首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Previous investigations have identified a quantitatively major intermediate of lignin degradation by Streptomyces viridosporus. The intermediate, a modified lignin polymer, acid-precipitable polymeric lignin (APPL), is released as a water-soluble catabolite and has been recovered in amounts equivalent to 30% of the lignin originally present in a corn stover lignocellulose substrate after degradation by this actinomycete. In the present work, APPLs were collected at various time intervals from cultures of two highly ligninolytic Streptomyces sp. strains, S. viridosporus T7A and S. badius 252, growing on corn stover lignocellulose. APPL production was measured over time, and the chemistry of APPLs produced by each organism after different time intervals was compared. Chemical characterizations included assays for lignin, carbohydrate, and ash contents, molecular weight distributions by gel permeation chromatography, and chemical degradation analyses by permanganate oxidation, acidolysis, and alkaline ester hydrolysis. Differences between the organisms were observed in the cultural conditions required for APPL production and in the time courses of APPL accumulation. S. viridosporus produced APPL in solid-state fermentation over a 6- to 8-week incubation period, whereas S. badius produced as much or more APPL, but only in liquid culture and over a 7- to 8-day incubation period. The chemistry of the APPLs produced also differed. S. viridosporus APPL was more lignin-like than that of S. badius and was slowly modified further over time, although no change in molecular weight distribution over time was observed. In contrast, S. badius APPL was less lignin-like and increased substantially in average molecular weight over time. Results indicated that differing mechanisms of lignin metabolism may exist in these two Streptomyces sp. strains. S. viridosporus APPL probably originates from the heart of the lignin and is released largely as the result of β-ether cleavage and other oxidative reactions. S. badius APPL probably originates in the same manner; however, after release as a water-soluble catabolite, lower-molecular-weight intermediates of lignin degradation are repolymerized with APPL in a reaction catalyzed by an extracellular phenol oxidase. The chemical analyses and the presence of extracellular phenol oxidase in S. badius, but not in S. viridosporus, support this conclusion.  相似文献   

2.
Lignocellulose degradation by Streptomyces viridosporus results in the oxidative depolymerization of lignin and the production of a water-soluble lignin polymer, acid-precipitable polymeric lignin (APPL). The effects of the culture pH on lignin and cellulose metabolism and APPL production by S. viridosporus are reported. Dry, ground, hot-water-extracted corn (Zea mays) lignocellulose was autoclaved in 1-liter reagent bottles (5 g per bottle) and inoculated with 50-ml volumes of S. viridosporus cells suspended in buffers of specific pH (pH 6.0 to 9.2 at 0.4 pH unit intervals). Four replicates of inoculated cultures and of uninoculated controls at each pH were incubated as solid-state fermentations at 37°C. After 6 weeks of incubation the percent loss of lignocellulose, lignin, and carbohydrate and the amount of APPL produced were determined for each replicate. Optimal lignocellulose degradation, as shown by substrate weight loss, was observed in the pH range of 8.4 to 8.8. Only minor differences were seen in the Klason lignin, carbohydrate, protein, and ash contents of the APPLS produced by cultures at each pH. The effects of pH on the degradation of a spruce (Picea pungens) [14C-lignin]lignocellulose and a Douglas fir (Pseudotsuga menziesii) [14C-glucan]-lignocellulose were also determined at pH values between 6.5 and 9.5 (0.5 pH unit intervals). The incubations were carried out for 3 weeks at 37°C with bubbler-tube cultures. The percentage of initial 14C recovered as 14CO2, 14C-labeled water-soluble products, and [14C]APPL was then determined. The mineralization of lignin and cellulose to CO2 was optimal at pHs 6.5 and 7.0, respectively. However, the optimum for lignin and cellulose solubilization was pH 8.5, which correlated with the pH 8.5 optimum for APPL production. Overall, the data show that, whereas lignin mineralization is optimal at neutral to slightly acidic pHs, lignocellulose degradation with lignin solubilization and APPL production is promoted by alkaline pHs. These findings indicate that lignin-solubilizing actinomycetes may play an important role in the metabolism of lignin in neutral to alkaline soils in which ligninolytic fungi are not highly competitive.  相似文献   

