首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B. Dahlmann  L. Kuehn  H. Reinauer 《FEBS letters》1983,160(1-2):243-247
Three cysteine proteinases were isolated from the post-myofibrillar fraction of rat skeletal muscle. Proteinase I preferentially hydrolyzes Z-Phe—Arg-NMec with pH optimum at 8–9. The enzyme activity is stabilized by ATP against thermal inactivation. Proteinase II and III were not resolved by anion-exchange chromatography, by affinity chromatography on Arginine—Sepharose or by gel filtration. Proteinase II, splitting Bz-Val---Gly---Arg-NMec optimally at pH 10–10.5, is inactivated by ATP, whereas Proteinase III, hydrolyzing Suc-Ala---Ala---Phe-NMec at pH 7–7.5 is not affected by the nucleotide. The molecular mass of proteinase I is about 750 000 and that of proteinase II and III is about 650 000, as determined by gel filtration.  相似文献   

2.
《FEBS letters》1994,350(2-3):195-198
The H+-ATPase from chloroplasts, CF0F1, was isolated, purified and reconstituted into asolectin liposomes. The enzyme was brought either into the oxidized state or into the reduced state, and the rate of ATP synthesis was measured after energisation of the proteoliposomes with an acid—base transition ΔpH (pHin = 5.0, pHout = 8.5) and a K+/valinomycin diffusion potential, Δφ (K+in = 0.6 mM, K+out = 60 mM). A rate of 250 s−1 was observed with the reduced enzyme (85 s−1 in the absence of Δφ). A rate of 50 s−1 was observed with the oxidized enzyme under the same conditions (15 s−1 in the absence of Δφ). The reconstituted enzyme contained 2 ATPbound per CF0F1 and 1 ADPbound per CF0F1. Upon energisation the enzyme was activated and 0.9 ADP per CF0F1, was released. Binding of ADP to the active reduced enzyme was observed under different conditions. In the absence of phosphate the rate constant for ADP binding was 105 M−1·s−1 under energized and de-energized conditions. In the presence of phosphate the rate of ADP binding drastically increased under energized conditions, and strongly decreased under de-energized conditions.  相似文献   

3.
Effect of six organic solvents—methanol, ethanol, propanol, dimethyl sulphoxide (DMSO), N,N-dimethyl formamide (DMF), and glycerol on the conformation and interaction of catalase and anticatalase antibodies were studied with the aim of identifying the solvents in which antigen–antibody interactions are strong. The antigen binding activity of the antibodies in the various organic solvents increased in the following order: ethanol < methanol < no organic solvent < propanol < DMSO < DMF < glycerol. The structure of both the antibody and the antigen molecule was affected significantly in 40% concentration of the organic solvents used in this study. Catalase activity was inhibited in DMSO. However, the enzyme was activated in DMF upto about 50% of its concentration.  相似文献   

4.
A putative estrogen receptor (pER) from mouse liver has been characterized. The heterodimer protein (81–84 kDa) consists of two covalently bound subunits (61–67 and 17–27 kDa) with following characteristics: sedimentation constant — 4.9 S; IP — 4.8; dissociation constant (Kd) for estradiol-17β binding — 0.7 nmol; binding sites — 0.746 pmol/mg protein; relative binding affinity — estradiol-17β — 100, estrone — 80 and estriol — 30; specificity — does not bind, other natural steroids, synthetic estrogens, antiestrogens and bioflavonoids. Importantly, immunosuppressants, neuroleptic and carcinogens influence 3H-estradiol-17β binding to pER. Interestingly, pER is a serine phosphatase and this may have relevancy to estrogen action in Alzheimer's disease. The polyclonal anti-pER antibody does not react with estrogen receptors (ER). ER antibody does not react with pER. Remarkably, anti-pER antibody reacts with calcineurin, a brain phosphatase and anti-calcineurin antibody reacts with pER. Immunohistochemical analyses showed that pER is undetectable in reproductive organs (except ovary). It is localized on the plasma or the nuclear membranes in some, in cytoplasm and/or nucleus in other cells of non-reproductive organs (skeletal, neural, vascular, hair and retina), and in tumors (mammary, endometrial and prostate cancers, and prostatic hyperplasia). The information presented justifies the proposition that pER may mediate the estrogenic actions in non-reproductive organs.  相似文献   

