首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Class IV alcohol dehydrogenase shows a deletion at position 117 with respect to class I enzymes, which typically have a Gly residue. In class I structures, Gly117 is part of a loop (residues 114–120) that is highly variable within the alcohol dehydrogenase family. A mutant human class IV enzyme was engineered in which a Gly residue was inserted at position 117 (G117ins). Its kinetic properties, regarding ethanol and primary aliphatic alcohols, secondary alcohols and pH profiles, were determined and compared with the results obtained in previous studies in which the size of the 114–120 loop was modified. For the enzymes considered, a smaller loop was associated with a lower catalytic efficiency towards short-chain alcohols (ethanol and propanol) and secondary alcohols, as well as with a higher Km for ethanol at pH 7.5 than at pH 10.0. The effect can be rationalized in terms of a more open, solvent-accessible active site in class IV alcohol dehydrogenase, which disfavors productive binding of ethanol and short-chain alcohols, specially at physiological pH.  相似文献   

2.
Mammalian class IV alcohol dehydrogenase enzymes are characteristic of epithelial tissues, exhibit moderate to high K(m) values for ethanol, and are very active in retinol oxidation. The human enzyme shows a K(m) value for ethanol which is 2 orders of magnitude lower than that of rat class IV. The uniquely significant difference in the substrate-binding pocket between the two enzymes appears to be at position 294, Val in the human enzyme and Ala in the rat enzyme. Moreover, a deletion at position 117 (Gly in class I) has been pointed out as probably responsible for class IV specificity toward retinoids. With the aim of establishing the role of these residues, we have studied the kinetics of the recombinant human and rat wild-type enzymes, the human G117ins and V294A mutants, and the rat A294V mutant toward aliphatic alcohols and retinoids. 9-cis-Retinol was the best retinoid substrate for both human and rat class IV, strongly supporting a role of class IV in the generation of 9-cis-retinoic acid. In contrast, 13-cis retinoids were not substrates. The G117ins mutant showed a decreased catalytic efficiency toward retinoids and toward three-carbon and longer primary aliphatic alcohols, a behavior that resembles that of the human class I enzyme, which has Gly(117). The K(m) values for ethanol dramatically changed in the 294 mutants, where the human V294A mutant showed a 280-fold increase, and the rat A294V mutant a 50-fold decrease, compared with those of the respective wild-type enzymes. This demonstrates that the Val/Ala exchange at position 294 is mostly responsible for the kinetic differences with ethanol between the human and rat class IV. In contrast, the kinetics toward retinoids was only slightly affected by the mutations at position 294, compatible with a more conserved function of mammalian class IV alcohol dehydrogenase in retinoid metabolism.  相似文献   

3.
Thermoanaerobacter ethanolicus (ATCC 31550) has primary and secondary alcohol dehydrogenases. The two enzymes were purified to homogeneity as judged from sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration. The apparent Mrs of the primary and secondary alcohol dehydrogenases are 184,000 and 172,000, respectively. Both enzymes have high thermostability. They are tetrameric with apparently identical subunits and contain from 3.2 to 5.5 atoms of Zn per subunit. The two dehydrogenases are NADP dependent and reversibly convert ethanol and 1-propanol to the respective aldehydes. The Vm values with ethanol as a substrate are 45.6 μmol/min per mg for the primary alcohol dehydrogenase and 13 μmol/min per mg for the secondary alcohol dehydrogenase at pH 8.9 and 60°C. The primary enzyme oxidizes primary alcohols, including up to heptanol, at rates similar to that of ethanol. It is inactive with secondary alcohols. The secondary enzyme is inactive with 1-pentanol or longer chain alcohols. Its best substrate is 2-propanol, which is oxidized 15 times faster than ethanol. The secondary alcohol dehydrogenase is formed early during the growth cycle. It is stimulated by pyruvate and has a low Km for acetaldehyde (44.8 mM) in comparison to that of the primary alcohol dehydrogenase (210 mM). The latter enzyme is formed late in the growth cycle. It is postulated that the secondary alcohol dehydrogenase is largely responsible for the formation of ethanol in fermentations of carbohydrates by T. ethanolicus.  相似文献   

