首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the land snail fauna of Nyungwe Forest National Park in south‐western Rwanda. Fifty plots at altitudes between 1718 and 2573 m were studied. In total, 3461 specimens were collected and were assigned to 102 land snail species. With respect to land snail species, Nyungwe Forest is the richest forest known in Africa. A comparison with other forests in the northern Albertine Rift indicates that land snail species richness in this region is significantly correlated with distance from Pleistocene forest refugia. The high beta diversity in Nyungwe is the result of a high species turnover between sites, which has biogeographical and ecological origins. Nyungwe Forest is situated on the Congo–Nile divide where species of different geographical origin may meet. Moreover, Nyungwe Forest offers a high diversity of habitats because it extends across a wide range of altitudinal zones. Species richness decreased with increasing altitude. It was also correlated with the presence of bare rocks that offer additional microhabitats and shelter. Although the occurrences of different land snail species in Nyungwe Forest were significantly clustered, only a minority of the species could be assigned to a group of species with similar occurrences. The majority of the species respond individualistically to environmental variables. The significant nestedness of the occurrences of the land snail species in Nyungwe was mainly correlated with altitude. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 363–375.  相似文献   

2.
With group sizes sometimes >300 individuals, the Angolan black-and-white colobus (Colobus angolensis ruwenzorii) population in Nyungwe Forest, Rwanda is an intriguing exception to the tendency for folivores to live in smaller groups than expected relative to body size. Researchers have hypothesized that the unusually high quality of foliage at Nyungwe allows colobus there to avoid intragroup feeding competition, releasing constraints on the formation of large groups (Fimbel et al., 2001). We collected data on the activity and ranging patterns of a >300-member Nyungwe colobus group and compared our results to those from smaller groups in other black-and-white colobus (Colobus spp.) populations. Colobus at Nyungwe spent far more time feeding and moving (62%) and far less time resting (32%) than black-and-white colobus at any other site. The annual home range of the Nyungwe colobus was also many times larger (95% minimum convex polygon: 20.7 km 2 ; 95% fixed kernel: 24.4 km 2 ) than those for other populations. We terminated our research after the group engaged in an unprecedented migration among black-and-white colobus by moving 13 km south of their former range. Our results suggest that intragroup scramble competition may be more intense than originally believed within the large colobus groups at Nyungwe and that long periods of resource renewal may be necessary after a large colobus group passes through an area, thereby potentially helping to explain their wide ranging patterns. We discuss the socioecological convergence between the Nyungwe colobus and Chinese snub-nosed monkeys (Rhinopithecus spp.) and suggest directions for future research on the unique black-and-white colobus population at Nyungwe.
Peter J. FashingEmail:
  相似文献   

3.
Seed dispersal by rodents has been understudied in Africa. Based on seed‐removal experiments, the presence of seeds in burrows and caches, cotyledon burial of seedlings, and images from camera traps, we provide evidence that rodents (Cricetomys kivuensis) remove and hoard large seeds of Carapa grandiflora in Nyungwe National Park, Rwanda.  相似文献   

4.
A new species, Epistemma neuerburgii is described. This species was discovered in the Nyungwe National Park, Rwanda, Tropical Africa during a field investigation of epiphytes in montane rainforest. It was, however, also found in Uganda, in similar environment. E. neuerburgii is the fourth species described for Epistemma, but the other three species are found about 2000 km to the west in Cameroon, Gabon, Ghana, Ivory Coast and Nigeria. E. neuerburgii is an epiphytic climber distinguished by fairly large lanceolate leaves and conspicuous reddish-purple flowers with corolline white, densely hairy corona lobes.  相似文献   