5.
Aerobic cells of a fungus isolate Aspergillus sp. CX-1 have been immobilized in macroporous cryoPAG and in different composite cryoPAGs — fibrous adjunct carriers. The productivity of the extracellular enzymes (exo-1.4-β-glucanase, endo-1.4-β-glucanase, β-glucosidase and xylanase), and the viability, growth and ultrastructure of the immobilized fungus have been studied. The enzyme activities and stability during long-term repeated batch cultivation in the immobilized fungus were higher than in free mycelia when batch cultivated. The fungus immobilized in the composite cryoPAG, containing polypropylene non-woven fabric, possessed the highest exo-1.4-β-glucanase activity, the longest durability of enzyme production (85 days) and the most reliable mechanical strength. The fungus immobilized in porous composite cryogel possessed a variety of advantages including easy control of cryogel porosity, improved mechanical strength and durability, simplicity of construction, high enzyme productivity and high stability.  相似文献   

6.
In 29 thiazine and 12 oxazine dyes, greater metachromatic activity was found in thiazines than in their oxazine analogues. In the oxazine group only brilliant cresyl blue and the naphthophenoxazines showed marked mctachromasia. Metachromasia was not shown by members of the thiazine series with the following N-substituents: —NPr2; —NEt2; —NEtMe; —N(piperazino) and —N(morpholino). C-methyl substitution in positions 1 and 9 of the thiazine appeared to increase absorption in the beta peak relative to the alpha, even though the dye were nonmetachromatic; a peculiarity seen also in the naphthophenoxazines. Details of preparation, isolation and identification of the dyes are given.  相似文献   

7.
Redox enzyme mediated biocatalysis has the potential to regio- and stereo-specifically oxidize hydrocarbons producing valuable products with minimal by-product formation. In vitro reactions of the camphor (cytochrome P-450) 5-monooxygenase enzyme system with naphthalene-like substrates yield stereospecifically hydroxylated products from nonactivated hydrocarbons. Specifically, the enzyme system catalyzes the essentially stereospecific conversion of the cycloarene, tetralin (1,2,3,4-tetrahydronaphthalene) to (R)-1-tetralol ((R)-(−)-1,2,3,4-tetrahydro-1-naphthol). It is shown that this reaction obeys Michaelis–Menten kinetics and that interactions between the enzyme subunits are not affected by the identity of the substrate. This subunit independence extends to the efficiency of NADH usage by the enzyme system—subunit ratios do not effect efficiency, but substrate identity does. Tetralin is converted at an efficiency of 13±3%, whereas (R)-1-tetralol is converted at 7.8±0.7%. A model of this system based on Michaelis–Menten parameters for one subunit (Pdx: KM=10.2±2 μM) and both substrates (tetralin: KM=66±26 μM, νmax=0.11±0.04 s−1, and (R)-1-tetralol: KM=2800±1300 μM, νmax=0.83±0.22 s−1) is presented and used to predict the consumption and production of all substrates, products and cofactors.  相似文献   

8.
Lipase-catalyzed optical resolution of trifluoro(aryl)ethanols   总被引:2,自引:0,他引:2  
Optical resolutions of racemic 2,2,2-trifluoro-1-(aryl)ethanols — (1-naphthyl), (2-naphthyl), (4-methylnaphthyl), (phenyl), (1-pyrenyl) — were achieved by lipase-catalyzed enantioselective acetylations with vinyl acetate as an acetyl donor in octane, and (S)-acetates and (R)-alcohols were obtained. Among the lipases tested, lipase from Pseudomonas aeruginosa (lipase LIP, Toyobo) showed good enantioselectivity for above ethanols. However, no acetylation occurred with sterically hindered alcohols — (9-phenanthryl), (9-anthryl), (2-methylnaphthyl), (2, 4, 6-trimethylphenyl) — by various lipases. The resolutions of the three alcohols were carried out by the enantioselective alcoholysis or hydrolysis of their chloroacetates by lipase LIP.  相似文献   

9.
The inflammatory cytokine response of peritoneal and splenic γδ T-cells and macrophages to polymicrobial bacterial peritonitis was investigated. The production of intracellular Tumor Necrosis Factor- (TNF) and Interleukin-10 (IL-10) was measured using flow cytometry at 6, 24, and 48 hrs following cecal ligation and puncture or sham laparotomy. TNF- production was induced in peritoneal — but not splenic — γδ T-cells in response to both sham surgery and peritonitis. γδ T-cells demonstrated no IL-10 production. Peritoneal and splenic macrophages demonstrated earlier TNF and IL-10 responses to CLP than γδ T-cells. We conclude that γδ T-cells are local mediators of inflammation.  相似文献   

