首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wolf DP 《Theriogenology》2009,71(1):123-129
The experience with artificial insemination (AI) and the more invasive ARTs (assisted reproductive technologies) in the propagation of non-human primates (NHPs), although limited, has included representation from the Great Apes and both Old World and New World Macaques. The application of these technologies in NHPs is impacted by high cost, substantial technical requirements and the limited captive populations of available animals. A major incentive for their use would be to propagate endangered, underrepresented individuals or valuable founder animals. Detailed protocols and a substantial experience base for the ARTs are available for rhesus and cynomolgus macaques and form the basis of this review, including sperm recovery, processing and long-term storage at low temperatures, insemination techniques and timing. Controlled ovarian stimulation and subsequent oocyte recovery required for the invasive ARTs such as intracytoplasmic sperm injection (ICSI), is also described. Three recent AI reports in Old World Macaques are reviewed, along with examples of the use of the ARTs in the propagation of valuable founder animals, in the preservation of endangered macaques, and finally in the creation of neurodegenerative disease models for biomedical research purposes.  相似文献   

2.
Artificial insemination (AI) and the cryopreservation of sperm with full reproductive capabilities are vital in the armamentarium of infertility clinics and reproductive laboratories. Notwithstanding the fantastic successes with AI and sperm cryopreservation in numerous species, including humans and cattle, these assisted reproductive technologies are less well developed in other species of importance for biomedical research, such as genetically modified mice and nonhuman primates. To that end, AI at high efficiency in the rhesus macaque (Macaca mullata) and the successful cryopreservation of rhesus sperm is presented here, as are the complexities of this primate model due to differences in reproductive tract anatomy and gamete physiology. Cryopreservation had no effect on the ability of sperm to fertilize oocytes in vitro or in vivo. Post-thaw progressive motility was not affected by cryopreservation; however, acrosome integrity was lower for cryopreserved (74.1%) than for fresh sperm (92.7%). Fertilization rates did not differ when fresh (58.1%; n = 32/55) or cryopreserved sperm (63.8%; n = 23/36) were used for in vitro fertilization. Similarly, pregnancy rates did not differ significantly after AI with fresh (57.1%; n = 8/14) or cryopreserved sperm (62.5%; n = 5/8). Seven live rhesus macaques were born following AI with fresh sperm, and three live offspring and two ongoing pregnancies were obtained when cryopreserved sperm were used. Cryopreservation of rhesus sperm as presented here would allow for the cost-effective storage of lineages of nonhuman primates with known genotypes. These results suggest that either national or international centers could be established as repositories to fill the global needs of sperm for nonhuman primate research and to provide the experimental foundation on which to explore and perfect the preservation of sperm from endangered nonhuman primates.  相似文献   

3.
Efforts toward the conservation and captive breeding of wildlife can be enhanced by sperm sorting and associated reproductive technologies such as sperm cryopreservation and artificial insemination (AI). Sex ratio management is of particular significance to species which naturally exist in female-dominated social groups. A bias of the sex ratio towards females of these species will greatly assist in maintaining socially cohesive groups and minimizing male-male aggression. Another application of this technology potentially exists for endangered species, as the preferential production of females can enable propagation of those species at a faster rate. The particular assisted reproductive technology (ART) used in conjunction with sperm sorting for the production of offspring is largely determined by the quality and quantity of spermatozoa following sorting and preservation processes. Regardless of the ART selected, breeding decisions involving sex-sorted spermatozoa should be made in conjunction with appropriate genetic management. Zoological-based research on reproductive physiology and assisted reproduction, including sperm sorting, is being conducted on numerous terrestrial and marine mammals. The wildlife species for which the technology has undergone the most advance is the bottlenose dolphin. AI using sex-sorted fresh or frozen-thawed spermatozoa has become a valuable tool for the genetic and reproductive management of captive bottlenose dolphins with six pre-sexed calves, all of the predetermined sex born to date.  相似文献   