5.
Human activities such as logging and agriculture can severely damage forest ecosystems by changing forest structure, ecosystem function, and biodiversity. These changes may have long‐lasting consequences, which influence forest recovery. We investigated the effect of past human disturbance on the current distribution of an understory, achlorophyllous orchid, Wullschlaegelia calcarata in Puerto Rico's tropical rain forest after 70 yr of recovery. Our study site was the 16‐ha Luquillo Forest Dynamics Plot located in the Luquillo Experimental Forest, which has four areas with differing intensity of land use that have been distinguished from variation in canopy cover seen in aerial photographs taken in 1936. We recorded orchids in six 10‐m‐wide, 500‐m‐long transects across four different areas of land‐use history. We found that the orchid was not present in an area of the plot which had <20 percent canopy cover in 1936, and was most abundant in the area with >80 percent canopy cover, which had been minimally impacted by human activity. Tree species composition varied among land‐use history areas, and our observations suggested that this variation might be influencing the local distribution of W. calcarata. We also measured leaf litter biomass and identified the leaves of litter in areas with and without the orchid. Litter with a high proportion of Buchenavia tetraphylla leaves had more orchids. Even though human disturbance ceased in 1932, land‐use history in the Luquillo Forest still casts a shadow over the distribution of W. calcarata.  相似文献   

6.
Questions: 1. Is there a trade‐off between gap dependency and shade tolerance in each of the life‐history stages of three closely related, coexisting species, Acer amoenum (Aa), A. mono (Am) and A. rufinerve (Ar)? 2. If not, what differences in life‐history traits contribute to the coexistence of these non‐pioneer species? Location: Ogawa Forest Reserve, a remnant (98 ha), species‐rich, temperate deciduous forest in central Japan (36°56’ N, 140°35’ E, 600 ‐ 660 m a.s.l.). Methods: We estimated the demographic parameters (survival, growth rate and fecundity) by stage of each species growing in gaps and under closed canopy through observations of a 6‐ha permanent plot over 12 years. Population dynamics were analysed with stage‐based matrix models including gap dynamics. Results : All of the species showed high seedling and sapling survival rates under closed canopies. However, demographic parameters for each growth stage in gaps and under closed canopies revealed inter‐specific differences and ontogenetic shifts. The trade‐off between survival in the shade and growth in gaps was detected only at the small sapling stage (height < 30 cm), and Ar had the highest growth rate both in the shade and in the gaps at most life stages. Conclusions: Inter‐specific differences and ontogenetic shifts in light requirements with life‐form differences may contribute to the coexistence of the Acer species in old‐growth forests, with Aa considered a long‐lived sub‐canopy tree, Am a long‐lived canopy tree, and Ar a short‐lived,‘gap‐phase’ sub‐canopy tree.  相似文献   

7.
We present the first systematic field study on the feeding ecology of the mountain monkey (Circopithecus l'hoesti), a semi-terrestrial guenon. We compare our results with findings from a concurrent study of blue monkeys (C. mitis doggetti, which have an overlapping home range) conducted over ten months in the Nyungwe Forest Reserve, Rwanda. The mountain monkeys spent 35% of observation time feeding on terrestrial herbaceous vegetation. Thirty-five fruit and seed species comprised 42% of their diet, and invertebrates composed 9%. They spent 38% of observation time on the ground and 27% of observation time in canopy trees. Individuals were observed for equivalent proportions of time foraging on the ground for herbs and in canopy trees for fruits. Although mountain monkeys primarily foraged in undisturbed open areas, they also used disturbed open habitats for this purpose. Synthesizing our results with Pleistocene forest history and C. l'hoesti evolutionary history, we suggest that, although these monkeys readily use disturbed forest for herb foraging, they are a forest-adapted species which has adopted a terrestrial lifestyle to exploit the abundant herb layer common to montane forests.  相似文献   

8.
Most primates experience seasonal fluctuations in the availability of food resources and face the challenge of balancing energy expenditure with energy gain during periods of resource scarcity. This is likely to be particularly challenging in rugged, montane environments, where available energy is relatively low and travel costs are high. Chimpanzees (Pan troglodytes) show extensive behavioral diversity across study sites. Yet, as most research has focused on low- and mid-elevation sites, little is known on how chimpanzees respond to periods of low fruit availability in harsh montane environments. We use focal follow and phenology data to investigate how fruit availability influences daily path length and monthly home range in chimpanzees living in Nyungwe National Park, a montane forest in Rwanda. Nyungwe chimpanzees decreased their daily travel distances during periods of fruit scarcity. However, this decrease in travel effort did not correspond with a decrease in foraging area. Instead, monthly homes ranges shifted location across the study period. Nyungwe chimpanzees occupy a relatively wide altitudinal range and the shifts in monthly home range location may reflect differences in the altitudinal distribution of food resources. Chimpanzee monthly diet was often dominated by one or two species and each of these species were confined to different elevation zones. One important species, Podocarpus latifolius, grew only at high elevations (2,600–2,950 m) and chimpanzees ranged at the altitudinal peak of their range for 2 consecutive months while feeding on this species. Thus, while high elevations are often thought to be harsh environments for primates, they can be an important part of a species’ home range when they provide a refugium for densely distributed, important food species.  相似文献   