4.
The primary structure of class III alcohol dehydrogenase (dimeric with chi subunits) from human liver has been determined by peptide analyses. The protein chain is a clearly distinct type of subunit distantly related to those of both human class I and class II alcohol dehydrogenases (with alpha, beta, gamma, and pi subunits, respectively). Disregarding a few gaps, residue differences in the chi protein chain with respect to beta 1 and pi occur at 139 and 140 positions, respectively. Compared to class I, the 373-residue chi structure has an extra residue, Cys after position 60, and two missing ones, the first two residues relative to class I, although the N-terminus is acetylated like that for those enzymes. The chi subunit contains two more tryptophan residues than the class I subunits, accounting for the increased absorbance at 280 nm. There are also four additional acidic and two fewer basic side chains than in the class I beta structure, compatible with the markedly different electrophoretic mobility of the class III enzyme. Residue differences between class III and the other classes occur with nearly equal frequency in the coenzyme-binding and catalytic domains. The similarity in the number of exchanges relative to that of the enzymes of the other two classes supports conclusions that the three classes of alcohol dehydrogenase reflect stages in the development of separate enzymes with distinct functional roles. In spite of the many exchanges, the residues critical to basic functional properties are either completely unchanged--all zinc ligands and space-restricted Gly residues--or partly unchanged--residues at the coenzyme-binding pocket.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A three-dimensional model of yeast alcohol dehydrogenase, based on the homologous horse liver enzyme, was used to compare the substrate binding pockets of the three isozymes (I, II, and III) from Saccharomyces cerevisiae and the enzyme from Schizosaccharomyces pombe. Isozyme I and the S. pombe enzyme have methionine at position 294 (numbered as in the liver enzyme, corresponding to 270 in yeast), whereas isozymes II and III have leucine. Otherwise the active sites of the S. cerevisiae enzymes are the same. All four wild-type enzymes were produced from the cloned genes. In addition, oligonucleotide-directed mutagenesis was used to change Met-294 in alcohol dehydrogenase I to leucine. The mechanisms for all five enzymes were predominantly ordered with ethanol (but partially random with butanol) at pH 7.3 and 30 degrees C. The wild-type alcohol dehydrogenases and the leucine mutant had similar kinetic constants, except that isozyme II had 10-20-fold smaller Michaelis and inhibition constants for ethanol. Thus, residue 294 is not responsible for this difference. Apparently, substitutions outside of the substrate binding pocket indirectly affect the interactions of the alcohol dehydrogenases with ethanol. Nevertheless, the substitution of methionine with leucine in the substrate binding site of alcohol dehydrogenase I produced a 7-10-fold increase in reactivity (V/Km) with butanol, pentanol, and hexanol. The higher activity is due to tighter binding of the longer chain alcohols and to more rapid hydrogen transfer.  相似文献   

6.
Formaldehyde dehydrogenase (EC 1.2.1.1) is a widely occurring enzyme which catalyzes the oxidation of S-hydroxymethylglutathione, formed from formaldehyde and glutathione, into S-formyglutathione in the presence of NAD. We determined the amino acid sequences for 5 tryptic peptides (containing altogether 57 amino acids) from electrophoretically homogeneous rat liver formaldehyde dehydrogenase and found that they all were exactly homologous to the sequence of rat liver class III alcohol dehydrogenase (ADH-2). Formaldehyde dehydrogenase was found to be able at high pH values to catalyze the NAD-dependent oxidation of long-chain aliphatic alcohols like n-octanol and 12-hydroxydodecanoate but ethanol was used only at very high substrate concentrations and pyrazole was not inhibitory. The amino acid sequence homology and identical structural and kinetic properties indicate that formaldehyde dehydrogenase and the mammalian class III alcohol dehydrogenases are identical enzymes.  相似文献   