4.
The first successful artificial insemination (AI) in a rhinoceros was reported in 2007 using fresh semen. Following that success, we decided to evaluate the possibility of using frozen-thawed semen for artificial insemination. Semen, collected from a 35-36 year old Southern white rhinoceros (Ceratotherium simum simum) in the UK was frozen using the directional freezing technique. This frozen semen was used in two intrauterine AI attempts on a 30 years old female rhinoceros in Hungary. The first attempt, conducted 30 days postpartum with an insemination dose of ∼135 × 106 motile cells, failed. The second attempt, conducted two estrus cycles later with an insemination dose of ∼500 × 106 motile cells, resulted in pregnancy and the birth of a healthy offspring. This represents the first successful AI using frozen-thawed semen in a rhinoceros, putting it among very few wildlife species in which AI with frozen-thawed semen resulted in a live birth. The incorporation of AI with frozen-thawed semen into the assisted reproduction toolbox opens the way to preserve and transport semen between distant individuals in captivity or between wild and captive populations, without the need to transport stressed or potentially disease carrying animals. In addition, cryopreserved spermatozoa, in combination with AI, are useful methods to extend the reproductive lifespan of individuals beyond their biological lifespan and an important tool for managing genetic diversity in these endangered mammals.  相似文献   

5.
In animals with internal fertilization, ovulation and female sperm storage are essential steps in reproduction. While these events are often required for successful fertilization, they remain poorly understood at the developmental and molecular levels in many species. Ovulation involves the regulated release of oocytes from the ovary. Female sperm storage consists of the movement of sperm into, maintenance within, and release from specific regions of the female reproductive tract. Both ovulation and sperm storage elicit important changes in gametes: in oocytes, ovulation can trigger changes in the egg envelopes and the resumption of meiosis; for sperm, storage is a step in their transition from being "movers" to "fertilizers." Ovulation and sperm storage both consist of timed and directed cell movements within a morphologically and chemically complex environment (the female reproductive tract), culminating with gamete fusion. We review the processes of ovulation and sperm storage for Drosophila melanogaster, whose requirements for gamete maturation and sperm storage as well as powerful molecular genetics make it an excellent model organism for study of these processes. Within the female D. melanogaster, both processes are triggered by male factors during and after mating, including sperm and seminal fluid proteins. Therefore, an interplay of male and female factors coordinates the gametes for fertilization.  相似文献   

6.
The objective of the study was to develop a method for artificial insemination (AI) in the common marmoset, a New World primate species. For AI to be successful, sperm must be deposited at an appropriate site and time in the female reproductive tract, details of which are currently not available for Callitrichid species. Epididymal sperm were deposited in the cervix of 18 marmoset monkeys (Callithrix jacchus) around the time of expected ovulation using either 3, 2, or 1 inseminations. Six out of 18 females conceived, resulting in the first reported births following AI in this species. These pregnancies show that the presence of coagulum in the vagina and the stimulus of the female reproductive tract by natural mating are not essential for effective sperm transport in this species. Although 3 different timing regimes for sperm deposition relative to ovulation were employed, no protocol was demonstrably better than the others in terms of number of conceptions. The proportions of motile, live, and morphologically normal sperm in the suspensions used for AI were comparable with published values for ejaculates from fertile male macaques. These preliminary results indicate that births are possible following AI in marmosets: the technique could be used to aid effective genetic management of the species and possibly to facilitate captive breeding of endangered Callitrichids. Am J Primatol 41:37–43, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
Artificial insemination in deer and non-domestic bovids   总被引:1,自引:0,他引:1  
Artificial insemination technology has revolutionized the domestic cattle breeding industry and allowed for the dissemination of valuable genetics worldwide. This technology has been adapted for use in many other taxa for the conservation of threatened and endangered species, but its use for the genetic management of small populations of deer, antelope and other non-domestic bovids has met numerous challenges and limited success. In practice, adaptation of domestic bovine AI protocols to other artiodactylids for genetic management has been limited by: (1) a lack of understanding of species-specific reproductive characteristics; (2) the inability to minimize handling stress; (3) pregnancy losses; and (4) regulatory challenges in semen importation. To date, AI protocols have been developed for seven species of cervid and 14 species of non-domestic bovids; recent developments in this technology has allowed greater use of AI for dissemination of genetics in farmed deer species. However, despite decades of research in the use of assisted reproduction for the conservation of antelope and other non-domestic bovids, even this simplest technique has not been used repeatedly for genetic management.  相似文献   