9.
Heat wave frequency, duration, and intensity are predicted to increase with global warming, but the potential impacts of short‐term high temperature events on forest functioning remain virtually unstudied. We examined canopy processes in a forest in Central Ontario following 3 days of record‐setting high temperatures (31–33 °C) that coincided with the peak in leaf expansion of dominant trees in late May 2010. Leaf area dynamics, leaf morphology, and leaf‐level gas‐exchange were compared to data from prior years of sampling (2002–2008) at the same site, focusing on Acer saccharum Marsh., the dominant tree in the region. Extensive shedding of partially expanded leaves was observed immediately following high temperature days, with A. saccharum losing ca. 25% of total leaf production but subsequently producing an unusual second flush of neoformed leaves. Both leaf losses and subsequent reflushing were highest in the upper canopy; however, retained preformed leaves and neoformed leaves showed reduced size, resulting in an overall decline in end‐of‐season leaf area index of 64% in A. saccharum, and 16% in the entire forest. Saplings showed lower leaf losses, but also a lower capacity to reflush relative to mature trees. Both surviving preformed and neoformed leaves had severely depressed photosynthetic capacity early in the summer of 2010, but largely regained photosynthetic competence by the end of the growing season. These results indicate that even short‐term heat waves can have severe impacts in northern forests, and suggest a particular vulnerability to high temperatures during the spring period of leaf expansion in temperate deciduous forests.  相似文献   

10.
We describe chimpanzee seed dispersal in the tropical montane forest of Nyungwe National Park (NNP), Rwanda, for a total of three years from January 1998 through May 2000 and May 2006 through March 2007. Relatively few studies have examined chimpanzee seed dispersal in montane communities where there are generally fewer fruiting tree species than in lowland forests. Such studies may reveal new insights into chimpanzee seed dispersal behaviors and the role that they play in forest regeneration processes. Chimpanzees are large‐bodied, highly frugivorous, and tend to deposit the seeds of both large‐ and small‐seeded fruits they consume in a viable state. We found that chimpanzees dispersed a total of 37 fruiting species (20 families) in their feces, 35% of which were large‐seeded trees (≥0.5 cm). A single large‐seeded tree, Syzygium guineense, was the only species to be dispersed in both wadges and feces. Based on phenological patterns of the top five large‐seeded tree species found in chimpanzee feces, our results indicate that chimpanzees do not choose fruits based on their availability. There was, however, a positive relationship between the presence of Ekebergia capensis seeds in chimpanzee feces and S. guineense seeds in chimpanzee wadges and their respective fruit availabilities. Our data reveal that proportionately fewer chimpanzee fecal samples at NNP contained seeds than that reported in two other communities in the Albertine Rift including one at mid‐elevation and one in montane forest. As in other chimpanzee communities, seeds of Ficus spp. were the most common genus in NNP chimpanzee feces. Our data do not support previous studies that describe Ficus spp. as a fallback food for chimpanzees and highlights an intriguing relationship between chimpanzees and the large‐seeded tree species, S. guineense. Am. J. Primatol. 71:901–911, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Tree species can generally be classified into two groups, heterobaric and homobaric leafed species, according to whether bundle-sheath extensions (BSEs) are found in the leaf (heterobaric leaf) or not (homobaric leaf). In this study, we study whether the leaf type is related to the growth environment and/or life form type, even in a tropical rain forest, where most trees have evergreen leaves that are generally homobaric. Accordingly, we investigated the distribution of leaf morphological differences across different life forms of 250 tree species in 45 families in a tropical rainforest. In total, 151 species (60%) in 36 families had homobaric leaves, and 99 species (40%) in 21 families had heterobaric leaves. We found that the proportion of heterobaric and homobaric leaf species differed clearly across taxonomic groups and life form types, which were divided into five life form types by their mature tree heights (understory, subcanopy, canopy, and emergent species) and as canopy gap species. Most understory (94%) and subcanopy (83%) species such as Annonaceae had homobaric leaves. In contrast, heterobaric leaf trees appeared more frequently in the canopy species (43%), the emergent species (96%) (such as Dipterocarpaceae), and the canopy gap species (62%). Our results suggest that tree species in the tropical rainforest adapt to spatial differences in the environmental conditions experienced at the mature height of each tree species, such as light intensity and vapor pressure difference, by having differing leaf types (heterobaric or homobaric) because these types potentially have different physiological and/or mechanical functions.  相似文献   

