首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To effectively treat serious bone defects using bone-regenerative medicine, a small chemical compound that potently induces bone formation must be developed. We previously reported on the osteogenic effect of 4-(4-methoxyphenyl)pyrido[40,30:4,5]thieno[2,3-b]pyridine-2-carboxamide (TH), a helioxanthin-derivative, in vitro. Here, we report on TH’s osteogenic effects ex vivo and in vivo. TH-induced new bone formation in both calvarial and metatarsal organ cultures. A novel monitoring system of osteoblastic differentiation using MC3T3-E1 cells revealed that TH was released from α-TCP bone cement and this release continued for more than one month. Lastly, the implantation of the α-TCP carrier containing TH into defects in mouse skull resulted in increased new bone areas within the defects after 4 weeks. A TH-containing scaffold may help establish a more efficient bone regeneration system.  相似文献   

2.
Despite the mouse being an important laboratory species, little is known about changes in its extracellular matrix (ECM) during follicle and corpora lutea formation and regression. Follicle development was induced in mice (29 days of age/experimental day 0) by injections of pregnant mare’s serum gonadotrophin on days 0 and 1 and ovulation was induced by injection of human chorionic gonadotrophin on day 2. Ovaries were collected for immunohistochemistry (n=10 per group) on days 0, 2 and 5. Another group was mated and ovaries were examined on day 11 (n=7). Collagen type IV α1 and α2, laminin α1, β1 and γ1 chains, nidogens 1 and 2 and perlecan were present in the follicular basal lamina of all developmental stages. Collagen type XVIII was only found in basal lamina of primordial, primary and some preantral follicles, whereas laminin α2 was only detected in some preantral and antral follicles. The focimatrix, a specialised matrix of the membrana granulosa, contained collagen type IV α1 and α2, laminin α1, β1 and γ1 chains, nidogens 1 and 2, perlecan and collagen type XVIII. In the corpora lutea, staining was restricted to capillary sub-endothelial basal laminas containing collagen type IV α1 and α2, laminin α1, β1 and γ1 chains, nidogens 1 and 2, perlecan and collagen type XVIII. Laminins α4 and α5 were not immunolocalised to any structure in the mouse ovary. The ECM composition of the mouse ovary has similarities to, but also major differences from, other species with respect to nidogens 1 and 2 and perlecan.  相似文献   

3.
The magnitude of activation of the type I and type II forms of cAMP-dependent protein kinase was investigated in estrous follicles and corpora lutea (CL) obtained from ovaries of control rabbits and rabbits injected acutely with human chorionic gonadotropin (hCG). To this end, a chromatographic technique which permitted quantitative evaluation of the in vivo activational state of the two forms of cAmP-dependent protein kinase was developed and verified. Results revealed that in follicles obtained from ovaries of untreated estrous rabbits, 15% of the soluble cAMP-dependent protein kinase, all of which exists as the type II isozyme, is activated. Intravenous administration of a single bolus of hCG promoted a concentration-dependent activation (in 10 min) of this protein kinase isozyme. In CL obtained from ovaries of control, 4-day pseudopregnant rabbits, 32% of the total soluble cAMP-dependent protein kinase exists as the type I form and 68% exists as the type II form. Both types of protein kinase are approximately 10% dissociated in CL from ovaries of untreated rabbits. Upon intravenous administration of hCG, only the type I form of cAMP-dependent protein kinase is further activated (in 10 min). Dissociation of this protein kinase is dependent upon the time and concentration of hCG. Preferential activation of the type I form of cAMP-dependent protein kinase in CL is also demonstrable in in vitro studies using exogenous cAMP. These data suggest that the physiological intracellular mediator of acute cAMP-regulated, hCG-triggered functions in rabbit ovarian follicles is the type II isozyme of cAMP-dependent protein kinase while in CL of 4-day pseudopregnant rabbits, it is the type I enzyme form.  相似文献   

4.
5.
Severance of nervi corporis allati I (NCA I) in day-1 adult female Locusta migratoria resulted in a significant decrease and a loss of the characteristic pattern of juvenile hormone biosynthesis by the corpora allata as determined by radiochemical assay. This decrease in the rate of juvenile hormone biosynthesis was not reflected in basal oöcyte growth. The lengths of the oöcytes were the same in NCA-transectioned and in the sham-operated females. The effect of severance of both NCA I and NCA II on juvenile hormone biosynthesis and ovarian maturation was similar to the effect of NCA I severance only.Rate of juvenile hormone biosynthesis by corpora allata of fourth-instar larvae exhibited a maximum of activity in the middle of the stadium. The severance of NCA I early in the stadium resulted in a very low rate of juvenile hormone biosynthesis and a disappearance of this peak. In NCA I-transectioned larvae, the duration of the stadium was significantly increased although larvae moulted into normal fifth instar.  相似文献   

