首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Sporulation, characteristic for some bacteria such as Bacillus subtilis, has not been entirely defined yet. Protein phosphatase E (PrpE) and small, acid soluble spore proteins (SASPs) influence this process. Nevertheless, direct result of PrpE interaction on SASPs content in spore coat of B. subtilis has not been evidenced so far. As proteomic approach enables global analysis of occurring proteins, therefore it was chosen in this experiment to compare SASPs occurrence in two strains of B. subtilis, standard 168 and ΔprpE, lacking PrpE phosphatase. Proteomic analysis is still a challenge, and despite of big approach in mass spectrometry (MS) field, the identification reliability remains unsatisfactory. Therefore there is a rising interest in new methods, particularly bioinformatic tools that would harden protein identification. Most of currently applied algorithms are based on MS-data. Information from separation steps is not still in routine usage, even though they also provide valuable facts about analyzed structures. The aim of this research was to apply a model for peptides retention times prediction, based on quantitative structure-retention relationships (QSRR) in SASPs analysis, obtained from two strains of B. subtilis proteome digests after separation and identification of the peptides by LC-ESI-MS/MS. The QSRR approach was applied as the additional constraint in proteomic research verifying results of MS/MS ion search and confirming the correctness of the peptides identifications along with the indication of the potential false positives and false negatives.  相似文献   

2.
This study was taken up with a view to generate basic information on spore hardiness to ethanol in various Bacillus species and related genera, and to assess the effectiveness of different levels of ethanol as a bacterial disinfectant. Predominantly spore-bearing cultures of five Bacillus spp. (B. pumilus, B. subtilis, B. megaterium, B. fusiformis and B. flexus) that were isolated from the spent-alcohol used during plant tissue culture work were challenged with aqueous ethanol (25, 50, 60, 70, 80 and 90% v/v) in 1 ml volumes at 1010−11 CFU ml−1. Monitoring the spore endurance through spotting and plating revealed prolonged tolerance (>12 months) at different alcohol levels depending on the organism except in 90% where no survival was observed beyond 2–12 months. Spores of related genera like Paenibacillus and Lysinibacillus also showed long-term ethanol survival. Alcohol tolerance of spore-forming organisms depended on the extent of spores and spore hardiness, which in turn varied with the organism, strain, age of culture, growing conditions and other factors as authenticated with ATCC strains of B. pumilus and B. subtilis. Aqueous 90% ethanol caused instant inactivation of vegetative cells in different spore formers and twelve other non-sporulating Gram-positive and Gram-negative organisms tested. Taking into account both vegetative cells and spores, the appropriate concentration of ethanol as a disinfectant emerged to be 90% followed by absolute ethanol compared with the generally recommended 70–80% level.  相似文献   

3.
Log phase Bacillus subtilis cells lacking the mscL gene encoding the mechanosensitive (MS) channel of large conductance are sensitive to an osmotic downshock ≥0.5 M. However, B. subtilis mscL cells develop osmotic downshock resistance in late log and early stationary phase growth that is partially dependent on three likely MS channel proteins of small conductance (MscS), YfkC, YhdY, and YkuT. Bacillus subtilis MS proteins were fused with green fluorescent protein (GFP) at their C termini; at least the MscL-, YfkC-, and YkuT-GFP fusions were functional and overexpression of YkuT-GFP, or YkuT alone abolished log phase mscL cells’ osmotic downshock sensitivity. Western blot analysis found high levels of MscL-GFP in early exponential phase cells with levels subsequently decreasing greatly. MscS-GFP proteins were present in exponential phase cells, but again disappeared almost completely in stationary phase cells and these proteins were not detected in spores. Western blot analyses further showed that MS-GFP proteins were associated with the plasma membrane, as expected. Fluorescence microscopy confirmed the localization of MscL-GFP and YhdY-GFP to the plasma membrane, with non-uniform distribution of these proteins along this membrane consistent with but by no means proving that these proteins are present in a helical array.  相似文献   

4.
Raw glycerol is a byproduct of biodiesel production that currently has low to negative value for biodiesel producers. One option for increasing the value of raw glycerol is to use it as a feedstock for microbial production. Bacillus subtilis LSFM 05 was used for the production of fengycin in a mineral medium containing raw glycerol as the sole carbon source. Fengycin was isolated by acid precipitation at pH 2 and purified by silica gel column chromatography and characterized using electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) with collision-induced dissociation (CID). The mass spectrum revealed the presence of the ions of m/z 1,435.7, 1,449.9, 1,463.8, 1,477.8, 1,491.8 and 1,505.8, which were further fragmented by ESI-MS/MS. The CID profile showed the presence of a series of ions (m/z 1,080 and 966) and (m/z 1,108 and 994) that represented the different fengycin homologues A and B, respectively. Fengycin homologues A and B are variants that differ at position 6 of the peptide moiety, having either Ala or Val residues, respectively. Mass spectrometry analyses identified four fengycin A and three fengycin B variants with fatty acid components containing 14–17 carbons. These results demonstrate that raw glycerol can be used as feedstock to produce fengycin, and additional work should focus on the optimization of process conditions to increase productivity.  相似文献   