12.
Abstract. Nutrient conservation in vegetation affects rates of litter decomposition and soil nutrient availability. Although resorption has been traditionally considered one of the most important plant strategies to conserve nutrients in temperate forests, long leaf life‐span and low nutrient requirements have been postulated as better indicators. We aimed at identifying nutrient conservation strategies within characteristic functional groups of NW Patagonian forests on Andisols. We analysed C‐, N‐, P‐, K‐ and lignin‐concentrations in mature and senescent leaves of ten native woody species within the functional groups: broad‐leaved deciduous species, broad‐leaved evergreens and conifers. We also examined mycorrhizal associations in all species. Nutrient concentration in mature leaves and N‐ resorption were higher in broad‐leaved deciduous species than in the other two functional groups. Conifers had low mature leaf nutrient concentrations, low N‐resorption and high lignin/N ratios in senescent leaves. P‐ and K‐resorptions did not differ among functional groups. Broad‐leaved evergreens exhibited a species‐dependent response. Nitrogen in mature leaves was positively correlated with both N resorption and soil N‐fertility. Despite the high P‐retention capacity of Andisols, N appeared to be the more limiting nutrient, with most species being proficient in resorbing N but not P. The presence of endomycorrhizae in all conifers and the broad‐leaved evergreen Maytenus boaria, ectomycorrhizae in all Nothofagus species (four deciduous, one evergreen), and cluster roots in the broad‐leaved evergreen Lomatia hirsuta, would be possibly explaining why P is less limiting than N in these forests.  相似文献   

13.
Tropical rainforest canopies are renowned for their high invertebrate diversity and abundance. The canopy comprises a range of microhabitats representing very different food resources (including photosynthetic, reproductive, and structural tissues). As these resources vary considerably in temporal and spatial availability, nutritional quality, chemical protection and other attributes, we hypothesized that microhabitats support structurally different invertebrate communities. To test this we used the Australian Canopy Crane to sample invertebrates from mature leaves, flush leaves, flowers, fruit and suspended dead wood from 23 plant species. Invertebrate faunas on different microhabitats varied in taxonomic composition and feeding guild structure in support of the microhabitat differentiation hypothesis. Herbivores were found predominantly on new leaves (Hemiptera, Lepidoptera) and especially flowers (Coleoptera, Thysanoptera), but were relatively uncommon on mature leaves. Instead, the mature foliage community was dominated by predators, especially spiders and ants, and supported high abundances of saprophages. Ripe fruit and dead wood were scarce canopy resources that were utilized by a relatively small number of invertebrates, mostly saprophages and fungivores. Flowers supported a more heterogeneous fauna than the leaves in terms of proportional abundances of taxonomic groups and feeding guilds, both within tree species (evenness) and between tree species (non‐uniformity). These results demonstrate microhabitat differentiation in a rainforest canopy and are the first to quantify differences in taxonomic composition, guild structure and abundance patterns between such diverse invertebrate assemblages within host trees. We conclude that studies based only on sampling one microhabitat, and leaves in particular, may provide a distorted picture of invertebrate community structure.  相似文献   

14.
Bats utilize forests as roosting sites and feeding areas. However, it has not been documented how bats utilize these habitats in the boreal zone with methods afforded by recent technological advances. Forest structure and management practices can create a variety of three‐dimensional habitats for organisms capable of flight, such as bats. Here, we study the presence of boreal bats in a forest forming a mosaic of different age classes, dominant tree species, canopy cover, soil fertility, and other environmental variables, throughout their active season in the summer using passive ultrasound detectors. Our results indicate a preference for mature forest by Eptesicus nilssonii and a pooled set of Myotis bats. Both groups of bats also showed temporal changes in their habitat use regarding forest age. In June and July, both groups occurred more often in mature than young forests, but from August onwards, the difference in occurrence became less evident in Myotis and disappeared completely in E. nilssonii. In addition, E. nilssonii was more often present in forests with low canopy cover, and its occurrence shifted from coniferous forests to deciduous forests during the season. The results reflect the within‐season dynamics of bat communities and their ability to utilize different types of forest as environmental conditions change. Yet, the results most importantly emphasize the importance of mature forests to bat diversity and the need to conserve such environments in the boreal zone.  相似文献   