7.
A glucosamine-induced novel alcohol dehydrogenase has been isolated from Agrobacterium radiobacter (tumefaciens) and its fundamental properties have been characterized. The enzyme catalyzes NAD-dependent dehydrogenation of aliphatic alcohols and amino alcohols. In this work, the complete amino acid sequence of the alcohol dehydrogenase was determined by PCR method using genomic DNA of A. radiobacter as template. The enzyme comprises 336 amino acids and has a molecular mass of 36 kDa. The primary structure of the enzyme demonstrates a high homology to structures of alcohol dehydrogenases from Shinorhizobium meliloti (83% identity, 90% positive) and Pseudomonas aeruginosa (65% identity, 76% positive). The two Zn(2+) ion binding sites, both the active site and another site that contributed to stabilization of the enzyme, are conserved in those enzymes. Sequences analysis of the NAD-dependent dehydrogenase family using a hypothetical phylogenetic tree indicates that these three enzymes form a new group distinct from other members of the Zn-containing long-chain alcohol dehydrogenase family. The physicochemical properties of alcohol dehydrogenase from A. radiobacter were characterized as follows. (1) Stereospecificity of the hydride transfer from ethanol to NADH was categorized as pro-R type by NMR spectra of NADH formed in the enzymatic reaction using ethanol-D(6) was used as substrate. (2) Optimal pH for all alcohols with no amino group examined was pH 8.5 (of the C(2)-C(6) alcohols, n-amyl alcohol demonstrated the highest activity). Conversely, glucosaminitol was optimally dehydrogenated at pH 10.0. (3) The rate-determining step of the dehydrogenase for ethanol is deprotonation of the enzyme-NAD-Zn-OHCH(2)CH(3) complex to enzyme-NAD-Zn-O(-)CH(2)CH(3) complex and that for glucosaminitol is H(2)O addition to enzyme-Zn-NADH complex.  相似文献   

8.
A new form of alcohol dehydrogenase, designated mu-alcohol dehydrogenase, was identified in surgical human stomach mucosa by isoelectric focusing and kinetic determinations. This enzyme was anodic to class I (alpha, beta, gamma) and class II (pi) alcohol dehydrogenases on agarose isoelectric focusing gels. The partially purified mu-alcohol dehydrogenase, specifically using NAD+ as cofactor, catalyzed the oxidation of aliphatic and aromatic alcohols with long chain alcohols being better substrates, indicating a barrel-shape hydrophobic binding pocket for substrate. mu-Alcohol dehydrogenase stood out in high Km values for both ethanol (18 mM) and NAD+ (340 microM) as well as in high Ki value (320 microM) for 4-methylpyrazole, a competitive inhibitor for ethanol. mu-Alcohol dehydrogenase may account for up to 50% of total stomach alcohol dehydrogenase activity and appeared to play a significant role in first-pass metabolism of ethanol in human.  相似文献   

9.
The cDNA for the alpha-isoenzyme from rhesus monkey (Macaca mulatta) liver was cloned and expressed in yeast. The alpha-isoenzymes of human and monkey liver alcohol dehydrogenase differ from the other human and horse liver enzymes in having Met57, Ala93, and Val116 instead of Leu57, Phe93, and Leu116 in the substrate binding pocket and Gly47 instead of Arg47 near the pyrophosphate moiety of the coenzyme. The effects of these differences on the kinetic mechanism, substrate specificity, and coenzyme binding were studied with the purified, recombinant monkey alpha-isoenzyme (MmADH alpha) and mutated enzymes with Gly47 substituted with His or Arg. The mechanism appears to be random for the binding of NAD+ and ethanol and ordered for NADH and acetaldehyde, with formation of a dead-end enzyme-NADH-ethanol complex. MmADH alpha reacts 130-fold slower (V/K) with ethanol and 3-25-fold slower with 2-methyl alcohols but 20-fold faster with cyclohexanol, as compared with horse (Equus caballus) liver EE isoenzyme (EqADH). MmADH alpha is stereoselective for the R isomer of 2-butanol, whereas EqADH favors the S isomer. Both enzymes have comparable reactivity with larger primary alcohols. MmADH alpha is more reactive with secondary alcohols and has highest activity with cyclohexanol. However, it does not react with steroids such as 5 beta-androstane-17 beta-ol-3-one. Molecular modeling suggests that the differences between MmADH alpha and EqADH are a result of the substitution of Ala for Phe93 and Thr for Ser48. MmADH alpha binds NAD+ most rapidly when a group with a pK of 7.4 is unprotonated, implicating His51 in this reaction. The G47R substitution decreased the dissociation constants for NAD+ and NADH and turnover numbers only about 2-fold, whereas the G47H substitution increased dissociation constants 7-14-fold and turnover numbers 4-fold. A basic residue at position 47 is not crucial for activity, as multiple interactions determine coenzyme affinity.  相似文献   

