首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PURPOSE OF REVIEW: During the past decade, paraoxonase 1, a HDL-associated protein, has been demonstrated to be an important contributor to the antioxidant capacity of HDL. Studies using paraoxonase 1 null mice by gene targeting and transgenic mice corroborated the hypothesis that paraoxonase 1 protects against atherosclerosis. In contrast to paraoxonase 1, the other two members of the paraoxonase gene family, namely paraoxonase 2 and paraoxonase 3, are either undetectable (paraoxonase 2) or detected at very low levels (paraoxonase 3) on HDL, and are considered to participate in intracellular antioxidant mechanisms. In this review, we summarize studies reported in the past 2 years suggesting a protective role for paraoxonase 2 and paraoxonase 3 in the development of atherosclerosis in mice. RECENT FINDINGS: Adenovirus-mediated expression of human paraoxonase 2 or paraoxonase 3 proteins protects against the development of atherosclerosis in apolipoprotein E-deficient mice. Paraoxonase 2-deficient mice develop significantly larger atherosclerotic lesions than their wild-type and heterozygous counterparts on an atherogenic diet despite having lower levels of apolipoprotein B-containing lipoproteins. Atherosclerotic lesions were significantly lower in male hPON3Tg/LDLR null mice than in LDLR null mice on a western diet. SUMMARY: We conclude that, in addition to paraoxonase 1, both paraoxonase 2 and paraoxonase 3 proteins are protective against the development of atherosclerosis in mice. These findings underscore the utility of all members of the paraoxonase gene family as therapeutic targets for the treatment of atherosclerosis.  相似文献   

2.
The ultimate destiny of a cell to undergo division, differentiation, survival, and death results from an intricate balance between multiple regulators including oncogenes, tumor suppressor genes, and cell cycle associated proteins. Deregulation of the cell cycle machinery switches the phenotype from a normal cell to a cancerous cell. Fundamental alterations of tumor suppressor genes may result in an unregulated cell cycle with the accumulation of mutations and eventual neoplastic transformation. As such, one may define cancer as a genetic disease of the cell cycle. In this review, we will emphasize our current understanding of how the cell cycle machinery maintains cellular homeostasis by studying the consequences of its deregulation.  相似文献   

3.
Both type 1 and type 2 diabetes (insulin-dependent and non-insulin dependent diabetes, respectively) are associated with increased risk for microvascular and macrovascular complications including retinopathy, neuropathy, nephropathy and atherosclerosis. Type 2 diabetes markedly increases the risk for cardiovascular morbidity and mortality, which has major public health implications. In this review, molecular mechanisms pertaining to diabetes-induced heart pathology are addressed.  相似文献   

4.
Interactions between co-stimulatory ligands and their receptors are crucial for the activation of T cells, the prevention of tolerance and the development of T-cell immunity. It is now evident that members of the immunoglobulin-like CD28-B7 co-stimulatory family cannot fully account for an effective long-lasting T-cell response or the generation of memory T cells. Several members of the tumour-necrosis factor receptor (TNFR) superfamily--OX40, 4-1BB, CD27, CD30 and HVEM (herpes-virus entry mediator)--are poised to deliver co-stimulatory signals both early and late after encounter with antigen. The roles of these molecules in initiating and sustaining the T-cell response and in promoting long-lived immunity are discussed.  相似文献   

5.
Nitrification was measured in fractions of chernozemic rendzina and lessivē soil differing in aggregate size. In both soils the maximum rates occurred in aggregates between 1 and 3 mm in diameter. The effects of structural and other properties (particle composition, pore-size distribution, surface area, organic C and total N content, ratio of air volume to water volume in aggregates) proved to be insignificant except for the nitrification rate in the lessivē soil, which positively correlated with the fraction of particles between 20 and 50 μm in diameter.  相似文献   

6.
7.
Jumonji C domain-containing (JMJD) proteins are mostly epigenetic regulators that demethylate histones. However, a hitherto neglected subfamily of JMJD proteins, evolutionarily distant and characterized by their relatively small molecular weight, exerts different functions by hydroxylating proteins and RNA. Recently, unsuspected proteolytic and tyrosine kinase activities were also ascribed to some of these small JMJD proteins, further increasing their enzymatic versatility. Here, we discuss the ten human small JMJD proteins (HIF1AN, HSPBAP1, JMJD4, JMJD5, JMJD6, JMJD7, JMJD8, RIOX1, RIOX2, TYW5) and their diverse physiological functions. In particular, we focus on the roles of these small JMJD proteins in cancer and other maladies and how they are modulated in diseased cells by an altered metabolic milieu, including hypoxia, reactive oxygen species and oncometabolites. Because small JMJD proteins are enzymes, they are amenable to inhibition by small molecules and may represent novel targets in the therapy of cancer and other diseases.  相似文献   