15.
The adaptation of herbivorous insects to new host plants is key to their evolutionary success in diverse environments. Many insects are associated with mutualistic gut bacteria that contribute to the host's nutrition and can thereby facilitate dietary switching in polyphagous insects. However, how gut microbial communities differ between populations of the same species that feed on different host plants remains poorly understood. Most species of Pyrrhocoridae (Hemiptera: Heteroptera) are specialist seed‐feeders on plants in the family Malvaceae, although populations of one species, Probergrothius angolensis, have switched to the very distantly related Welwitschia mirabilis plant in the Namib Desert. We first compared the development and survival of laboratory populations of Pr. angolensis with two other pyrrhocorids on seeds of Welwitschia and found only Pr. angolensis was capable of successfully completing its development. We then collected Pr. angolensis in Namibia from Malvaceae and Welwitschia host plants, respectively, to assess their bacterial and fungal community profiles using high‐throughput amplicon sequencing. Comparison with long‐term laboratory‐reared insects indicated stable associations of Pr. angolensis with core bacteria (Commensalibacter, Enterococcus, Bartonella and Klebsiella), but not with fungi or yeasts. Phylogenetic analyses of core bacteria revealed relationships to other insect‐associated bacteria, but also found new taxa indicating potential host‐specialized nutritional roles. Importantly, the microbial community profiles of bugs feeding on Welwitschia versus Malvaceae revealed stark and consistent differences in the relative abundance of core bacterial taxa that correlate with the host‐plant switch; we were able to reproduce this result through feeding experiments. Thus, a dynamic gut microbiota may provide a means for insect adaptation to new host plants in new environments when food plants are extremely divergent.  相似文献   

16.
Abstract The presence of the aggressive, colony-forming honeyeater, Manorina melanophrys (bell miner), in the canopies of unhealthy eucalypts has been well reported. There is, however, some debate as to the actual mechanisms producing these unhealthy trees. To investigate further some of the processes that may be contributing to this form of canopy dieback, two field trials were carried out in Olney State Forest, near Wyong, New South Wales. The study site contained Eucalyptus saligna (Sydney blue gum) with canopy dieback and was occupied by a large colony of bell miners. Close examination of the foliage revealed a large and diverse suite of phytophagous insects, including at least 16 species of psyllid (Hemiptera: Psyllidae). In the first trial, the use of bird exclusion cages over selected branches significantly improved leaf survival compared to leaves exposed to a relatively high density of bell miners. It is proposed that colonization by bell miners may interfere with the efficacy of both other insectivorous birds (through aggressive interspecific territoriality) and the invertebrate predators and parasitoids. Interference with such regulatory factors may enable some phytophagous insect populations to rise to sustained damaging levels. In the second trial, an insecticide application combined with reduced competition from the dense understorey and neighbouring trees was required to significantly improve trunk diameter and crown condition scores. After 12 months, neither treatment, by itself, significantly improved both growth measures. Possibly both treatments were required because the E. saligna trees were suffering from another source of stress (e.g. drought) in addition to the relatively high level of insect attack.  相似文献   

17.
Question: What is the effect of frequent low intensity prescribed fire on foliar nutrients and insect herbivory in an Australian eucalypt forest? Location: Lorne State Forest (Bulls Ground Frequent Burning Study), mid‐north coast, New South Wales, Australia. Methods: Eighteen independent sites were studied representing three experimental fire regimes: fire exclusion (at least 45 years), frequently burnt (every 3 years for 35 years) and fire exclusion followed by the recent introduction of frequent burning (two fires in 6 years). Mature leaves were collected from the canopy of Eucalyptus pilularis trees at each site and analysed for nutrients and damage by invertebrate herbivores. Results: Almost 75% of all leaves showed some signs of leaf damage. The frequency of past fires had no effect on carbon and nitrogen content of canopy leaves. These results were consistent with assessments of herbivore damage where no significant differences were found in the amount of invertebrate herbivory damage to leaves across fire treatments. Conclusions: This eucalypt forest displayed a high degree of resilience to both frequent burning and fire exclusion as determined by foliar nutrients and damage by insect herbivores. Fire frequency had no detectable ecological impact on this aspect of forest health.  相似文献   