8.
This review describes the use of modern reproductive biotechnologies or assisted reproductive techniques (ART) including artificial insemination, embryo transfer/sexing, in vitro fertilization, gamete/embryo micromanipulation, semen sexing, genome resource banking, and somatic cell nuclear transfer (cloning) in conservation programs for endangered mammalian species. Such biotechnologies allow more offspring to be obtained from selected parents to ensure genetic diversity and may reduce the interval between generations. However, the application of reproductive biotechnologies for endangered free-living mammals is rarer than for endangered domestic breeds. Progress in ART for non-domestic species will continue at a slow pace due to limited resources, but also because the management and conservation of endangered species is biologically quite complex. In practice, current reproductive biotechnologies are species-specific or inefficient for many endangered animals because of insufficient knowledge on basic reproduction like estrous cycle, seasonality, structural anatomy, gamete physiology and site for semen deposition or embryo transfer of non-domestic species.  相似文献   

9.
Over the last century, several reproductive biotechnologies beyond the artificial incubation of eggs were developed to improve poultry breeding stocks and conserve their genetic diversity. These include artificial insemination (AI), semen storage, diploid primordial germ cell (PGC) methodologies, and gonad tissue storage and transplantation. Currently, AI is widely used for selection purposes in the poultry industry, in the breeding of turkeys and guinea fowl, and to solve fertility problems in duck interspecies crosses for the production of mule ducklings. The decline in some wild game species has also raised interest in reproductive technologies as a means of increasing the production of fertile eggs, and ultimately the number of birds that can be raised. AI requires viable sperm to be preserved in vitro for either short (fresh) or longer periods (chilling or freezing). Since spermatozoa are the most easily accessed sex cells, they are the cell type most commonly preserved by genetic resource banks. However, the cryopreservation of sperm only preserves half of the genome, and it cannot preserve the W chromosome. For avian species, the problem of preserving oocytes and zygotes may be solved via the cryopreservation and transplantation of PGCs and gonad tissue. The present review describes all these procedures and discusses how combining these different technologies allows poultry populations to be conserved and even rapidly reconstituted.  相似文献   

10.
Rorie RW 《Theriogenology》1999,52(8):1273-1280
For a number of years, the time of insemination or mating during estrus has been believed to influence the sex ratio of offspring, with early insemination resulting in more females and late insemination, more males. Possible mechanisms of altering the sex ratio include facilitating or inhibiting the transport of either X- or Y-chromosome-bearing sperm through the reproductive tract, preferential selection of sperm at fertilization, or sex-specific death of embryos after fertilization. In livestock species, there is evidence for preferential selection of X- or Y-bearing sperm, based on the maturational state of the oocyte at fertilization. In deer and sheep, early and late insemination appears to skew the sex ratio toward females and males, respectively. In cattle, conflicting reports on the effect of time of insemination on sex ratio make the premise less clear. Many of the published studies lack adequate observations for definitive conclusions and/or are based on infrequent observations of estrus, making it difficult to assess the effect of time of insemination on sex ratio. It is likely that any effect of time of insemination on sex ratio in cattle is relatively small. Evidence is accumulating that treatments used for synchronization of estrus or ovulation in cattle may influence the sex ratio.  相似文献   

11.
A total of 415 fat tailed ewes were randomly assigned to two groups to assess the effect of duration of melengestrol acetate (MGA) (9 versus 12d) administration on reproductive parameters associated with laparoscopic artificial insemination. At the end of MGA treatment, ewes in each group were subdivided and inseminated with one of two different insemination doses (10×10(7) or 20×10(7) sperm per 0.5 ml insemination dose) of fresh diluted semen. Inseminations were carried out 11-18 h after first detected estrus. Ewes were screened for their return to oestrus from 10 to 21 days post AI and inseminated at their returned oestrus. Pregnancy diagnosis was done from approximately 55 days after insemination in both synchronized and return estrus. For short (9-day) and long (12-day) term MGA treated groups, estrus rates were 62% versus 89% (P<0.0001), respectively. Ewes (n=115) that returned to estrus were inseminated (7-11h after estrus detection) with fresh diluted semen at different doses (20×10(7) or 40×10(7) or 60×10(7) sperm per 0.5 ml insemination dose). Pregnancy rates were 41% and 44% for short term and long term MGA treated ewes, respectively. Pregnancy rate of ewes which returned to oestrus was 53.4%. There was a significant (P<0.05) increase in pregnancy rates (38-52% for 11-16 h; 63% for 17-18 h) when insemination was held at 17-18 h after first detected estrus following MGA treatments. Pregnancy rates were found to be similar in ewes inseminated with 10×10(7) (36%) or 20×10(7) (47%) motile spermatozoa at first AI, and 20×10(7) (44%) or 40×10(7) (59%) or 60×10(7)(48%) at second AI. It was concluded that short term MGA treated ewes were recorded with lower estrus rates but was similar to pregnancy rates with long term MGA treatment. Acceptable pregnancy rates were achieved in MGA induced estrus when insemination is conducted at 17-18 h after estrus onset and with 20×10(7) sperm per insemination dose.  相似文献   