10.
NAD-linked alcohol dehydrogenase activity was detected in cell-free crude extracts from various propane-grown bacteria. Two NAD-linked alcohol dehydrogenases, one which preferred primary alcohols (alcohol dehydrogenase I) and another which preferred secondary alcohols (alcohol dehydrogenase II), were found in propane-grown Pseudomonas fluorescens NRRL B-1244 and were separated from each other by DEAE-cellulose column chromatography. The properties of alcohol dehydrogenase I resembled those of well-known primary alcohol dehydrogenases. Alcohol dehydrogenase II was purified 46-fold; it was homogeneous as judged by acrylamide gel electrophoresis. The molecular weight of this secondary alcohol dehydrogenase is 144,500; it consisted of four subunits per molecule of enzyme protein. It oxidized secondary alcohols, notably, 2-propanol, 2-butanol, and 2-pentanol. Primary alcohols and diols were also oxidized, but at a lower rate. Alcohols with more than six carbon atoms were not oxidized. The pH and temperature optima for secondary alcohol dehydrogenase activity were 8 to 9 and 60 to 70 degrees C, respectively. The activation energy calculated from an Arrhenius plot was 8.2 kcal (ca. 34 kJ). The Km values at 25 degrees C, pH 7.0, were 8.2 X 10(-6) M for NAD and 8.5 X 10(-5) M for 2-propanol. The secondary alcohol dehydrogenase activity was inhibited by strong thiol reagents and strong metal-chelating agents such as 4-hydroxymercuribenzoate, 5,5'-dithiobis(2-nitrobenzoic acid), 5-nitro-8-hydroxyquinoline, and 1,10-phenanthroline. The enzyme oxidized the stereoisomers of 2-butanol at an equal rate. Alcohol dehydrogenase II had good thermal stability and the ability to catalyze reactions at high temperature (85 degrees C). It appears to have properties distinct from those of previously described primary and secondary alcohol dehydrogenases.  相似文献   

11.
NAD-linked alcohol dehydrogenase activity was detected in cell-free crude extracts from various propane-grown bacteria. Two NAD-linked alcohol dehydrogenases, one which preferred primary alcohols (alcohol dehydrogenase I) and another which preferred secondary alcohols (alcohol dehydrogenase II), were found in propane-grown Pseudomonas fluorescens NRRL B-1244 and were separated from each other by DEAE-cellulose column chromatography. The properties of alcohol dehydrogenase I resembled those of well-known primary alcohol dehydrogenases. Alcohol dehydrogenase II was purified 46-fold; it was homogeneous as judged by acrylamide gel electrophoresis. The molecular weight of this secondary alcohol dehydrogenase is 144,500; it consisted of four subunits per molecule of enzyme protein. It oxidized secondary alcohols, notably, 2-propanol, 2-butanol, and 2-pentanol. Primary alcohols and diols were also oxidized, but at a lower rate. Alcohols with more than six carbon atoms were not oxidized. The pH and temperature optima for secondary alcohol dehydrogenase activity were 8 to 9 and 60 to 70 degrees C, respectively. The activation energy calculated from an Arrhenius plot was 8.2 kcal (ca. 34 kJ). The Km values at 25 degrees C, pH 7.0, were 8.2 X 10(-6) M for NAD and 8.5 X 10(-5) M for 2-propanol. The secondary alcohol dehydrogenase activity was inhibited by strong thiol reagents and strong metal-chelating agents such as 4-hydroxymercuribenzoate, 5,5'-dithiobis(2-nitrobenzoic acid), 5-nitro-8-hydroxyquinoline, and 1,10-phenanthroline. The enzyme oxidized the stereoisomers of 2-butanol at an equal rate. Alcohol dehydrogenase II had good thermal stability and the ability to catalyze reactions at high temperature (85 degrees C). It appears to have properties distinct from those of previously described primary and secondary alcohol dehydrogenases.  相似文献   

