首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to show the relationship between oxygen deficit and the time to exhaustion (tlim) at maximal aerobic speed (MAS). The minimum speed that elicits VO(2max) was assumed to be the maximal aerobic speed (MAS). Fourteen subelite male runners (mean (SD: age = 27 +/- 5 yrs: VO(2max) = 68.9 +/- 4.6 ml kg (-1). min ( -1); MAS = 21.5 +/- 1 km h (-1) ) participated in the study. Each subject performed an incremental test to determine and MAS. The subjects ran to exhaustion at velocities corresponding to 100 and 120 % MAS. Oxygen deficit was measured during the period exercise to exhaustion at 120% of MAS and was calculated from the difference between O(2) demand and the accumulated O 2 uptake. The tlim values at 100% MAS were correlated with the values of tlim at 120% MAS (r = 0.52). The results reveal that the oxygen deficit was related to the time to exhaustion at MAS and indicate that the greater the oxygen deficit, the greater the time to exhaustion at MAS. It was also noted that the adjustment of oxygen consumption is related to the oxygen deficit. In other words, the subjects who have an important anaerobic capacity are the most efficient during an exercise time to exhaustion at MAS. The time limit values can be expressed by a linear regression making intervene MAS and anaerobic capacity. This conclusion could be of great interest in the training of middle distance runners.  相似文献   

2.
We have studied the effects of the braking force on the results of an anaerobic capacity test derived from the Wingate test (an all out 45 s exercise on a Monark 864 cycle ergometer against a given force at the fastest velocity from the beginning to the end of the test). Seven men and seven women participated in the study and performed a total of 63 all-out tests against different braking forces. The same subjects performed a force-velocity test on the same cycle ergometer. Since the relationship between force and velocity is approximately linear for peak velocities between 100 and 200 rev X min-1 (Pérès et al. 1981a, b; Nadeau et al. 1983; Vandewalle et al. 1983) we characterized each subject by three parameters: P0 (the intercept of the force-velocity regression line with the force axis), V0 (the intercept of the regression line with the velocity axis) and Wmax (maximal power). The relationship between force and mean power was parabolic for the all-out anaerobic capacity test. In the present study the optimal force (the force giving the maximal value of mean power during an all out test) was higher for the men (approximately 1 N X kg BW-1) than the force proposed by others (0.853 N X kg BW-1 for Dotan and Bar-Or 1983). However, because of the parabolic relationship between force and mean power, the mean power which corresponds to the optimal force was approximately the same in both studies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The influence of training status on the maximal accumulated oxygen deficit (MAOD) was used to assess the validity of the MAOD method during supramaximal all-out cycle exercise. Sprint trained (ST; n = 6), endurance trained (ET; n = 8), and active untrained controls (UT; n = 8) completed a 90 s all-out variable resistance test on a modified Monark cycle ergometer. Pretests included the determination of peak oxygen uptake ( O2peak) and a series (5–8) of 5-min discontinuous rides at submaximal exercise intensities. The regression of steady-state oxygen uptake on power output to establish individual efficiency relationships was extrapolated to determine the theoretical oxygen cost of the supramaximal power output achieved in the 90 s all-out test. Total work output in 90 s was significantly greater in the trained groups (P<0.05), although no differences existed between ET and ST. Anaerobic capacity, as assessed by MAOD, was larger in ST compared to ET and UT. While the relative contributions of the aerobic and anaerobic energy systems were not significantly different among the groups, ET were able to achieve significantly more aerobic work than the other two groups, while ST were able to achieve significantly more anaerobic work. Peak power and peak pedalling rate were significantly higher in ST. The results suggested that MAOD determined during all-out exercise was sensitive to training status and provided a useful assessment of anaerobic capacity. In our study sprint training, compared with endurance training, appeared to enhance significantly power output and high intensity performance over brief periods (up to 60 s), yet few overall differences in performance (i.e. total work) existed during 90 s of all-out exercise.  相似文献   