10.
Enzymatic investigations of the juxtaglomerular apparatus often creates the need for visualisation of granulated juxtaglomerular cells (JGC) in preparations subjected to histochemical procedures. In our investigations, Pitcock and Hartroft's (1958) modification of Bowie's method and the Endes et al. (1969) combined trichrome staining proved to be inadequate when applied to fresh cryostat sections, or to formol- or glutaraldehyde-fixetl, gum sucrose-impregnated frozen sections. Friedberg and Reid's (1966) crystal violet procedure for waxembedded kidneys also failed to give uniformly reproducible results. In attempting to find a satisfactory technique for both enzyme and granule staining, we noted Janigan's (1965) and Haratla's (1969) observations on paraffin-embedded JGC, and tested the following fluorochromes: thioflavine T—Fluka, C. I. 49005; auramine O—Merck, C. I. 41000; acridine orange—E. Gurr, C. I. 46005; berberine sulfate—Fluka, C. I. 75160 on 10 μ sections of albino mouse kidneys prepared in 4 different ways as follows:  相似文献   

11.
Glutamate dehydrogenase from Clostridium symbiosum has two cysteine residues, C144 and C320. The single mutant C320S and a double mutant with both cysteines replaced by serine have been compared with one another in terms of long-term stability and other properties. Specific activities and kinetic parameters were relatively little affected, but stability was improved—e.g. at 25 °C sterile, sealed samples of wild-type enzyme, C320S and the double mutant at 0.1 mg/ml in 0.1 M phosphate buffer, pH 7 lost 50%, 42% and 32% of activity over 60 days. For the first two proteins this loss was partly reversible with dithiothreitol. When wild-type enzyme was deliberately contaminated with 1 μM Cu2+ it became less stable and formed aggregates, whereas the double mutant was not affected. The double mutation thus removes a source of instability through –SH oxidation that would be accentuated by any heavy metal contamination of solutions.  相似文献   

12.
A simple, rapid and sensitive high-performance liquid chromatographic procedure has been developed for the determination of ketamine and dehydronorketamine in equine serum. Sample preparation consisted of mixing equal volumes of serum and acetonitrile—phosphoric acid (85%)—water (20:2:78, v/v/v), followed by ultrafiltration through a 10 000 molecular mass cut-off filter. Separation of these two analytes in the ultrafiltrate was accomplished on a reversed-phase phenyl column eluted with methanol—acetonitrile—phosphate buffer solution. Ketamine and dehydronorketamine were detected by a variable photometric UV-Vis detector set at 215 nm, and confirmed by a photodiode array detector operated in the 200–320 nm range. The limit of detection for ketamine was 5–15 ng/ml in equine serum. Additionally, the dehydronorketamine peak identity was tentatively confirmed by thermospray liquid chromatography—mass spectrometry.  相似文献   

13.
The acyl-CoA dehydrogenases are a family of related enzymes that share high structural homology and a common catalytic mechanism which involves abstraction of an -proton from the substrate by an active site glutamate residue. Several lines of investigation have shown that the position of the catalytic glutamate is conserved in most of these dehydrogenases (the E2 site), but is in a different location in two other family members (the E1 site). Using site specific in vitro mutagenesis, a double mutant rat short chain acyl-CoA dehydrogenase (rSCAD) has been constructed in which the catalytic glutamate is moved from the E2 to the E1 site (Glu368Gly/Gly247Glu). This mutant enzyme is catalytically active, but utilizes substrate less efficiently than the native enzyme (Km = 0.6 and 2.0 μM, and Vmax = 2.8 and 0.3 s−1 for native and mutant enzyme respectively). In this study we show that both the wild-type and mutant rSCADs display identical stereochemical preference for catalysis—abstraction of the -HR from the substrate followed by transfer of the β-HR to the FAD coenzyme. These results, in conjunction with molecular modeling of the native and double mutant SCAD indicate that the catalytic base in the E1 and E2 sites are topologically similar and catalytically competent. However, analysis of the 1H NMR spectra of the incubation products of these two enzymes revealed that, in contrast to the wild-type rSCAD, the Gly368Glu/Gly247Glu rSCAD could not perform γ-proton exchange of the product with the solvent, a property inherent to most acyl-CoA dehydrogenases. It is evident that the base in the mutant enzyme has access to the -HR but is far removed from the γ-Hs. These findings provide further support for a one base mechanism of - and γ-reprotonation/deprotonation catalysis by acyl-CoA dehydrogenases.  相似文献   