6.
7.
8.
Cytosol prepared from rat preovulatory ovarian follicles contained several specific substrates which were phosphorylated by [gamma 32P] ATP in the presence of 2 microM cyclic AMP (cAMP) or 780 nM of highly purified catalytic subunit. These substrates were identified as RII, the regulatory subunit of type II cAMP-dependent protein kinase, an Mr = 43,000 protein presumed to be actin, and four other proteins with Mr = 36,500-15,000. A marked decrease in phosphorylation of these proteins was observed within 6-48 h of human chorionic gonadotropin (hCG)-induced ovulation and luteinization in hormonally primed immature rats. The phosphorylation of these proteins was also low in cytosol of corpora lutea isolated on Days 2, 4, 9, 13 and 23 of pregnancy. The decrease in phosphorylation of RII was associated primarily with a decrease in substrate content as measured by photoaffinity labeling and silver staining techniques, and not to a marked increase in phosphoprotein phosphatase and adenosinetriphosphatase (ATPase) activities. Whereas the decreased phosphorylation of other proteins is also presumed to be related to a decrease in their cytosol content, the data do not exclude the possibility that luteal tissue contains a specific phosphoprotein phosphatase which is not present in granulosa or theca cells of preovulatory follicles. We conclude that luteinizing hormone (LH) or hCG, and thereby cAMP itself, induces the rapid loss of specific phosphoproteins which may be involved in regulating cAMP action in granulosa cells.  相似文献   

9.
10.
11.
Vascular network formation is a key therapeutic event in regenerative medicine because it is essential for mitigating or ameliorating ischemic conditions implicated in various diseases and repair of tissues and organs. In this study, we induced human induced pluripotent stem cells (hiPSCs) to differentiate into heterogeneous cell populations which have abilities to form vascular vessel-like structures by recapitulating the embryonic process of vasculogenesis in vitro. These cell populations, named cardiovascular blast populations (CBPs) in this report, primarily consisted of CD31+ and CD90+ cells.  相似文献   

12.
In this study, we investigated the in vitro ACE inhibitory and in vivo antihypertensive effect of insect cell extracts. The IC50 of three insect cell lines from different type and insect species origin: S2 (embryo, Drosophila melanogaster), Sf21 (ovary, Spodoptera frugiperda) and Bm5 (ovary, Bombyx mori), were evaluated. Most interesting results were that the IC50 values ranged between 0.4 and 0.9 mg/ml, and that an extra hydrolysis with gastrointestinal enzymes did not increase the ACE inhibitory activity conspicuously. Finally, a single oral administration with a gavage of 150 mg cell extract/kg BW to spontaneous hypertensive rats (SHR) significantly decreased (p < 0.05) their systolic blood pressure (SBP) with 5-6% (9-12 mm Hg) compared to the controls at 6 h post-administration. Here the undigested and digested insect S2 cell extracts were equal in activity to lower the SBP. To the best of our knowledge, this is the first report of in vivo antihypertensive activity of insect cell extracts and this without an extra digestion requirement.  相似文献   

13.
Bone is a common site of metastasis for breast, prostate, lung, kidney and other cancers. Bone metastases are incurable, and substantially reduce patient quality of life. To date, there exists no small-molecule therapeutic agent that can reduce tumor burden in bone. This is partly attributed to the lack of suitable in vitro assays that are good models of tumor growth in bone. Here, we take advantage of a novel ex vivo model of bone colonization to report a series of pyrrolopyrazolone small molecules that inhibit cancer cell invasion and ex vivo tumor growth in bone at single-digit micromolar concentration. We find that the compounds modulated the expression levels of genes associated with bone-forming osteoblasts, bone-destroying osteoclasts, cancer cell viability and metastasis. Our compounds provide chemical tools to uncover novel targets and pathways associated with bone metastasis, as well as for the development of compounds to prevent and reverse bone tumor growth in vivo.  相似文献   

14.
Membrane inactivation by freezing has been investigated using intact spinach leaves and isolated thylakoid membranes from chloroplasts of leaf cells as test material. During freezing in vitro in solutions containing neutral solute and a slight excess of inorganic salts such as NaCl, electron transport is stimulated while photophosphorylation is lost. Under more drastic freezing conditions damage increases, affecting dichlorophenolindophenol reduction, the rise in variable fluorescence, ferricyanide reduction and electron transport through Photosystem I, in that order. Semipolar compounds such as phenylalanine or phenylpyruvate exhibit a much higher membrane toxicity during freezing than inorganic salts. The profile of damage caused by this class of compounds is different from that caused by salts. Damage to membranes isolated rapidly from frost-killed leaves is similar to that produced by semipolar compounds during freezing in vitro. A few sites of damage could be identified, among them the site responsible for oxidation of water during photosynthesis. The results support the view that the sensitivity of their membranes limits the ability of cells to withstand freezing and suggest that freezing sensitivity is due to the accumulation in the cells of potentially membrane-toxic organic and norganic cell constituents.  相似文献   