12.
In many animals reproductive success is determined after insemination by the interaction of male and female processes. While sperm competition is reasonably well understood in some taxa, other processes, such as cryptic female choice and differential early embryo mortality resulting from genetic incompatibilities, are less well understood. The relative importance of these different factors contributing to reproductive success is difficult to assess. Here we control for male-mediated effects (which are often considerable and can mask more subtle processes) through the artificial insemination of known numbers of sperm in the domestic fowl to reveal that male reproductive success is nontransitive across females: the success of a particular male depends on the background against which his sperm compete for fertilization. Two potential processes could account for this effect: cryptic female choice (sperm choice) or differential early embryo mortality. Regardless of the mechanism, nontransitivity of male reproductive success has important evolutionary consequences, including the maintenance of variation in male fitness.  相似文献   

13.
《Theriogenology》1986,25(1):25-32
Artificial reproduction techniques were applied to individual animals not capable of natural reproduction. All individuals represented endangered species. An aged and debilitated Arabian oryx was treated with prostaglandin F2 α (PG) and pregnant mare serum gonadotropin (PMSG) prior to euthanasia. She responded to the treatment with mild superovulation. Four follicular oocytes were recovered, all of which subsequently matured in vitro and were frozen. A group of three Soemmering's gazelles, including a crippled male and a three-legged female, was evaluated for reproductive potential. The male was electro-ejaculated and determined to be producing normal sperm; semen was frozen. Estrus was induced and synchronized in the two females with PMSG and PG prior to the introduction of the male. Copulation attempts were unsuccessful. A second modified estrus induction attempt did not result in behavioral estrus in either female. The handicapped female was subsequently superovulated with PMSG before euthanasia. Four oocytes were recovered but failed to mature in vitro. Two Przewalski's horse mares are not able to mate naturally due to chronic laminitis. Preliminary studies have been undertaken to determine, through ultrasound examination, the estrous cycles and ovarian dynamics of the two horses, in preparation for artificial insemination and embryo transfer. Cycle length and variability, ovarian response to PG and rate of follicle growth have been determined to be similar to the domestic horse.  相似文献   

14.
A major benefit of advanced reproduction technologies (ART) in animal breeding is the ability to produce more progeny per individual parent. This is particularly useful with animals of high genetic merit. Testis germ cell transplantation (TGCT) is emerging as a novel reproductive technology with application in animal breeding systems, including the potential for use as an alternative to artificial insemination (AI), an alternative to transgenesis, part of an approach to reducing generation intervals, or an approach toward development of interspecies hybrids. There is one major difference in TGCT between rodents and some other species associated with immunotolerance in heterologous transplantation. In particular, livestock and aquatic species do not require an immunesuppression procedure to allow donor cell survival in recipient testis. Testicular stem cells from a genetically elite individual transplanted into others can develop and produce a surrogate male—an animal that produces the functional sperm of the original individual.

Spermatozoa produced from testis stem cells are the only cells in the body of males that can transmit genetic information to the offspring. The isolation and genetic manipulation of testis stem cells prior to transplantation has been shown to create transgenic animals. However, the current success rate of the transplantation procedure in livestock and aquatic species is low, with a corresponding small proportion of donor spermatozoa in the recipient's semen. The propagation of donor cells in culture and preparation of recipient animals are the two main factors that limit the commercial application of this technique. The current paper reviews and compares recent progress and examines the difficulties of TGCT in both livestock and aquatic species, thereby providing new insights into the application of TGCT in food producing animals.  相似文献   

15.
The fertility rate for goats following artificial insemination (AI) is usually analyzed according to herd or treatment groups. However, these general information are insufficient to allow identification of specific factors which affect this individual reproductive performance. In the present experiment 640 dairy goats were used to analyze to what extent the interval from sponge removal to estrus affects the results of AI, performed at a predetermined time following sponge removal. Estrus occurred in 98.1% of experimental animals between 24 and 72 hours after sponge removal. The fertility rate was lower for goats that came into estrus later than 30 hours after sponge removal (33.3%, n = 108 than for goats that exhibited estrus earlier (65.0%, n = 520; P<0.001). The occurrence of late estrus is not age dependent, but it increases with the number of treatments that an individual animal has previously received. These results show that the low fertility rate observed in some herds after synchronization of estrus and AI may be related to the high proportion of goats with a late occurrence of estrus, and this phenomenon increases in animals that are treated repeatedly.  相似文献   