14.
One of the common explanations for oxidative stress in the physiological milieu is based on the Fenton reaction, i.e. the assumption that radical chain reactions are initiated by metal-catalyzed electron transfer to hydrogen peroxide yielding hydroxyl radicals. On the other hand — especially in the context of so-called “iron switches” — it is postulated that cellular signaling pathways originate from the interaction of reduced iron with hydrogen peroxide.

Using fluorescence detection and EPR for identification of radical intermediates, we determined the rate of iron complexation by physiological buffer together with the reaction rate of concomitant hydroxylations of aromatic compounds under aerobic and anaerobic conditions. With the obtained overall reaction rate of 1,700 M-1s-1 for the buffer-dependent reactions and the known rates for Fenton reactions, we derive estimates for the relative reaction probabilities of both processes.

As a consequence we suggest that under in vivo conditions initiation of chain reactions by hydroxyl radicals generated by the Fenton reaction is of minor importance and hence metal-dependent oxidative stress must be rather independent of the so-called “peroxide tone”. Furthermore, it is proposed that — in the low (subtoxic) concentration range — hydroxylated compounds derived from reactions of “non-free” (crypto) OH radicals are better candidates for iron-dependent sensing of redox-states and for explaining the origin of cellular signals than the generation of “free” hydroxyl radicals.  相似文献   

15.
An isocratic liquid chromatographic method for direct sample injection has been developed for the quantitation of felbamate and four metabolites in rat cerebrospinal fluid. The method uses 0.050- or 0.025-ml aliquots of cerebrospinal fluid diluted with equal volumes of internal standard. Chromatography is performed on a 150 mm × 4.6 mm I.D. Spherisorb ODS2, 3-μm HPLC column eluted with a phosphate buffer—acetonitrile—methanol (820:120:60, v/v/v) mobile phase and ultraviolet absorbance detection at 210 nm. The linear quantitation ranges are: felbamate and the 2-hydroxy metabolite 0.195–200 μg/ml, the propionic acid metabolite 0.195–50.0 μg/ml, the p-hydroxy metabolite 0.781 to 50.0 μg/ml, and the monocarbamate metabolite 0.098–50.0 μg/ml.  相似文献   

16.
A method allowing for the differential presentation of elastic fibers, other connective tissue fibers, epithelial and other types of cytoplasm, and keratin is described. The procedure is based on the affinity of orcein for elastic fibers, of anilin blue for collagenic material, and of orange G for keratin. Bouin-fixed, tissue-mat embedded sections are stained in Pinkus' acid orcein for 1 1/2 hours and rinsed in distilled water. The sections are differentiated in 50% alcohol containing 1% hydrochloric acid, washed in tap and then in distilled water. The sections are next transferred for I to 2 minutes to the anilin blue, orange G, phosphomolybdic acid combination known as solution No. 2 of Mallory's connective tissue stain, diluted 1:1 with distilled water. They are then rinsed in distilled water, quickly passed into 95% alcohol, and dehydrated in absolute alcohol containing some orange G, after which they are cleared and mounted. Within less than two hours sections may be stained and mounted with the following results: elastic fibers — red; collagenic fibers — blue; muscle fibers — yellow; keratin — orange.  相似文献   