5.
Pentachlorophenol (PCP) and its sodium salt (Na-PCP) are extremely toxic chemicals responsible for important soil and groundwater pollution, mainly caused by wastes from wood-treatment plants, because chlorinated phenols are widely used as wood preservatives. The methods most commonly used for routine analysis of pesticides such as PCP and Na-PCP are high-performance liquid chromatography (HPLC) and gas chromatography–mass spectroscopy (GC–MS). A variety of rapid biological screening tests using marine organisms, bioluminescent bacteria, and enzymes have also been reported. In this study, rapid biological screening analysis using Bacillus subtilis was developed, to assess the biodegradation of PCP and its by-products in liquid samples. An empirical model is proposed for spectrophotometric analysis of Na-PCP concentration after growth of Bacillus subtilis.  相似文献   

6.
The gas chromatography–mass spectrometry (GC–MS) analysis of essential oil obtained by hydrodistillation from the flower of Taraxacum officinale L. revealed the presence of 25 compounds with 1,3-dimethylbenzene, 1,2-dimethylbenzene, 1-ethyl-3-methylbenzene, heneicosane and tricosane as the main components.  相似文献   

7.
The complete genome sequence of Bacillus subtilis reveals that sequences encoding several hemicellulases are co-localised with a gene (xynD) encoding a putative family 43 glycoside hydrolase that has not yet been characterised. In this work, xynD has been isolated from genomic DNA of B. subtilis subsp. subtilis ATCC 6051 and cloned for cytoplasmatic expression in Escherichia coli. Recombinant XynD (rXynD) was purified using ion-exchange chromatography and gel permeation chromatography. The enzyme had a molecular mass of approximately 52 kDa, a pI above 9.0 and releases α-l-arabinose from arabinoxylo-oligosaccharides as well as arabinoxylan polymers with varying degree of substitution. Using para-nitrophenyl-α-l-arabinofuranoside as substrate, maximum activity was observed at pH 5.6 and 45°C. The enzyme retained its activity over a large pH range, while activity was lost after pre-incubation above 50°C. Gas–liquid chromatography and proton nuclear magnetic resonance spectrometry analysis indicated that rXynD specifically releases arabinofuranosyl groups from mono-substituted C-(O)-2 and C-(O)-3 xylopyranosyl residues on the xylan backbone. As rXynD did not display endoxylanase, xylosidase or arabinanase activity and was inactive on arabinan, we conclude that this enzyme is best described as an arabinoxylan arabinofuranohydrolase.  相似文献   

8.
Bacillus anthracis the causative agent of anthrax, is an important pathogen among the Bacillus cereus group of species because of its physiological characteristics and its importance as a biological warfare agent. Tripartite anthrax toxin proteins and a poly-D-glutamic acid capsule are produced by B. anthracis vegetative cells during mammalian hosts infection and when cultured in conditions that are thought to mimic the host environment. To identify the factors regulating virulence in B. anthracis the whole cell proteins were extracted from two B. anthracis strains and separated by narrow range immobilized pH gradient (IPG) strips (pH 4–7), followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Proteins that were differentially expressed were identified by the peptide fingerprinting using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS). A total of 23 proteins were identified as being either upregulated or downregulated in the presence or absence of the virulence plasmid pXO1. Two plasmid encoded proteins and 12 cellular proteins were identified and documented as potential virulence factors.  相似文献   

9.
A proteomics approach was employed to identify proteins secreted into the hemolymph of Ornithodorus savignyi ticks 2 h after immune-challenge with the yeast, Candida albicans. Profiling of the proteins present in hemolymph of unchallenged ticks versus ticks challenged with heat-killed yeast revealed five proteins to be differentially expressed. The modulated protein spots were subjected to tandem mass spectrometry (MS/MS) analysis, but could not be positively identified. These proteins can be assigned to the immune response as they were not induced after aseptic injury. In an attempt to identify hemolymph proteins that recognize and bind to yeast cells, hemolymph obtained from both unchallenged and challenged ticks was incubated with C. albicans. Elution of the bound proteins followed by SDS–PAGE analysis indicated that three proteins (97, 88 and 26 kDa) present in both unchallenged and challenged hemolymph samples bind to yeast cells. The constant presence of these three proteins in tick hemolymph leads us to believe that they may be involved in non-self recognition and participate in yeast clearance from tick plasma. The analyzed yeast-binding proteins could also not be positively identified, suggesting that all the tick immune proteins investigated in this study are novel.  相似文献   