12.
Class III alcohol dehydrogenase (ADH) predominates in human testis. The two isozymes of this class were isolated jointly by affinity and conventional ion exchange chromatography. They display anodic electrophoretic mobility at pH 8.2, are completely insensitive to 4-methylpyrazole inhibition and oxidize ethanol and other short-chain primary alcohols very poorly. Thus, their kinetic and inhibition characteristics are identical to human liver class III ADH. In contrast, class I ADH is a barely detectable component of testicular alcohol dehydrogenase. The physicochemical characteristics of class III ADH are virtually identical to those of alcohol dehydrogenases found in other organs.  相似文献   

13.
Starch gel electrophoresis of homogenates from human stomach mucosa resolves three alcohol dehydrogenase (ADH) forms: the anodic chi-ADH (class III), the cathodic gamma-ADH (class I), and a new form of slow cathodic mobility that has not been previously characterized. In this work, we describe the purification in three chromatographic steps and the physical and kinetic characterization of this new human alcohol dehydrogenase, which we have named sigma-ADH. The enzyme exhibits the general physicochemical features (Mr, zinc content, subunit Mr, cofactor preference) of all mammalian alcohol dehydrogenases. The kinetic studies show a high Km value (41 mM) and a high kcat value (280 min-1) for ethanol at pH 7.5. The Km decreases as the alcohol increases its chain length. The aldehydes are better substrates than the corresponding alcohols, with m-nitrobenzaldehyde being the best substrate examined. sigma-ADH is strongly inhibited by 4-methylpyrazole, but with a Ki (10 microM) still higher than that for a class I isoenzyme. These properties suggest that sigma-ADH is a class II isoenzyme, different from pi-ADH and similar to that previously described by us in rat stomach. At the high ethanol concentrations in stomach after drinking, sigma-ADH is probably the ADH form with the largest contribution to human gastric ethanol metabolism.  相似文献   

14.
The primary structure of the major quail liver alcohol dehydrogenase was determined. It is a long-chain, zinc-containing alcohol dehydrogenase of the type occurring also in mammals and hence allows judgement of the gene duplications giving rise to the classes of the human alcohol dehydrogenase system. The avian form is most closely related to the class I mammalian enzyme (72-75% residue identity), least related to class II (60% identity), and intermediately related to class III (64-65% identity). This pattern distinguishes the mammalian enzyme classes and separates classes I and II in particular. In addition to the generally larger similarities with class I, the avian enzyme exhibits certain residue patterns otherwise typical of the other classes, including an extra Trp residue, present in both class II and III but not in class I, with a corresponding increase in the UV absorbance. The avian enzyme further shows that a Gly residue at position 260 previously considered strictly conserved in alcohol dehydrogenases can be exchanged with Lys. However, zinc-binding residues, coenzyme-binding residues, and to a large extent substrate-binding residues are unchanged in the avian enzyme, suggesting its functional properties to be related to those of the class I mammalian alcohol dehydrogenases. In contrast, the areas of subunit interactions in the dimers differ substantially. These results show that (a) the vertebrate enzyme classes are of distant origin, (b) the submammalian enzyme exhibits partly mixed properties in relation to the classes, and (c) the three mammalian enzyme classes are not as equidistantly related as initially apparent but suggest origins from two sublevels.  相似文献   

15.
In contrast with other animal species, humans possess three distinct genes for class I alcohol dehydrogenase and show polymorphic variation in the ADH1B and ADH1C genes. The three class I alcohol dehydrogenase isoenzymes share approximately 93% sequence identity but differ in their substrate specificity and their developmental expression. We report here the first three-dimensional structures for the ADH1A and ADH1C*2 gene products at 2.5 and 2.0 A, respectively, and the structure of the ADH1B*1 gene product in a binary complex with cofactor at 2.2 A. Not surprisingly, the overall structure of each isoenzyme is highly similar to the others. However, the substitution of Gly for Arg at position 47 in the ADH1A isoenzyme promotes a greater extent of domain closure in the ADH1A isoenzyme, whereas substitution at position 271 may account for the lower turnover rate for the ADH1C*2 isoenzyme relative to its polymorphic variant, ADH1C*1. The substrate-binding pockets of each isoenzyme possess a unique topology that dictates each isoenzyme's distinct but overlapping substrate preferences. ADH1*B1 has the most restrictive substrate-binding site near the catalytic zinc atom, whereas both ADH1A and ADH1C*2 possess amino acid substitutions that correlate with their better efficiency for the oxidation of secondary alcohols. These structures describe the nature of their individual substrate-binding pockets and will improve our understanding of how the metabolism of beverage ethanol affects the normal metabolic processes performed by these isoenzymes.  相似文献   