8.
One of the most complicated remaining problems of molecular-phylogenetic analysis is choosing an appropriate genome region. In an ideal case, such a region should have two specific properties: (i) results of analysis using this region should be similar to the results of multigene analysis using the maximal number of regions; (ii) this region should be arranged compactly and be significantly shorter than the multigene set. The second condition is necessary to facilitate sequencing and extension of taxons under analysis, the number of which is also crucial for molecular phylogenetic analysis. Such regions have been revealed for some groups of animals and have been designated as "lucky genes". We have carried out a computational experiment on analysis of 41 complete chloroplast genomes of flowering plants aimed at searching for a "lucky gene" for reconstruction of their phylogeny. It is shown that the phylogenetic tree inferred from a combination of translated nucleotide sequences of genes encoding subunits of plastid RNA polymerase is closest to the tree constructed using all protein coding sites of the chloroplast genome. The only node for which a contradiction is observed is unstable according to the different type analyses. For all the other genes or their combinations, the coincidence is significantly worse. The RNA polymerase genes are compactly arranged in the genome and are fourfold shorter than the total length of protein coding genes used for phylogenetic analysis. The combination of all necessary features makes this group of genes main candidates for the role of "lucky gene" in studying phylogeny of flowering plants.  相似文献   

9.
10.
11.
Phosphatidylinositol transfer proteins (PITPs) bind and facilitate the transport of phosphatidylinositol (PI) and phosphatidylcholine between membrane compartments. They are highly conserved proteins, are found in both unicellular and multicellular organisms, and can be present as a single domain or as part of a larger, multi-domain protein. The hallmark of PITP proteins is their ability to sequester PI in their hydrophobic pocket. Ablation or knockdown of specific isoforms in vivo has wide ranging effects such as defects in signal transduction via phospholipase C and phosphoinositide 3-kinase, membrane trafficking, stem cell viability, Drosophila phototransduction, neurite outgrowth, and cytokinesis. In this review, we identify the common mechanism underlying each of these phenotypes as the cooperation between PITP proteins and lipid kinases through the provision of PI for phosphorylation. We propose that recruitment and concentration of PITP proteins at specific membrane sites are required for PITP proteins to execute their function rather than lipid transfer.  相似文献   

12.
Context: The “free fatty acid receptors” (FFARs) GPR40, GPR41, and GPR43 regulate various physiological homeostases, and are all linked to activation of extracellular signal-regulated kinases (ERK)1/2.

Objective: Investigation of coupling of FFARs to two other mitogen-activated protein kinases (MAPKs) sometimes regulated by G protein-coupled receptors (GPCRs), c-Jun N-terminal kinase (JNK) and p38MAPK, and characterization of signaling proteins involved in the regulation of FFAR-mediated ERK1/2 activation.

Methods: FFARs were recombinantly expressed, cells challenged with the respective agonist, and MAPK activation quantitatively determined using an AlphaScreen SureFire assay. Inhibitors for signaling proteins were utilized to characterize ERK1/2 pathways.

Results: Propionate-stimulated GPR41 strongly coupled to ERK1/2 activation, while the coupling of linoleic acid-activated GPR40 and acetate-activated GPR43 was weaker. JNK and p38MAPK were weakly activated by FFARs. All three receptors activated ERK1/2 fully or partially via Gi/o and Rac. PI3K was relevant for GPR40- and GPR41-mediated ERK1/2 activation, and Src was essential for GPR40- and GPR43-induced activation. Raf-1 was not involved in the GPR43-triggered activation.

Conclusion: The results demonstrate a novel role of Rac in GPCR-mediated ERK1/2 signaling, and that GPCRs belonging to the same family can regulate ERK1/2 activation by different receptor-specific mechanisms.  相似文献   

13.
TRAM,LAG1 and CLN8: members of a novel family of lipid-sensing domains?   总被引:7,自引:0,他引:7  
A family of membrane-associated proteins related to yeast Lag1p and mammalian TRAM has been identified. The family includes the protein product of CLN8, a gene mutated in progressive epilepsy with mental retardation. Mouse CLN8 is also mutated in the mnd/mnd mouse, a model for neuronal ceroid lipofuscinoses. The identification of these homologues has potential implications for our understanding of ceramide synthesis, lipid regulation and protein translocation in the endoplasmic reticulum.  相似文献   