10.
Sixteen Bacillus strains isolated from rhizosphere, histoplane and phyllosphere of different plant species were identified by 16S rDNA gene sequencing and evaluated for in vitro auxin production as well as growth stimulation of Vigna radiata (L.) Wilczek. Auxin production by Bacillus spp. in L-broth medium supplemented with 1,000 μg ml−1 L-tryptophan ranges from 0.60 to 3.0 μg IAA ml−1 as revealed by gas chromatography and mass spectrometric (GC–MS) analysis. Rhizospheric isolates exhibit relatively more IAA synthesis than histoplane and phyllosphere isolates. Plant microbe interaction experiments conducted under gnotobiotic conditions recorded 55.55, 46.46 and 46.20% increase in shoot length with Bacillus megaterium MiR-4, B. pumilus NpR-1 and B. subtilis TpP-1, respectively, over control. Bacillus inoculations also increased shoot fresh weight with B. megaterium MiR-4 (60.94%) and B. pumilus NpR-1 (37.76%). Highly significant positive correlation between auxin production analyzed by GC–MS and shoot length (r = 0.687**, P = 0.01) and shoot fresh weight (r = 0.703**, P = 0.01) was noted under gnotobiotic conditions. Similarly, significant correlation was also found between auxin production by Bacillus spp. (GC–MS analysis) and different growth parameters such as shoot length (r = 0.495*, P = 0.05), number of pods (r = 0.498*, P = 0.05) and grain weight (r = 0.537*, P = 0.05) at full maturity under natural wire house conditions. Results showed that auxin production potential of plant associated Bacillus spp. can be effectively exploited to enhance the growth and yield of V. radiata.  相似文献   

11.
Three classes of low‐G+C Gram‐positive bacteria (Firmicutes), Bacilli, Clostridia and Negativicutes, include numerous members that are capable of producing heat‐resistant endospores. Spore‐forming firmicutes include many environmentally important organisms, such as insect pathogens and cellulose‐degrading industrial strains, as well as human pathogens responsible for such diseases as anthrax, botulism, gas gangrene and tetanus. In the best‐studied model organism Bacillus subtilis, sporulation involves over 500 genes, many of which are conserved among other bacilli and clostridia. This work aimed to define the genomic requirements for sporulation through an analysis of the presence of sporulation genes in various firmicutes, including those with smaller genomes than B. subtilis. Cultivable spore‐formers were found to have genomes larger than 2300 kb and encompass over 2150 protein‐coding genes of which 60 are orthologues of genes that are apparently essential for sporulation in B. subtilis. Clostridial spore‐formers lack, among others, spoIIB, sda, spoVID and safA genes and have non‐orthologous displacements of spoIIQ and spoIVFA, suggesting substantial differences between bacilli and clostridia in the engulfment and spore coat formation steps. Many B. subtilis sporulation genes, particularly those encoding small acid‐soluble spore proteins and spore coat proteins, were found only in the family Bacillaceae, or even in a subset of Bacillus spp. Phylogenetic profiles of sporulation genes, compiled in this work, confirm the presence of a common sporulation gene core, but also illuminate the diversity of the sporulation processes within various lineages. These profiles should help further experimental studies of uncharacterized widespread sporulation genes, which would ultimately allow delineation of the minimal set(s) of sporulation‐specific genes in Bacilli and Clostridia.  相似文献   

12.
A translational lacZ fusion of the Bacillus subtilis mscL gene that encodes the mechanosensitive channel of large conductance (MscL) was expressed at significant levels during log phase growth of B. subtilis, and the level of mscLlacZ expression was increased 1.5-fold by growth in medium with high salt (1 M NaCl). However, in growth media with either low or high salt, mscLlacZ expression fell drastically beginning in the late log phase of growth, and fell to even lower levels during sporulation, although a significant amount of β-galactosidase from mscL to lacZ was accumulated in the developing spore. Deletion of mscL had no effect on B. subtilis growth, sporulation or subsequent spore germination. The ΔmscL strain also grew as well as the wild-type parental strain in medium with 1.2 M NaCl. While log phase wild-type cells grown with 1.2 M NaCl survived a rapid 0.9 M osmotic downshift, log phase ΔmscL cells rapidly lost viability and lysed when subjected to this same osmotic downshift. However, by the early stationary phase of growth, ΔmscL cells had become resistant to a 0.9 M osmotic downshift.  相似文献   