15.
16.
The aim of present study was to quantitatively investigate the neurochemical profile of the frontal cortex region in a rat model of long-term alcohol consumption, by using in vivo proton magnetic resonance spectroscopy (1H-MRS) at 4.7 T and ex vivo1H high-resolution magic angle spinning (HR-MAS) technique at 11.7 T. Twenty male rats were divided into two groups and fed a liquid diet for 10 weeks. After 10 weeks, in vivo1H MRS spectra were acquired from the frontal cortex brain region. After in vivo1H MRS experiments, all animals were sacrificed and 20 frontal cortex tissue samples were harvested. All tissue examinations were performed with the 11.7 T HR-MAS spectrometer and high-resolution spectra were acquired. The in vivo and ex vivo spectra were quantified as absolute metabolite concentrations and normalized ratios of total signal-intensity (i.e., metabolitesNorm), respectively. The absolute quantifications of in vivo spectra showed significantly higher glycerophosphocholine plus phosphocholine (GPC + PCh) and lower myo-inositol (mIns) concentrations in ethanol-treated rats compared to controls. The quantifications of ex vivo spectra showed significantly higher PChNorm, ChoNorm and tChoNorm, and lower GPCNorm and mInsNorm ratio levels in ethanol-treated rats compared to controls. Our findings suggest that reduced mIns concentrations caused by the long-term alcohol consumption may lead to hypo-osmolarity syndrome and astrocyte hyponatremia. In addition, increased choline-containing compound concentrations may reflect an increased cell turnover rate of phosphatidylcholine and other phospholipids, indicating an adaptive mechanism. Therefore, these results might be utilized as key markers in chronic alcohol intoxication metabolism.  相似文献   

17.
Prion diseases are fatal neurodegenerative disorders, which are not curable and no effective treatment exists so far. The major neuropathological change in diseased brains is the conversion of the normal cellular form of the prion protein PrPcC into a disease-associated isoform PrPSc. PrPSc accumulates into multimeres and fibrillar aggregates, which leads to the formation of amyloid plaques. Increasing evidence indicates a fundamental role of PrPSc species and its aggregation in the pathogenesis of prion diseases, which initiates the pathological cascade and leads to neurodegeneration accompanied by spongiform changes. In search of compounds that have the potential to interfere with PrPSc formation and propagation, we used a cell based assay for the screening of potential aggregation inhibitors. The assay deals with a permanently prion infected cell line that was adapted for a high-throughput screening of a compound library composed of 10,000 compounds (DIVERset 2, ChemBridge).  相似文献   

18.
19.
Tullio Pozzan  Rüdiger Rudolf 《BBA》2009,1787(11):1317-1323
Mitochondria play a pivotal role in intracellular Ca2+ signalling by taking up and releasing the ion upon specific conditions. In order to do so, mitochondria depend on a number of factors, such as the mitochondrial membrane potential and spatio-temporal constraints. Whereas most of the basic principles underlying mitochondrial Ca2+ handling have been successfully deciphered over the last 50 years using assays based on in vitro preparations of mitochondria or cultured cells, we have only just started to understand the actual physiological relevance of these processes in the whole animal. Recent advancements in imaging and genetically encoded sensor technologies have allowed us to visualise mitochondrial Ca2+ transients in live mice. These studies used either two-photon microscopy or bioluminescence imaging of cameleon or aequorin-GFP Ca2+ sensors, respectively. Both methods revealed a consistent picture of Ca2+ uptake into mitochondria under physiological conditions even during very short-lasting elevations of cytosolic Ca2+ levels. The big future challenge is to understand the functional impact of such Ca2+ signals on the physiology of the observed tissue as well as of the whole organism. To that end, the development of multiparametric in vivo approaches will be mandatory.  相似文献   

20.
Incubation in vitro of adult Brugia pahangi in an apparatus which permitted the separate exposure of the anterior, middle, or posterior region of the worms to medium-containing radioactively labeled d-glucose, l-leucine, and adenosine has provided evidence that these materials are taken up in physiologically significant amounts by a transcuticular route. No evidence for an oral ingestion of materials has been obtained from worms in vitro, but in vivo an oral uptake of Trypan blue has been demonstrated. The ultrastructure and cytochemical staining reactions for nonspecific esterase, acid phosphatase (EC-3.1.3.2), and leucine naphthylamidase of the gut and body wall are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号