16.
Two trials were conducted over a two-year period with 519 cycling Bos taurus x Bos indicus heifers and cows. The objectives of these trials were: 1) To compare fertility of artificial insemination at the cloprostenol-induced estrus and the naturally occurring estrus, 2) To evaluate the fertility of artificial insemination at a predetermined time (Timed AI) following an estrous synchronization regime with cloprostenol (CLP) and 3) To define the optimum interval from a second CLP treatment for Timed AI. In Trial I, 128 animals were assigned to four treatments: 1) Controls, which were inseminated at the natural occurring estrus; 2) timed AI at 72 hr and again at 96 hr post-second CLP; 3) Timed AI at 72 hr post-second CLP and 4) AI at the CLP-induced estrus. Trial II included 391 heifers distributed among six treatments; 1) Timed AI between 70 and 90 hr post-second CLP; 2) Sham AI between 70 and 90 hr post-second CLP, 3) Chute Stress between 70 and 90 hr post-second CLP; 4) AI at the CLP-induced estrus; 5) Control-AI at the naturally occurring estrus and 6) Non-treated and exposed to fertile bulls. The fertility of the animals artificially inseminated at the CLP-induced estrus was similar to that of insemination at the naturally occurring estrus in Trial I and Trial II (30 vs 46%; 37 vs 38%, respectively). The first service pregnancy rates of the animals bred at a predetermined time were similar to those bred at the CLP-induced estrus in Trial I, but lower in Trial II (P < .01).  相似文献   

17.
As advanced reproductive technologies become more efficient and repeatable in livestock and laboratory species, new opportunities will evolve to apply these techniques to alternative and non-traditional species. This will result in new markets requiring unique business models that address issues of animal welfare and consumer acceptance on a much different level than the livestock sector. Advanced reproductive technologies and genetic engineering will be applied to each species in innovative ways to provide breeders more alternatives for the preservation and propagation of elite animals in each sector. The commercialization of advanced reproductive techniques in these niche markets should be considered a useful tool for conservation of genetic material from endangered or unique animals as well as production of biomedical models of human disease.  相似文献   

18.
Effects of maternal age on oocyte developmental competence   总被引:5,自引:0,他引:5  
Armstrong DT 《Theriogenology》2001,55(6):1303-1322
The widespread use of a variety of assisted reproductive technologies has removed many of the constraints that previously restricted mammalian reproduction to the period between onset of puberty and reproductive senescence. In vitro embryo production systems now allow oocytes from very young animals to undergo fertilization and form embryos capable of development to normal offspring, albeit at somewhat reduced efficiencies compared to oocytes from adult females. They also can overcome infertility associated with advanced age of animals and women. This review examines oocyte developmental competence as the limiting factor in applications of assisted reproductive technologies for both juvenile and aged females. Age of oocyte donor is a significant factor influencing developmental competence of the oocyte. Age-related abnormalities of oocytes include a) meiotic incompetence or inability to complete meiotic maturation resulting in oocytes incapable of fertilization; b) errors in meiosis that can be compatible with fertilization but lead to genetic abnormalities that compromise embryo viability; and c) cytoplasmic deficiencies that are expressed at several stages of development before or after fertilization. In general, oocytes from juvenile donors and the embryos derived therefrom appear less robust and may be less tolerant to suboptimal handling and in vitro culture conditions than are adult oocytes. Research to identify specific cytoplasmic deficiencies of juvenile oocytes may enable modifications of culture conditions to correct such deficiencies and thus enhance developmental competence. Use of oocytes from aged donors for assisted reproduction can have a variety of applications such as extending the reproductive life of individual old females whose offspring still have high commercial value, and conservation of genetic resources such as rare breeds of livestock and endangered species. In general, female fertility decreases with advancing age. Studies of women in oocyte donation programs have established reduced oocyte competence as the major cause of declining fertility with age, although inadequate endometrial function can also be a contributing factor. Most research has emphasized the importance of chromosomal abnormalities because of the well established increase in aneuploidy with increasing maternal age but little is known about the underlying cellular and molecular mechanisms. Research aimed at identifying the specific developmental deficiencies of oocytes from juvenile donors and abnormalities of oocytes from aged females will assist in overcoming present bottlenecks that limit the efficiency of assisted reproduction technologies. Such research will also be crucial to the development of new oocyte-based technologies for overcoming infertility and possibly subverting chromosomal abnormalities in women approaching menopause.  相似文献   