16.
Arg-47 of human beta 1 beta 1 alcohol dehydrogenase has been replaced with Lys, His, Gln, and Gly by site-directed mutagenesis. The mutated enzymes were expressed in Escherichia coli and purified to homogeneity. The recombinant enzymes with Arg and His at position 47 exhibit kinetic constants and stability which are similar to beta 1 beta 1 and beta 2 beta 2, respectively. The substitution of Lys, His, or Gln for Arg-47 resulted in active enzymes with lower affinity for coenzyme and higher Vmax values than beta 1 beta 1. The substitution of Gln at position 47 resulted in an enzyme with the highest Vmax for ethanol oxidation of any mammalian alcohol dehydrogenase. In this series of enzymes, the affinity for coenzyme decreases with decreasing pKa of the substituted amino acid side chains. The substitution of Gly at position 47 resulted in an enzyme with a Vmax that was one-half that of the low activity beta 1 beta 1 and coenzyme affinities that are lower than beta 1 beta 1, but are equal to or greater than the affinities exhibited by the His-47 or Gln-47 enzymes. Product inhibition studies indicated a change in mechanism from ordered Bi Bi for beta 1 beta 1 to rapid equilibrium random Bi Bi for the Gly-47 enzyme. The kinetic properties of the Gly-47 enzyme are substantially different from human liver alpha alpha which also has Gly at position 47.  相似文献   

17.
Class I isoenzymes of alcohol dehydrogenase (ADH) were isolated by chromatography of human liver homogenates on DEAE-cellulose, 4-[3-[N-(6-aminocaproyl)-amino]propyl]pyrazole--Sepharose and CM-cellulose. Eight isoenzymes of different subunit composition (alpha gamma 2, gamma 2 gamma 2, alpha gamma 1, alpha beta 1, beta 1 gamma 2, gamma 1 gamma 1, beta 1 gamma 1, and beta 1 beta 1) were purified, and their activities were measured at pH 10.0 by using ethanol, ethylene glycol, methanol, benzyl alcohol, octanol, cyclohexanol, and 16-hydroxyhexadecanoic acid as substrates. Values of Km and kcat for all the isoenzymes, except beta 1 beta 1-ADH, were similar for the oxidation of ethanol but varied markedly for other alcohols. The kcat values for beta 1 beta 1-ADH were invariant (approximately 10 min-1) and much lower (5-15-fold) than those for any other class I isoenzyme studied. Km values for methanol and ethylene glycol were from 5- to 100-fold greater than those for ethanol, depending on the isoenzyme, while those for benzyl alcohol, octanol, and 16-hydroxyhexadecanoic acid were usually 100-1000-fold lower than those for ethanol. The homodimer beta 1 beta 1 had the lowest kcat/Km value for all alcohols studied except methanol and ethylene glycol; kcat values were relatively constant for all isoenzymes acting on all alcohols, and, hence, specificity was manifested principally in the value of Km. Values of Km and kcat/Km revealed for all enzymes examined that the short chain alcohols are the poorest while alcohols with bulky substituents are much better substrates. The experimental values of the kinetic parameters for heterodimers deviate from the calculated average of those of their parent homodimers and, hence, cannot be predicted from the behavior of the latter. Thus, the specificities of both the hetero- and homodimeric isoenzymes of ADH toward a given substrate are characteristics of each. Ethanol proved to be one of the "poorest" substrates examined for all class I isoenzymes which are the predominant forms of the human enzyme. On the basis of kinetic criteria, none of the isoenzymes of class I studied oxidized ethanol in a manner that would indicate an enzymatic preference for that alcohol.  相似文献   