18.
Phenology of a northern hardwood forest canopy   总被引:4,自引:0,他引:4  
While commonplace in other parts of the world, long‐term and ongoing observations of the phenology of native tree species are rare in North America. We use 14 years of field survey data from the Hubbard Brook Experimental Forest to fit simple models of canopy phenology for three northern hardwood species, sugar maple (Acer saccharum), American beech (Fagus grandifolia), and yellow birch (Betula alleghaniensis). These models are then run with historical meteorological data to investigate potential climate change effects on phenology. Development and senescence are quantified using an index that ranges from 0 (dormant, no leaves) to 4 (full, green canopy). Sugar maple is the first species to leaf out in the spring, whereas American beech is the last species to drop its leaves in the fall. Across an elevational range from 250 to 825 m ASL, the onset of spring is delayed by 2.7±0.4 days for every 100 m increase in elevation, which is in reasonable agreement with Hopkin's law. More than 90% of the variation in spring canopy development, and just slightly less than 90% of the variation in autumn canopy senescence, is accounted for by a logistic model based on accumulated degree‐days. However, degree‐day based models fit to Hubbard Brook data appear to overestimate the rate at which spring development occurs at the more southerly Harvard Forest. Autumn senescence at the Harvard Forest can be predicted with reasonable accuracy in sugar maple but not American beech. Retrospective modeling using five decades (1957–2004) of Hubbard Brook daily mean temperature data suggests significant trends (P≤0.05) towards an earlier spring (e.g. sugar maple, rate of change=0.18 days earlier/yr), consistent with other studies documenting measurable climate change effects on the onset of spring in both North America and Europe. Our results also suggest that green canopy duration has increased by about 10 days (e.g. sugar maple, rate of change=0.21 days longer/yr) over the period of study.  相似文献   

19.
Dipterocarps dominate the canopy of lowland tropical rain forest in South‐east Asia. Seedlings of these species form diverse assemblages on the forest floor where low irradiance severely limits their growth. Further growth depends largely upon the increased irradiance that can occur with the creation of canopy gaps. However, the response of dipterocarp seedlings to increased irradiance and their subsequent establishment in the canopy may be influenced by the availability of other resources, such as nutrient availability. We investigated the influence of nitrogen supply on aspects of the photosynthetic physiology and growth of seedlings of four dipterocarp species (Shorea leprosula, Shorea johorensis, Shorea oleosa and Dryobalanops lanceolata) growing under low irradiance, during transfer from low to high irradiance, and during subsequent growth at high irradiance. All four species increased growth and photosynthetic capacity in response to N‐supply at high irradiances but not at low irradiance approximating that which can be expected to occur in the forest understorey. When seedlings grown at low irradiances and varying N‐supply were exposed to a large increase in irradiance, all species showed some degree of initial photodamage (measured through chlorophyll fluorescence), the extent of which was similar between species but differed markedly depending on the pre‐exposure growth irradiance and N‐supply. Greater photodamage occurred in seedlings grown at lower compared with higher N‐supply and irradiance. Despite these initial difference in the extent of this photodamage, all seedlings demonstrated a similar capacity to recover from damage. However, the alterations in the photosynthetic physiology of leaves during this recovery differed between species and depended on N‐supply. Under high N‐supply all species apart from S. oleosa increased photosynthetic capacity per unit chlorophyll following exposure to high irradiance by increasing photosynthetic capacity per unit leaf area while, under low N‐supply, an increase in photosynthetic capacity per unit leaf only occurred in D. lanceolata. Our results suggest that variations in N‐availability may have a much greater impact on the relative competitiveness of dipterocarp seedlings during the regenerative phase following canopy gap formation than physiological differences between seedlings. Our results demonstrate a potentially significant role for N‐availability in the regeneration dynamics and distribution of canopy‐dominating dipterocarp species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号