13.
Ethylene oxide is currently a dominant agent in medical device sterilization. This work intends to study the main effects and interactions of temperature, ethylene oxide concentration, and relative humidity on commercial spore strips of Bacillus subtilis, var. niger (ATCC 9372) inactivation, the most common microorganism used in controlling the efficacy of the process. Experiments were carried out using a full factorial experimental design at two levels (23 factorial design). Limit target exposure conditions for ethylene oxide concentration, temperature, and relative humidity were 250–1,000 mg EO/l, 40–60°C, and 50–90%, respectively. Adopting a different approach from the first-order kinetics, a Gompertz model was successfully applied in data fitting of the inactivation curves. Bacillus subtilis kinetic behavior presented a sigmoidal inactivation with an initial shoulder (λ), followed by a maximum inactivation rate (kmax), these being model parameters. It was concluded that temperature and ethylene oxide concentration were the most significant factors and consequently, additional experiments were carried out aiming at describing the parameters' dependence on these process factors. Mathematical relations describing such dependences were successfully developed and included in the Gompertz kinetic model. The predictive ability of this integrated model was assessed, and its adequacy in predicting B. subtilis inactivation was proven.  相似文献   

14.
We developed a novel surface display system based on the CotB anchoring motif in order to express foreign protein on the surface of vegetative Bacillus subtilis cells. CotB is a protein in the B. subtilis spore coat. In this system, three repeats of the immunodominant ovalbumin T-cell epitope (OVA323–339) were linked with the cholera toxin B subunit (CTB) to construct a fusion protein, CTB-OVA epi, which was then fused to the C-terminal of the CotB protein so that CTB-OVA epi was expressed in vegetatively-growing B. subtilis. The expression and localization of the CTB-OVA epi protein was confirmed by western blotting, immunofluorescence microscopy, and flow cytometry. The results indicated that a CotB-based surface display system was successfully used to express the CTB-OVA epi protein on the surface of vegetative B. subtilis cells.  相似文献   

15.
Methamidophos is one of the most widely used organophosphorus insecticides usually detectable in the environment. A facultative methylotroph, Hyphomicrobium sp. MAP-1, capable of high efficiently degrading methamidophos, was isolated from methamidophos-contaminated soil in China. It was found that the addition of methanol significantly promoted the growth of strain MAP-1 and enhanced its degradation of methamidophos. Further, this strain could utilize methamidophos as its sole carbon, nitrogen and phosphorus source for growth and could completely degrade 3,000 mg l−1 methamidophos in 84 h under optimal conditions (pH 7.0, 30°C). The enzyme responsible for methamidophos degradation was mainly located on the cell inner membrane (90.4%). During methamidophos degradation, three metabolites were detected and identified based on tandem mass spectrometry (MS/MS) and gas chromatography-mass spectrometry (GC–MS) analysis. Using this information, a biochemical degradation pathway of methamidophos by Hyphomicrobium sp. MAP-1 was proposed for the first time. Methamidophos is first cleaved at the P–N bond to form O,S-dimethyl hydrogen thiophosphate and NH3. Subsequently, O,S-dimethyl hydrogen thiophosphate is hydrolyzed at the P–O bond to release –OCH3 and form S-methyl dihydrogen thiophosphate. O,S-dimethyl hydrogen thiophosphate can also be hydrolyzed at the P–S bond to release –SCH3 and form methyl dihydrogen phosphate. Finally, S-methyl dihydrogen thiophosphate and methyl dihydrogen phosphate are likely transformed into phosphoric acid.  相似文献   

16.
Li G  Tang Q  Chen H  Yao Q  Ning D  Chen K 《Current microbiology》2011,62(5):1368-1373
To investigate whether Bombyx mori immunized with Bacillus subtilis spore displaying GP64 escape from the B. mori nucleopolyhedrovirus (BmNPV) attack, a recombinant integrative plasmid named pJS700-GP64 was constructed, which carries a recombinant cotC-Gp64 gene under the control of the cotC promoter. In this study, pJS700-GP64 was transformed into B. subtilis 168 (trp) competent cells, an amylase (amyE) inactivated mutant was selected, and was confirmed to be a double cross-over integrant, cotC-Gp64 fragment of which was integrated into B. subtilis chromosome. Gp64 was expressed on the spore surface and recognized by Gp64-specific antibody. Results of B. mori when challenged with BmNPV indicated that B. mori vaccinated with the recombinant spores possessed resistance to the invasion of BmNPV at some degree.  相似文献   