17.
Vanadate solutions as ‘metavanadate’ (containing ortho and metavanadate species) and ‘decavanadate’ (containing manly decameric species) (5 mM; 1 mg/kg) were injected intraperitoneously in Halobatrachus didactylus (toadfish), in order to evaluate the contribution of decameric vanadate species to vanadium (V) intoxication on the cardiac tissue. Following short-term exposure (1 and 7 days), different changes on antioxidant enzyme activities—superoxide dismutase (SOD), catalase (CAT), selenium-glutathione peroxidase (Se-GPx), total glutathione peroxidase (GPx), lipid peroxidation and subcellular vanadium distribution were observed in mitochondrial and cytosolic fractions of heart ventricle toadfish. After 1 day of vanadium intoxication, SOD, CAT and Se-GPx activities were decreased up to 25%, by both vanadate solutions, except mitochondrial CAT activity that increased (+23%) upon decavanadate administration. After 7 days of exposure, decavanadate versus metavanadate solutions promoted different effects mainly on cytosolic CAT activity (−56% versus −5%), mitochondrial CAT activity (−10% versus +10%) and total GPx activity (+1% versus −35%), whereas lipid peroxidation products were significantly increased (+82%) upon 500 μM decavanadate intoxication. Accumulation of vanadium in total (0.137±0.011 μg/g) and mitochondrial (0.022±0.001 μg/g) fractions was observed upon 7 days of metavanadate exposure, whereas for decavanadate, the concentration of vanadium increased in cytosolic (0.020±0.005 μg/g) and mitochondrial (0.021±0.009 μg/g) fractions. It is concluded that decameric vanadate species are responsible for a strong increase on lipid peroxidation and a decrease in cytosolic catalase activity thus contributing to oxidative stress responses upon vanadate intoxication, in the toadfish heart.  相似文献   

18.
The experiment was conducted at Cotton Research Station, Multan to study the impact of weather factors and Hemipterous bug on development of cotton boll disease in cotton variety bt- 886 for three consecutive years i.e., 2012, 2013 and 2014. The results revealed that the population of Red Cotton Bug (RCB) per plant remain 0.50 and 0.34 during years 2012 and 2013, respectively but increased during 2014 i.e., 3.21 per plant. The number of unopened bolls (UOB) were more during 2012 i.e., 13.43% with yellowish lint (YL) 76.30% and whitish lint (WL) 23.70% at average maximum temperature of 34.73◦C, minimum temperature of 22.83◦C, RH of 77.43% and 11.08 mm rainfall. Similarly during 2013, the number of unopened bolls were less i.e., 0.34 per plant with YL 1.48 and WL 99.53 per plant when average maximum temperature 34.60C, minimum temperature 23.37C, RH 73.01% and 9.95 mm rainfall. During 2014, RCB population per plant was 3.22 with no UOB and YL was 0.00% and WL was 100% when average maximum temperature 23.70C, minimum temperature 23.18◦C, RH 71.67% and 4.55 mm rainfall. So our results concluded that the cotton bolls rot disease was more during 2012 due to abrupt changes in environmental factors. The RCB may be the carrier of boll rot disease pathogen during more rainfall.  相似文献   

19.
A simple and sensitive high-performance liquid chromatographic (HPLC) method using chiral derivatization was developed to screen and determine the enantiomers of moprolol and their metabolites in human urine. The recovery of (+)- and (−)-moprolol from urine was 70.8–81.1% at different concentrations. The coefficients of variation (C.V.) were less than 3.2 and 6.5% for intra- and inter-assays, respectively. Moprolol could be detected in urine up to 24 h after oral administration of a 50-mg dose of moprolol. Unconjugated and conjugated enantiomers of moprolol and their metabolites were analyzed by gas chromatography (GC). A gas chromatographic—mass spectrometric (GC—MS) confirmatory method was established to identify the metabolites of moprolol. The double derivatization procedure for moprolol and their metabolites with S-(−)-menthyl chloroformate [(−)-MCF] and N-methyl(trimethylsilyl)trifluoroacetamide (MSTFA) gave very good GC—MS properties of the derivatized compounds and provided reliable structural information for their confirmation analysis. This is the first published report on the use of a GC—MS method for the detection of the enantiomers of moprolol and their metabolites in human urine.  相似文献   

20.
We analyzed the horseradish peroxidase (HRP)—catalyzed hydroxylation of phenol in the presence of dihydroxy-fumaric acid and oxygen. All of the intermediate forms of the enzyme are reviewed. The last step of hydroxylation, consisting of the production of OH radicals that further react on phenol, is emphasized. Possible OH radicals production reactions were compiled and analyzed with respect to the available thermodynamic data. Some results of electrochemical experiments were also used to choose the correct set of reactions. At the end of analysis only two reactions for producing OH seemed to be consistent with the thermodynamic and experimental data. Neither of these reactions involved compound III or any other intermediate form of HRP. The last step of hydroxylation was thus totally independent of the pure catalytic cycle of the enzyme. As a consequence, HRP cannot be used as an hydroxylation enzyme in place of the P450 cytochrome, as is sometimes suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号