3.
Previous investigations have identified a quantitatively major intermediate of lignin degradation by Streptomyces viridosporus. The intermediate, a modified lignin polymer, acid-precipitable polymeric lignin (APPL), is released as a water-soluble catabolite and has been recovered in amounts equivalent to 30% of the lignin originally present in a corn stover lignocellulose substrate after degradation by this actinomycete. In the present work, APPLs were collected at various time intervals from cultures of two highly ligninolytic Streptomyces sp. strains, S. viridosporus T7A and S. badius 252, growing on corn stover lignocellulose. APPL production was measured over time, and the chemistry of APPLs produced by each organism after different time intervals was compared. Chemical characterizations included assays for lignin, carbohydrate, and ash contents, molecular weight distributions by gel permeation chromatography, and chemical degradation analyses by permanganate oxidation, acidolysis, and alkaline ester hydrolysis. Differences between the organisms were observed in the cultural conditions required for APPL production and in the time courses of APPL accumulation. S. viridosporus produced APPL in solid-state fermentation over a 6- to 8-week incubation period, whereas S. badius produced as much or more APPL, but only in liquid culture and over a 7- to 8-day incubation period. The chemistry of the APPLs produced also differed. S. viridosporus APPL was more lignin-like than that of S. badius and was slowly modified further over time, although no change in molecular weight distribution over time was observed. In contrast, S. badius APPL was less lignin-like and increased substantially in average molecular weight over time. Results indicated that differing mechanisms of lignin metabolism may exist in these two Streptomyces sp. strains. S. viridosporus APPL probably originates from the heart of the lignin and is released largely as the result of beta-ether cleavage and other oxidative reactions. S. badius APPL probably originates in the same manner; however, after release as a water-soluble catabolite, lower-molecular-weight intermediates of lignin degradation are repolymerized with APPL in a reaction catalyzed by an extracellular phenol oxidase. The chemical analyses and the presence of extracellular phenol oxidase in S. badius, but not in S. viridosporus, support this conclusion.  相似文献   

4.
Protoplast fusion was investigated as a technique for genetically manipulating two lignin-degrading Streptomyces strains, Streptomyces viridosporus T7A and Streptomyces setonii 75Vi2. Four of 19 recombinants tested showed enhanced production of acid-precipitable polymeric lignin (APPL), producing 155 to 264% more APPL from corn stover lignocellulose than was produced by the wild-type S. viridosporus T7A. APPLs are lignin degradation intermediates known to be potentially valuable chemical products produced by bioconversion of lignin with Streptomyces spp. The prospects of utilizing protoplast fusion to construct APPL-overproducing Streptomyces strains was considered especially promising.  相似文献   