14.
Cutting edge: immune cells as sources and targets of the IL-10 family members?   总被引:20,自引:0,他引:20  
This study investigated the expression of five novel human IL-10-related molecules and their receptors in blood mononuclear cells. IL-19 and IL-20 were found to be preferentially expressed in monocytes. IL-22 and IL-26 (AK155) expression was exclusively detected in T cells, especially upon type 1 polarization, and in NK cells. IL-24 (melanoma differentiation-associated gene 7) expression was restricted to monocytes and T cells. Detection of these molecules in lymphocytes was predominantly linked to cellular activation. Regarding T cells, IL-26 was primarily produced by memory cells, and its expression was independent on costimulation. In contrast to the high expression of receptors for IL-10 homologs in different tissues and cell lines, monocytes and NK, B, and T cells showed clear expression only of IL-10R1, IL-10R2, and IL-20R2. In these cells, IL-20R2 might be part of a still-unknown receptor complex. Therefore, immune cells may represent a major source but a minor target of the novel IL-10 family members.  相似文献   

15.
16.
The goal for this project was to re‐examine key morphological characters hypothesized to differentiate Gila intermedia, Gila robusta and Gila nigra and outline methods better suited for making species designations based on morphology. Using a combination of meristic counts, morphological measurements and geometric morphometrics, morphological dissimilarities were quantified among these three putative species. Traditional meristic counts and morphological measurements (i.e. distances between landmarks) were not useful for species identification. Geometric morphometrics, however, identified differences among species, while also suggesting an effect of geographic location on morphological variation. Using canonical variate analysis for the 441 fish sampled in this study, geometric morphometrics accurately predicted true group membership 100% of the time for G. nigra, 97% of the time for G. intermedia and 91% of the time for G. robusta. These results suggest that geometric morphometric analysis is necessary to identify morphological differences among the three species. Geometric morphometric analysis used in this study can be adopted by management officials as a tool to classify unidentified individuals.  相似文献   

17.
We previously reviewed what we had learned about the regulation of the δ1-crystallin gene through experiments using gene transfer techniques [Kondoh et al. (1986) Cell Differ. 19, 151–160]. It was concluded then that regulatory genetic elements for the lens-specific expression are associated with the δ1-crystallin gene, and that these chicken elements properly function in mammalian cells. In the last couple of years, we have made significant progress in the understanding of lens-specific δ-crystallin expression. This is owing to success in transgenesis of mouse with the δ1-crystallin gene and in functional dissection of the gene which led us to the discovery of an intragenic enhancer as the major determinant for lens-specific expression. In this article, we summarize these recent advances.  相似文献   

18.
Summary We report here a new human -globin gene rearrangement carrying the two normal, 2 and 1, and two hybrid, 1/2, globin genes in the order 5-2-1/2-1/2-1-3. Both the hybrid genes, subtyped with ApaI and RsaI restriction enzymes, were found to be of the uncommon anti 3.7 type II. The hybrid genes were expressed at the biosynthetic level and their interaction with the -thalassaemia IVS 1 nt 1 GA mutation caused thalassaemia intermedia. We also report a case of an -globin gene rearrangement in the twin of one of the -globin gene carriers; the duplicated gene was of the anti 4.2 type and was associated with the absence of RsaI polymorphism. The singular finding of an -anti 3.7 cluster with two identical rare hybrid genes suggests that the reciprocal unequal recombination causing the -globin gene rearrangements could be of the intra-chromosomal rather than the interchromosomal type.  相似文献   

19.
One of the most prominent and important topics in modern agricultural biotechnology is the manipulation of oilseed triacylglycerol composition. Towards this goal, we have sought to identify and characterize acyl-CoA synthetases (ACSs), which play an important role in both de novo synthesis and modification of existing lipids. We have identified and cloned 20 different genes that bear strong sequence homology to known ACSs from other organisms. Through sequence comparisons and functional characterization, we have identified several members of this group that encode ACSs, while the other genes fall into the broader category of genes for AMP-binding proteins (AMPBPs). Distinguishing ACSs from AMPBPs will simplify our efforts to understand the role of ACS in triacylglycerol metabolism.  相似文献   

20.
Studies to find genes that affect maximum lifespan aim at identifying important determinants of ageing that may be universal across species. Model organisms show insulin signalling can play an important role in ageing. In view of insulin resistance, such loci can also be important in human ageing and health. The study of long-lived humans and their children points to the relevance of lipoprotein profiles and particle size for longevity. If ageing pathways are conserved, then the genes mediating such pathways may also be conserved. Cross-species sequence comparisons of potential longevity loci may reveal whether the pathways that they represent are central themes in lifespan regulation. Using bioinformatic tools, we performed a sequence comparison of the genes involved in lipid metabolism identified in humans as potential longevity loci. This analysis revealed that lipid storage and transport may be a common theme related to longevity in humans, honeybees and nematodes. Here, the vitellogenin family emerges as a potential key connection between lipid metabolism and the insulin/IGF-1 signalling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号