that support maximal catalytic activity). At higher enzyme concentrations (e.g., greater than 0.01 mg/mL) the specific activity increases with increasing enzyme concentration when MgATP is nonsaturating but is independent of enzyme concentration when MgATP is saturating or when ornithine is present with MgATP being either saturating or nonsaturating. These results indicate that the catalytic activity of this enzyme is not directly linked to oligomer formation. The theoretical properties and possible significance of a generalized model of enzyme association-dissociation in which the active monomeric form, in equilibrium with another monomeric form, is specifically subject to self-association but the different states of association have the same specific activity, are discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The kinetic mechanism of Escherichia coli carbamoyl-phosphate synthetase has been determined at pH 7.5, 25 degrees C. With ammonia as the nitrogen source, the initial velocity and product inhibition patterns are consistent with the ordered addition of MgATP, HCO3-, and NH3. Phosphate is then released and the second MgATP adds to the enzyme, which is followed by the ordered release of MgADP, carbamoyl phosphate, and MgADP. With glutamine as the ammonia donor, the patterns are consistent with a two-site mechanism in which glutamine binds randomly to the small molecular weight subunit producing glutamate and ammonia. Glutamate is released and the ammonia is transferred to the larger subunit. Carbamoyl-phosphate synthetase has also been shown to require a free divalent cation for full activity.  相似文献   

16.
Kim J  Raushel FM 《Biochemistry》2001,40(37):11030-11036
Carbamoyl phosphate synthetase (CPS) from Escherichia coli is allosterically regulated by the metabolites ornithine, IMP, and UMP. Ornithine and IMP function as activators, whereas UMP is an inhibitor. CPS undergoes changes in the state of oligomerization that are dependent on the protein concentration and the binding of allosteric effectors. Ornithine and IMP promote the formation of an (alphabeta)4 tetramer while UMP favors the formation of an (alphabeta)2 dimer. The three-dimensional structure of the (alphabeta)4 tetramer has unveiled two regions of molecular contact between symmetry-related monomeric units. Identical residues within two pairs of allosteric domains interact with one another as do twin pairs of oligomerization domains. There are thus two possible structures for an (alphabeta)2 dimer: an elongated dimer formed at the interface of two allosteric domains and a more compact dimer formed at the interface between two oligomerization domains. Mutations at the two interfacial sites of oligomerization were constructed in an attempt to elucidate the mechanism for assembly of the (alphabeta)4 tetramer through disruption of the molecular binding interactions between monomeric units. When Leu-421 (located in the oligomerization domain) was mutated to a glutamate residue, CPS formed an (alphabeta)2 dimer in the presence of ornithine, UMP, or IMP. In contrast, when Asn-987 (located in the allosteric binding domain) was mutated to an aspartate, an (alphabeta) monomer was formed regardless of the presence of any allosteric effectors. These results are consistent with a model for the structure of the (alphabeta)2 dimer that is formed through molecular contact between two pairs of allosteric domains. Apparently, the second interaction, between pairs of oligomerization domains, does not form until after the interaction between pairs of allosteric domains is formed. The binding of UMP to the allosteric domain inhibits the dimerization of the (alphabeta)2 dimer, whereas the binding of either IMP or ornithine to this same domain promotes the dimerization of the (alphabeta)2 dimer. In the oligomerization process, ornithine and IMP must exert a conformational alteration on the oligomerization domain, which is approximately 45 A away from their site of binding within the allosteric domain. No significant dependence of the specific catalytic activity on the protein concentration could be detected, and thus the effects induced by the allosteric ligands on the catalytic activity and the state of oligomerization are unlinked from one another.  相似文献   