5.
Degradation of ground and hot-water-extracted corn stover (Zea mays) lignocellulose by Streptomyces viridosporus T7A generates a water-soluble lignin degradation intermediate termed acid-precipitable polymeric lignin (APPL). The further catabolism of T7A-APPL by S. viridosporus T7A, S. badius 252, and S. setonii 75Vi2 was followed for 3 weeks in aerated shake flask cultures at 37°C in a yeast extract-glucose medium containing 0.05% (wt/vol) T7A-APPL. APPL catabolism by Phanerochaete chrysosporium was followed in stationary cultures in a low-nitrogen medium containing 1% (wt/vol) glucose and 0.05% (wt/vol) T7A-APPL. Metabolism of the APPL was followed by turbidometric assay (600 nm) and by direct measurement of APPL recoverable from the medium. Accumulation and disappearance of soluble low-molecular-weight products of APPL catabolism were followed by gas-liquid chromatography and by high-pressure liquid chromatography, utilizing a diode array detector. Identified and quantified compounds present in culture media included p-coumaric acid, ferulic acid, p-hydroxybenzoic acid, p-hydroxybenzaldehyde, protocatechuic acid, vanillic acid, and vanillin. The further catabolism of these APPL-derived aromatic compounds varied with the culture examined, and only S. setonii and P. chrysosporium completely degraded all of them. Some new intermediates of APPL metabolism also appeared in culture media, but the patterns were culture specific. Additional evidence from high-pressure liquid chromatography analyses indicated that one strain, S. badius, converted a water-soluble fraction evident by high-pressure liquid chromatography (7 to 10 min retention time range) into new products appearing at shorter retention times. Mineralization of a [14C-lignin]APPL was also followed. The percent 14C recovered as 14CO2, 14C-APPL, 14C-labeled water-soluble products, and cell mass-associated radioactivity, were determined for each microorganism after 1 and 3 weeks of incubation in bubbler tube cultures at 37°C. P. chrysosporium evolved the most 14CO2 (10%), and S. viridosporus gave the greatest decrease in recoverable 14C-APPL (23%). The results show that S. badius was not able to significantly degrade the APPL, while the other microorganisms demonstrated various APPL-degrading abilities. The significance of these findings relative to the fate of APPLs in nature was discussed.  相似文献   

6.
Protoplast fusion was investigated as a technique for genetically manipulating two lignin-degrading Streptomyces strains, Streptomyces viridosporus T7A and Streptomyces setonii 75Vi2. Four of 19 recombinants tested showed enhanced production of acid-precipitable polymeric lignin (APPL), producing 155 to 264% more APPL from corn stover lignocellulose than was produced by the wild-type S. viridosporus T7A. APPLs are lignin degradation intermediates known to be potentially valuable chemical products produced by bioconversion of lignin with Streptomyces spp. The prospects of utilizing protoplast fusion to construct APPL-overproducing Streptomyces strains was considered especially promising.  相似文献   

7.
The wild-type ligninolytic actinomycete Streptomyces viridosporus T7A and two genetically manipulated strains with enhanced abilities to produce a water-soluble lignin degradation intermediate, an acid-precipitable polymeric lignin (APPL), were grown on lignocellulose in solid-state fermentation cultures. Culture filtrates were periodically collected, analyzed for APPL, and assayed for extracellular lignocellulose-catabolizing enzyme activities. Isoenzymes were analyzed by polyacrylamide gel electrophoresis and activity staining on the gels. Two APPL-overproducing strains, UV irradiation mutant T7A-81 and protoplast fusion recombinant SR-10, had higher and longer persisting peroxidase, esterase, and endoglucanase activities than did the wild-type strain T7A. Results implicated one or more of these enzymes in lignin solubilization. Only mutant T7A-81 had higher xylanase activity than the wild type. The peroxidase was induced by both lignocellulose and APPL. This extracellular enzyme has some similarities to previously described ligninases in fungi. This is the first report of such an enzyme in Streptomyces spp. Four peroxidase isozymes were present, and all catalyzed the oxidation of 3,4-dihydroxyphenylalanine, while one also catalyzed hydrogen peroxide-dependent oxidation of homoprotocatechuic acid and caffeic acid. Three constitutive esterase isozymes were produced which differed in substrate specificity toward α-naphthyl acetate and α-naphthyl butyrate. Three endoglucanase bands, which also exhibited a low level of xylanase activity, were identified on polyacrylamide gels as was one xylanase-specific band. There were no major differences in the isoenzymes produced by the different strains. The probable role of each enzyme in lignocellulose degradation is discussed.  相似文献   

8.
Streptomyces viridosporus T7A and S. badius 252 were grown in 1 to 2% (wt/vol) slurry cultures with mineral salts solution containing 0.6% yeast extract and 100/200 mesh ground and extracted corn lignocellulose at 37°C. Enzyme activities rapidly increased in the first 3 to 4 days and then declined and remained at a relatively constant level. Concentrations of endoglucanase and xylanase produced by S. badius were lower than those produced by S. viridosporus. However, the lignin-peroxidase peak concentration was threefold higher than with S. viridosporus and was obtained at 9 to 10 days of incubation. By polyacrylamide gel analysis, it was determined that peroxidases from both species consisted of four enzymes, with only one, the lignin peroxidase, having high activity. A culture pH of 8.5 was preferable for lignocellulose degradation by S. badius.  相似文献   