19.
It is estimated that as many as 30,000 offspring, mostly cattle, have been produced in the past 5 years using AI or some other means of transport with spermatozoa sexed by flow cytometric sperm sorting and DNA as the marker of differentiation. It is well documented that the only marker in sperm that can be effectively used for the separation of X- and Y-chromosome bearing spermatozoa is DNA. The method, as it is currently used worldwide, is commonly known as the Beltsville Sperm Sexing Technology. The method is based on the separation of sperm using flow cytometric sorting to sort fluorescently (Hoechst 33342) labeled sperm based on their relative content of DNA within each population of X- and Y-spermatozoa. Currently, sperm can be produced routinely at a rate of 15 million X- and an equal number of Y-sperm per hour. The technology is being applied in livestock, laboratory animals, and zoo animals; and in humans with a success rate of 90-95% in shifting the sex ratio of offspring. Delivery of sexed sperm to the site of fertilization varies with species. Conventional AI, intrauterine insemination, intra-tubal insemination, IVF with embryo transfer and deep intrauterine insemination are effectively used to obtain pregnancies dependent on species. Although sperm of all species can be sorted with high purity, achieving pregnancies with the low numbers of sperm needed for commercial application remains particularly elusive in swine. Deep intrauterine insemination with 50-100 million sexed boar sperm per AI has given encouragement to the view that insemination with one-fiftieth of the standard insemination number will be sufficient to achieve pregnancies with sexed sperm when specialized catheters are used. Catheter design, volume of inseminate, number of sexed sperm are areas where further development is needed before routine inseminations with sexed sperm can be conducted in swine. Cryopreservation of sex-sorted sperm has been routinely applied in cattle. Although piglets have been born from frozen sex-sorted boar sperm, freezing and processing protocols in combination with sex-sorted sperm are not yet optimal for routine use. This review will discuss the most recent results and advances in sex-sorting swine sperm with emphasis on what developments must take place for the sexing technology to be applied in commercial practice.  相似文献   

20.
Fertility estimation: a review of past experience and future prospects   总被引:1,自引:0,他引:1  
Fertility has many components and stages which require that males and females be functionally capable of carrying out all critical stages if each generational reproductive cycle is to be completed. To accomplish this, the male must produce and ejaculate normal fertile sperm. The female must produce, store and ovulate normal fertilizable oocytes. Furthermore, the female must provide a reproductive system compatible with sperm transport, capacitation, and fertilization of the oocytes, embryo and fetal development, and finally birth of healthy young. Reproductive success or failure at several of these points can be estimated quantitatively on a population basis, and in a few situations on an individual basis. It is important that fertility estimates be determined accurately and with precision to be most useful to researchers and managers of animal enterprises. Many studies have underestimated the biological relationship of fertility to other traits because the estimates lacked precision. Many in vitro manipulations of sperm in artificial insemination, of gametes in various assisted reproductive technologies, and of embryos in embryo transfer are utilized in animal breeding programs. Accurate estimation of reproductive efficiency of these in vitro procedures also is important. Conditions surrounding different sets of fertility estimates almost certainly will be different. These conditions should be described as precisely as possible, and appropriate controls included in all experiments. When possible, experiments should be replicated over time and place to determine the repeatability of the various criteria used to estimate fertility and reproductive efficiency. Advances in genomic information and molecular biology should facilitate characterizing more fully inherent potential fertility of animals at birth. In vitro tests will improve, and automated techniques will facilitate making multiple determinations possible on a large scale. Reliability of fertility estimates will increase, with the potential for enhanced animal reproductive performance through more accurate selection, genetic engineering, and enlightened animal care. Simultaneously, it is important to recognize that prediction of future fertility is more hazardous than estimating fertility, as a completely new set of circumstances may occur which are not predictable. Because fertility estimation may be applied under a myriad of conditions, principles and factors affecting fertility will be emphasized in this review as being more useful than a compilation of numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号