17.
Chen K  Liu XM  Li R  Liu Y  Hu H  Li SP  Jiang JD 《Biodegradation》2011,22(6):1135-1142
Buprofezin is a widely used insecticide that has caused environmental pollution in many areas. However, biodegradation of buprofezin by pure cultures has not been extensively studied, and the transformation pathway of buprofezin remains unclear. In this paper, a buprofezin co-metabolizing strain of DFS35-4 was isolated from a buprofezin-polluted soil in China. Strain DFS35-4 was preliminarily identified as Pseudomonas sp. based on its morphological, physiological, and biochemical properties, as well as 16S rRNA gene analysis. In the presence of 2.0 g l−1 sodium citrate, strain DFS35-4 degraded over 70% of 50 mg l−1 buprofezin in 3 days. Strain DFS35-4 efficiently degraded buprofezin in the pH range of 5.0–10.0 and at temperatures between 20 and 30°C. Three metabolites, 2-imino-5-phenyl-3-(propan-2-yl)-1,3,5-thiadiazinan-4-one, 2-imino-5-phenyl-1,3,5-thiadiazinan-4-one, and methyl(phenyl) carbamic acid, were identified during the degradation of buprofezin using gas chromatography–mass spectrometry (GC–MS) and tandem mass spectrometry (MS/MS). A partial transformation pathway of buprofezin in Pseudomonas sp. DFS35-4 was proposed based on these metabolites.  相似文献   

18.
Spore production of Bacillus subtilis from distillery effluent was optimized using statistically-based experimental designs. The two-level Plackett–Burman design was applied to choose the nutrient supplements significantly influencing spore production. Among the seven variables we tested, the most significant variables influencing spore production were statistically elucidated for optimization, and included (NH4)2SO4, corn flour and MgSO4. The optimum concentration of each significant variable was then predicted using Box–Behnken design. A second-order polynomial was determined by the multiple regression analysis of this experimental data. The optimum values for the critical nutrient supplements for the maximum were obtained as followed: (NH4)2SO4, 4.54%; corn flour, 1.2%; MgSO4, 0.56% with the corresponding value of maximum spore production of 7.24 × 108 spores/ml. A verification experiment performed under the optimum conditions resulted in 6.95 × 108 spores/ml. The determination coefficient (R 2) was 0.98, which ensure an adequate credibility of the model.  相似文献   

19.
A gene, mf1, encoding a novel cholinephosphotransferase in glycoglycerophospholipid (GGPL) biosynthesis of Mycoplasma fermentans PG18 was identified by genomic analysis, cloned, and expressed in Escherichia coli. The mf1 gene comprises an open reading frame of 777 bp encoding 258 amino acids. The mf1 gene product, Mf1, has 23% amino acid homology with LicD of Haemophilus influenzae but no homology with genes of other Mycoplasma species in the GenBank database. The reaction product of Mf1 using α-glucopyranosyl-1,2-dipalmitoilglycerol and cytidine 5′-diphosphocholine (CDP-choline) as substrates showed the specific protonated molecule at m/z 896, which corresponded to GGPL-I as determined by matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry (MALDI-TOF MS). Furthermore, the product ions of choline, phosphocholine, and hexose-bound phosphocholine were detected by tandem mass spectrometry (MS) analysis of protonated molecules at m/z 896. These results identified mf1 as a novel cholinephosphotransferase and showed that the phosphocholine transfer step is involved in the GGPL biosynthesis pathway of M. fermentans. This is the first report of a GGPL biosynthesis enzyme.  相似文献   

20.
Bacillus subtilis strain IB exhibiting inhibitory activity against the Fusarium head blight disease fungus Fusarium graminearum was isolated and identified. The major inhibitory compound was purified from the culture broth through anion exchange, hydrophobic interaction, and reverse phase high-performance liquid chromatography (RP-HPLC) steps. It was a 1,463-Da lipopeptide and had an amino acid composition consisting of Ala, Glx, Ile, Orn, Pro, Thr, and Tyr at a molar ratio of 1:3:1:1:1:1:2. Electrospray ionization mass spectrometry/mass spectrometry (ESI MS/MS) analyses of the natural and the ring-opened peptides showed the antagonist was fengycin, a kind of macrolactone molecule with antifungal activity produced by several Bacillus strains. Fluorescence microscopic analysis indicated this peptide permeabilized and disrupted F. graminearum hyphae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号