9.
Summary Two mutant strains of the lignin degrading bacterium Streptomyces viridosporus strain T7A with enhanced abilities to produce a soluble lignin degradation intermediate, acid-precipitable polymeric lignin (APPL) and several mutants derepressed for cellulase production were compared with the wild type to examine the roles of cellulase and selected other extracellular enzymes in lignin solubilization by S. viridosporus. The two APPL-overproducing mutants, T-81 and T-138, had higher cellulase activities than the wild type. Mutants specifically derepressed for cellulase were also isolated and were found to produce more APPL than the wild type. The results are indicative of some involvement of cellulase in the lignin solubilization process. The lignin solubilized from corn (Zea mays) lignocellulose by the mutants was slightly different chemically as compared to wild type solubilized lignin in that it had a higher coumaric acid ester content. The production of extracellular coumarate ester esterase, aromatic aldehyde oxidase, and xylanase was also examined in the mutants. Xylanase and aromatic aldehyde oxidase production did not differ significantly between the mutants and the wild type. Mutant T-81 was found to have a slightly lower activity for esterase as compared with the wild type. It was concluded that xylanase, oxidase and esterase are not the enzymes directly responsible for enhanced lignin solubilization. The results, however, do implicate cellulase in the process.Paper number 86 511 of the Idaho Agricultural Experiment Station  相似文献   

10.
Lignin degrading strains of Streptomyces were grown on lignocelluloses from a variety of plant sources. These actinomycetes readily degraded the lignin present in the residues and released a major portion of the lignin into the growth medium as a water soluble, modified polymer. The polymer, an acid precipitable polyphenolic lignin (APPL), was recovered from spent culture media by acid precipitation or dialysis/lyophilization. APPL's were shown to be mostly free of nonlignin components. As compared to native lignin they were more oxidized, were especially enriched in phenolic hydroxyl groups, and were significantly reduced in methoxyl groups. The yield of APPL from different lignocelluloses correlated with their biodegradability. Grasses such as corn stover were the optimal lignocellulose type for APPL production by Streptomyces. In contrast white-rot fungi produced only small amounts of APPL as they decomposed lignin. A solid state bioconversion process was developed using Streptomyces viridosporus T7A to produce APPL from corn stover lignocellulose in yields >or= 30% of the initial lignin present in the substrate. APPL produced by S. viridosporus was examined for its properties and possible use as an antioxidant. The APPL was shown to have good antioxidant properties after mild chemical treatment to reduce the alpha-carbonyl groups present in the APPL. Oxidation of the APPL with hydroxyl radical (OH(*)) further improved its antioxidant properties probably as the result of aromatic ring hydroxylation reactions. As compared with currently used commercial antioxidants, the modified APPL was thought to be competitive when economics of production was considered. Native lignin on the other hand was shown to exhibit no antioxidant properties, even after reduction and/or oxidation.  相似文献   

11.
Two Streptomyces strains, S. viridosporus T7A and S. setonii 75Vi2, were grown on softwood, hardwood, and grass lignocelluloses, and lignocellulose decomposition was followed by monitoring substrate weight loss, lignin loss, and carbohydrate loss over time. Results showed that both Streptomyces strains substantially degraded both the lignin and the carbohydrate components of each lignocellulose; however, these actinomycetes were more efficient decomposers of grass lignocelluloses than of hardwood or softwood lignocelluloses. In particular, these Streptomyces strains were more efficient decomposers of grass lignins than of hardwood or softwood lignins.  相似文献   