17.
Rishavy MA  Cleland WW  Lusty CJ 《Biochemistry》2000,39(24):7309-7315
15N isotope effects have been measured on the hydrolysis of glutamine catalyzed by carbamyl phosphate synthetase of Escherichia coli. The isotope effect in the amide nitrogen of glutamine is 1. 0217 at 37 degrees C with the wild-type enzyme in the presence of MgATP and HCO(3)(-) (overall reaction taking place). This V/K isotope effect indicates that breakdown of the tetrahedral intermediate formed with Cys 269 to release ammonia is the rate-limiting step in the hydrolysis. A full isotope effect of 1. 0215 is also seen in the partial reaction catalyzed by an E841K mutant enzyme, whose rate of glutamine hydrolysis is not affected by MgATP and HCO(3)(-). With wild-type enzyme in the absence of MgATP and HCO(3)(-), however, the (15)N isotope effect is reduced to 1. 0157. These isotope effects are interpreted in terms of partitioning of the tetrahedral intermediate whose rate of formation is dependent upon a conformation change which closes the active site after glutamine binding and prepares the enzyme for catalysis. An Ordered Uni Bi mechanism for glutamine hydrolysis that is consistent with the isotope effects and with the catalytic properties of the enzyme is proposed.  相似文献   

18.
O'neal TD 《Plant physiology》1975,55(6):975-977
An enzyme was extensively purified from jack bean leaves (Canavalia ensiformis L.) which produced o-ureidohomoserine from l-canaline and carbamyl phosphate. The most highly purified preparations catalyzed both this reaction and citrulline synthesis from ornithine and carbamyl phosphate, and the ratio of the two activities remained nearly constant during purification. When hydrated jack bean seeds were the enzyme source, ornithine carbamyltransferase (EC 2.1.3.3) activity was high but synthesis of ureidohomoserine was barely detectable. Both ornithine carbamyltransferase and the ureidohomoserine synthesizing enzyme had similar Km values for carbamyl phosphate. The purification data suggest that one enzyme may catalyze both reactions in jack bean leaves.  相似文献   

19.
The kinetics of oxidative phosphorylation catalyzed by bovine heart submitochondrial particles was studied in a range of MgATP and MgADP concentrations from 0.3 to 10 mM. It is shown that, at a low uncoupler concentration (0.9 microM of tetrachlorotrifluoromethylbenzimidazole, the lag period of the reaction increases from 12 s to 2-3 min, and KM for Pi increases severalfold; the value of Vmax remains practically unchanged. Increasing the [MgATP]/[MgADP] concentration ratio, with their total concentration being unchanged, leads to similar changes in the kinetics of oxidative phosphorylation. The value of delta pH generated on the membrane of AS particles at delta microH+ = 60 delta pH was measured using 9-aminoacridine. It was found that the electrochemical potential of H+ ions shows the same thermodynamic shift in the reaction of energy-dependent Pi -ATP exchange throughout the [MgATP]/[MgADP] concentration range studied, from 0.1 to 10: the synthesis on the ATP molecule is provided by the transmembrane transfer of two H+ ions. It was shown that the binding of ATP and/or ADP in the allosteric site, whose saturation is necessary for the functioning of ATP synthase, occurs with equal constants, 1-2 mM. It is concluded that the lag period in the synthesis of ATP indicates the monomolecular transition ATP hydrolase-->ATP sysnthase, which comes about by the action of transmembrane potential. The binding of MgADP or MgATP renders the enzyme structure "more coupled" or "less coupled", respectively. Structural distinctions manifest themselves in a kinetically different behavior of mitochondrial ATP synthase at [MgATP] > [MgADP] and [MgATP] < [MgADP] and do not suggest futile leakage of H+ through the membrane.  相似文献   

20.
Carbamoyl phosphate synthetase of pea shoots (Pisum sativum L.) was purified 101-fold. Its stability was greatly increased by the addition of substrates and activators. The enzyme was strongly inhibited by micromolar amounts of UMP (Ki less than 2 mum). UDP, UTP, TMP, and ADP were also inhibitory. AMP caused either slight activation (under certain conditions) or was inhibitory. Uridine nucleotides were competitive inhibitors, as was AMP, while ADP was a noncompetitive inhibitor. Enzyme activity was increased manyfold by the activator ornithine. Ornithine acted by increasing the affinity for Mg.ATP by a factor of 8 or more. Other activators were IMP, GMP, ITP, and GTP, IMP, like ornithine, increased the Michaelis constant for Mg.ATP. The activators ornithine, GMP, and IMP (but not GTP and ITP) completely reversed inhibition caused by pyrimidine nucleotides while increasing the inhibition caused by ADP and AMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号