18.
Ethanol oxidation by the soluble fraction of a rat hepatoma was compared to that of the liver. Ethanol oxidation by the hepatoma was NAD+-dependent and sensitive to pyrazole, suggesting the presence of alcohol dehydrogenase. At low concentrations of ethanol (10.8 mm) the alcohol dehydrogenase activities of hepatoma and liver supernatant fractions were comparable. When the concentration of ethanol was raised to 108 mm, the activity of the liver enzyme decreased, whereas the activity in hepatoma supernatant fractions was strikingly elevated. m-Nitrobenzaldehyde-reducing activity was also conspicuously higher in hepatoma supernatant fractions. By contrast the ability to metabolize steroids and cyclohexanone was less than that in supernatant fractions of the liver.Electrophoresis of the liver supernatant fractions on ionagar at pH 7.0 revealed only one component that oxidized ethanol. On the other hand, hepatoma supernatant fractions contained two components with alcohol dehydrogenase activity; one with the same electrophoretic mobility as the liver enzyme, the other showing a slower rate of migration. The latter component, which is absent in the liver, is referred to as hepatoma alcohol dehydrogenase. By electrophoresis on starch gels at pH 8.5, it could be demonstrated that the liver and hepatoma enzymes moved in opposite directions.The liver and hepatoma enzymes differ in electrophoretic mobility, susceptibility to heat treatment, pH activity optimum and some catalytic properties. The substrate specificity of the hepatoma enzyme is narrower than that of liver alcohol dehydrogenase; cyclohexanone or 3β-hydroxysteroids of A/B cis configuration and the corresponding 3-ketones are not substrates for the hepatoma enzyme. The overall substrate specificity characteristics are, however, similar to those of the liver enzyme in that the effectiveness of substrates increases with an increase in chain length and introduction of unsaturation or an aromatic group. Both liver and hepatoma alcohol dehydrogenase cross-react with antibody to horse liver alcohol dehydrogenase EE. The Michaelis constant for ethanol with the hepatoma enzyme is 223 mm, compared to 0.3 mm for liver alcohol dehydrogenase; at 1.0 m ethanol the hepatoma enzyme is not fully saturated with substrate. The Michaelis constant for 2-hexene-1-ol is 0.3 mm, indicating that the hepatoma enzyme is better suited for dehydrogenation of longer chain alcohols. Stomach alcohol dehydrogenase has kinetic properties comparable to those of the hepatoma enzyme, as well as similar electrophoretic mobility. The hepatoma enzyme can be detected in the serum of rats bearing hepatomas.  相似文献   

19.
Alcohol-oxidizing enzymes of the facultative methylotroph PAR were investigated after growth of the bacteria on methanol and ethanol. During methanol growth only a phenazine methosulfate-linked alcohol dehydrogenase was detected. This enzyme had broad specificity for primary alcohols and was also capable of oxidation of secondary alcohols. It had a molecular weight of 112,000, was composed of two subunits of equal molecular weight, and showed an absolute requirement for ammonium ion for activation. During ethanol growth this enzyme was absent and was replaced by a typical nicotinamide adenine dinucleotide-linked alcohol dehydrogenase of molecular weight 150,000. The latter enzyme also had broad specificity but could not oxidize methanol. This enzyme was not found during methanol growth. These data show that the organism has two distinctly separate mechanisms for oxidation of alcohols.  相似文献   

20.
Purification and characterization of human liver sorbitol dehydrogenase   总被引:1,自引:0,他引:1  
W Maret  D S Auld 《Biochemistry》1988,27(5):1622-1628
Sorbitol dehydrogenase from human liver was purified to homogeneity by affinity chromatography on immobilized triazine dyes, conventional cation-exchange chromatography, and high-performance liquid chromatography. The major form is a tetrameric, NAD-specific enzyme containing one zinc atom per subunit. Human liver sorbitol dehydrogenase oxidizes neither ethanol nor other primary alcohols. It catalyzes the oxidation of a secondary alcohol group of polyol substrates such as sorbitol, xylitol, or L-threitol. However, the substrate specificity of human liver sorbitol dehydrogenase is broader than that of the liver enzymes of other sources. The present report describes the stereospecific oxidation of (2R,3R)-2,3-butanediol, indicating a more general function of sorbitol dehydrogenase in the metabolism of secondary alcohols. Thus, the enzyme complements the substrate specificities covered by the three classes of human liver alcohol dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号