12.
Specifically radiolabeled [14C-lignin]lignocelluloses and [14C-polysaccharide]lignocelluloses were prepared from a variety of marine and freshwater wetland plants including a grass, a sedge, a rush, and a hardwood. These [14C]lignocellulose preparations and synthetic [14C]lignin were incubated anaerobically with anoxic sediments collected from a salt marsh, a freshwater marsh, and a mangrove swamp. During long-term incubations lasting up to 300 days, the lignin and polysaccharide components of the lignocelluloses were slowly degraded anaerobically to 14CO2 and 14CH4. Lignocelluloses derived from herbaceous plants were degraded more rapidly than lignocellulose derived from the hardwood. After 294 days, 16.9% of the lignin component and 30.0% of the polysaccharide component of lignocellulose derived from the grass used (Spartina alterniflora) were degraded to gaseous end products. In contrast, after 246 days, only 1.5% of the lignin component and 4.1% of the polysaccharide component of lignocellulose derived from the hardwood used (Rhizophora mangle) were degraded to gaseous end products. Synthetic [14C]lignin was degraded anaerobically faster than the lignin component of the hardwood lignocellulose; after 276 days, 3.7% of the synthetic lignin was degraded to gaseous end products. Contrary to previous reports, these results demonstrate that lignin and lignified plant tissues are biodegradable in the absence of oxygen. Although lignocelluloses are recalcitrant to anaerobic biodegradation, rates of degradation measured in aquatic sediments are significant and have important implications for the biospheric cycling of carbon from these abundant biopolymers.  相似文献   

13.
The actinomycete strain Streptomyces griseus B1 isolated from soil, when grown on cellulose powder as submerged culture produced high levels of all the three components i.e. filter paper lyase (FPase), CMCellulase and β-glucosidase of the cellulolytic enzyme system. FP activity and CMCellulase were present only extracellularly, while β-glucosidase was both intra- and extra-cellular. It produced highest FPase activity when grown on hardwood powder under submerged culture. It was unable to use lignin monomers (ferulic acid, vanillic acid and syringic acid) as carbon source. While growing on hardwood and softwood powders under solid-state conditions, it depleted them of cellulose (36.3 in the case of softwood and 14.4 in the case of hardwood). It also caused partial loss of lignin content in both the substrates by solubilizing them. These solubilized lignins could be recovered as acid precipitable polymeric lignins (APPL) from extracts of wood powders upon acidification. Extracts of inoculated wood powders yielded higher amounts of APPL than uninoculated controls. Also, the APPLs from Streptomyces-treated wood powders differed from control APPLs in their molecular weight distribution, as observed from their elution pattern using Sephadex G-100.  相似文献   

14.
Isolation of a Bacterium Capable of Degrading Peanut Hull Lignin   总被引:4,自引:2,他引:2       下载免费PDF全文
Thirty-seven bacterial strains capable of degrading peanut hull lignin were isolated by using four types of lignin preparations and hot-water-extracted peanut hulls. One of the isolates, tentatively identified as Arthrobacter sp., was capable of utilizing all four lignin preparations as well as extracted peanut hulls as a sole source of carbon. The bacterium was also capable of degrading specifically labeled [14C]lignin-labeled lignocellulose and [14C]cellulose-labeled lignocellulose from the cordgrass Spartina alterniflora and could also degrade [14C]Kraft lignin from slash pine. After 10 days of incubation with [14C]cellulose-labeled lignocellulose or [14C]lignin-labeled lignocellulose from S. alterniflora, the bacterium mineralized 6.5% of the polysaccharide component and 2.9% of the lignin component.  相似文献   

15.
Thermophilic (55°C) anaerobic enrichment cultures were incubated with [14C-lignin]lignocellulose, [14C-polysaccharide]lignocellulose, and kraft [14C]lignin prepared from slash pine, Pinus elliottii, and 14C-labeled preparations of synthetic lignin and purified cellulose. Significant but low percentages (2 to 4%) of synthetic and natural pine lignin were recovered as labeled methane and carbon dioxide during 60-day incubations, whereas much greater percentages (13 to 23%) of kraft lignin were recovered as gaseous end products. Percentages of label recovered from lignin-labeled substrates as dissolved degradation products were approximately equal to percentages recovered as gaseous end products. High-pressure liquid chromatographic analyses of CuO oxidation products of sound and degraded pine lignin indicated that no substantial chemical modifications of the remaining lignin polymer, such as demethoxylation and dearomatization, occurred during biodegradation. The polysaccharide components of pine lignocellulose and purified cellulose were relatively rapidly mineralized to methane and carbon dioxide; 31 to 37% of the pine polysaccharides and 56 to 63% of the purified cellulose were recovered as labeled gaseous end products. An additional 10 to 20% of the polysaccharide substrates was recovered as dissolved degradation products. Overall, these results indicate that elevated temperatures can greatly enhance rates of anaerobic degradation of lignin and lignified substrates to methane and low-molecular-weight aromatic compounds.  相似文献   

16.
Summary The wood-decay fungi Coriolus versicolor, a white-rot fungus, and Poria placenta, a brown-rot fungus, were grown on an extractive-free lignocellulose prepared from quackgrass (Agropyron repens). Their abilities to decompose this lignocellulose were compared to their abilities to decompose softwood (Picea pungens) and hardwood (Acer rubrum) lignocelluloses. The two fungi were grown on malt-extract dampened lignocelluloses at 28°C for up to 12 weeks. Replicate cultures were periodically harvested and lignocellulose decomposition was followed by monitoring substrate weight loss, lignin loss, and carbohydrate loss. Coriolus versicolor decomposed the lignin and carbohydrate components of the grass lignocellulose as efficiently as the softwood and hardwood lignocelluloses. Poria placenta, however, was not an efficient degrader of either lignin or carbohydrate in the grass lignocellulose. Poria placenta readily decomposed carbohydrate components of the softwood lignocellulose but not the hardwood lignocellulose.Paper number 81520 of the Idaho Agricultural Experiment Station  相似文献   

17.
Actinomycetes grown on wheat straw solubilized a lignocarbohydrate fraction which could be recovered by acid precipitation. Further characterization of this product (APPL) during growth of Streptomyces sp. strain EC1 revealed an increase in carboxylic acid and phenolic hydroxyl content, suggesting progressive modification. This was also observed in dioxane-extracted lignin fractions of degraded straw, and some similarity was further suggested by comparative infrared spectroscopy. However, the molecular weight profile of APPL was relatively constant during growth of Streptomyces sp. strain EC1 on straw, while analysis of the dioxane-extracted lignin fractions appeared to show fragmentation followed by repolymerization. Lignocarbohydrate solubilization could be monitored in all cultures by routine assay of APPL-associated protein, which accounted for up to 20% of the extracellular culture protein in some cases. Interestingly, this protein fraction was found to include active hydrolytic and oxidative enzymes involved in the degradation of lignocellulose, and specific enzyme activities were often increased in the acid-insoluble fractions of culture supernatants. This was particularly important for peroxidase and veratryl oxidase activities, which could be readily detected in the acid-precipitable lignocarbohydrate complex but were virtually undetectable in untreated culture supernatants.  相似文献   

18.
Summary The relationships between growth, medium pH, assimilation of glucose and amino acids, presence or absence of lignocellulose in the medium, lignin solubilization, and the appearance of extracellular peroxidase activity were compared for two lignin-solubilizing actinomycetes, Streptomyces chromofuscus A2 and S. viridosporus T7A. In a mineral salt medium containing yeast extract and three amino acids S. chromofuscus A2 grew faster than S. viridosporus T7A. When d-glucose was added to this medium, it was used in preference to the amino acids, the assimilation of which was delayed. Extracellular peroxidase activity peaked during the stationary phase, and glucose supplementation delayed peroxidase production. The eventual peak in peroxidase activity was higher in glucose-containing medium than in medium without glucose. Supplementation of the medium with lignocellulose did not affect either the level or time of appearance of extracellular peroxidase. However, lignin solubilization in lignocellulose-supplemented medium correlated positively with peroxidase activity: both increased after the cells entered the stationary phase. Supplementation of lignocellulose-containing medium with glucose delayed peroxidase production and lignin solubilization until the glucose had been assimilated. With S. viridosporus T7A, addition of d-glucose to the standard medium affected amino acid assimilation differently from S. chromofuscus A2. Glucose was consumed concomitantly with the amino acids. In the medium supplemented with lignocellulose, peroxidase activity and lignin solubilization correlated as they did for S. chromofuscus A2. A correlation of unknown significance was observed between the peroxidase activities of both strains and increasing medium pH. S. chromofuscus A2 produced more peroxidase and solubilized more lignin from lignocellulose than did S. viridosporus T7A. Overall, these findings show that extracellular peroxidases of both Streptomyces ssp. appear extracellularly primarily after cells cease growing and nutrients have been depleted from the medium. Also, increasing extracellular peroxidase activity and rates of lignin solubilization in both organisms are correlated and subject to glucose repression. These results point to the involvement of stationary-phase active peroxidases in the Streptomyces-catalyzed solubilization of lignin.Paper No. 90518 of the Idaho Agricultural Experiment Station Offprint requests to: D. L. Crawford  相似文献   

19.
Plant lignocellulose constitutes an abundant and sustainable source of polysaccharides that can be converted into biofuels. However, the enzymatic digestion of native plant cell walls is inefficient, presenting a considerable barrier to cost-effective biofuel production. In addition to the insolubility of cellulose and hemicellulose, the tight association of lignin with these polysaccharides intensifies the problem of cell wall recalcitrance. To determine the extent to which lignin influences the enzymatic digestion of cellulose, specifically in secondary walls that contain the majority of cellulose and lignin in plants, we used a model system consisting of cultured xylem cells from Zinnia elegans . Rather than using purified cell wall substrates or plant tissue, we have applied this system to study cell wall degradation because it predominantly consists of homogeneous populations of single cells exhibiting large deposits of lignocellulose. We depleted lignin in these cells by treating with an oxidative chemical or by inhibiting lignin biosynthesis, and then examined the resulting cellulose digestibility and accessibility using a fluorescent cellulose-binding probe. Following cellulase digestion, we measured a significant decrease in relative cellulose content in lignin-depleted cells, whereas cells with intact lignin remained essentially unaltered. We also observed a significant increase in probe binding after lignin depletion, indicating that decreased lignin levels improve cellulose accessibility. These results indicate that lignin depletion considerably enhances the digestibility of cellulose in the cell wall by increasing the susceptibility of cellulose to enzymatic attack. Although other wall components are likely to contribute, our quantitative study exploits cultured Zinnia xylem cells to demonstrate the dominant influence of lignin on the enzymatic digestion of the cell wall. This system is simple enough for quantitative image analysis, but realistic enough to capture the natural complexity of lignocellulose in the plant cell wall. Consequently, these cells represent a suitable model for analyzing native lignocellulose degradation.  相似文献   

20.
Summary Thermomonospora mesophila degraded [14C]lignin-labelled wheat lignocellulose to yield high molecular weight water-soluble products and a small amount of 14CO2. Solubilisation of [14C]lignin was found to be extracellular and inducible by growth on lignocellulose (straw) and hemicellulose (xylan), but was not correlated with xylanase or cellulase production.The acid-precipitable product of straw degradation by T. mesophila was found to be a complex of lignin, pentose-rich carbohydrate and protein with some similarity to humic acids. Solid-state 13C-NMR spectra of the dried product were generally similar to those of chemically extracted milled straw lignin but showed an increased content of carbonyl groups.The relationship between degradation and solubilisation of lignin is discussed and a role suggested for actinomycetes in humification and the exploitation of lignocellulose bioconversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号