4.
The aim of the study was to compare time spent at a high percentage of VO2max (>90% of VO2max) (ts90%), time to achieve 90% of VO2max (ta90%), and time to exhaustion (TTE) for exercise in the severe intensity domain in children and adults. Fifteen prepubertal boys (10.3 ± 0.9 years) and 15 men (23.5 ± 3.6 years) performed a maximal graded exercise to determine VO2max, maximal aerobic power (MAP) and power at ventilatory threshold (PVTh). Then, they performed 4 constant load exercises in a random order at PVTh plus 50 and 75% of the difference between MAP and PVTh (PΔ50 and PΔ75) and 100 and 110% of MAP (P100 and P110). VO2max was continuously monitored. The P110 test was used to determine maximal accumulated oxygen deficit (MAOD). No significant difference was found in ta90% between children and adults. ts90% and TTE were not significantly different between children and adults for the exercises at PΔ50 and PΔ75. However, ts90% and TTE during P100 (p < 0.05 and p < 0.01, respectively) and P110 (p < 0.001) exercises were significantly shorter in children. Children had a significantly lower MAOD than adults (34.3 ± 9.4 ml · kg vs. 53.6 ± 11.1 ml · kg). A positive relationship (p < 0.05) was obtained between MAOD and TTE values during the P100 test in children. This study showed that only for intensities at, or higher than MAP, lower ts90% in children was linked to a reduced TTE, compared to adults. Shorter TTE in children can partly be explained by a lower anaerobic capacity (MAOD). These results give precious information about exercise intensity ranges that could be used in children's training sessions. Moreover, they highlight the implication of both aerobic and anaerobic processes in endurance performances in both populations.  相似文献   

5.
We hypothesized that all-out running speeds for efforts lasting from a few seconds to several minutes could be accurately predicted from two measurements: the maximum respective speeds supported by the anaerobic and aerobic powers of the runner. To evaluate our hypothesis, we recruited seven competitive runners of different event specialties and tested them during treadmill and overground running on level surfaces. The maximum speed supported by anaerobic power was determined from the fastest speed that subjects could attain for a burst of eight steps (approximately 3 s or less). The maximum speed supported by aerobic power, or the velocity at maximal oxygen uptake, was determined from a progressive, discontinuous treadmill test to failure. All-out running speeds for trials of 3-240 s were measured during 10-13 constant-speed treadmill runs to failure and 4 track runs at specified distances. Measured values of the maximum speeds supported by anaerobic and aerobic power, in conjunction with an exponential constant, allowed us to predict the speeds of all-out treadmill trials to within an average of 2.5% (R2 = 0.94; n = 84) and track trials to within 3.4% (R2 = 0.86; n = 28). An algorithm using this exponent and only two of the all-out treadmill runs to predict the remaining treadmill trials was nearly as accurate (average = 3.7%; R2 = 0.93; n = 77). We conclude that our technique 1) provides accurate predictions of high-speed running performance in trained runners and 2) offers a performance assessment alternative to existing tests of anaerobic power and capacity.  相似文献   

6.
Parra et al. (Acta Physiol. Scand 169: 157-165, 2000) showed that 2 wk of daily sprint interval training (SIT) increased citrate synthase (CS) maximal activity but did not change "anaerobic" work capacity, possibly because of chronic fatigue induced by daily training. The effect of fewer SIT sessions on muscle oxidative potential is unknown, and aside from changes in peak oxygen uptake (Vo(2 peak)), no study has examined the effect of SIT on "aerobic" exercise capacity. We tested the hypothesis that six sessions of SIT, performed over 2 wk with 1-2 days rest between sessions to promote recovery, would increase CS maximal activity and endurance capacity during cycling at approximately 80% Vo(2 peak). Eight recreationally active subjects [age = 22 +/- 1 yr; Vo(2 peak) = 45 +/- 3 ml.kg(-1).min(-1) (mean +/- SE)] were studied before and 3 days after SIT. Each training session consisted of four to seven "all-out" 30-s Wingate tests with 4 min of recovery. After SIT, CS maximal activity increased by 38% (5.5 +/- 1.0 vs. 4.0 +/- 0.7 mmol.kg protein(-1).h(-1)) and resting muscle glycogen content increased by 26% (614 +/- 39 vs. 489 +/- 57 mmol/kg dry wt) (both P < 0.05). Most strikingly, cycle endurance capacity increased by 100% after SIT (51 +/- 11 vs. 26 +/- 5 min; P < 0.05), despite no change in Vo(2 peak). The coefficient of variation for the cycle test was 12.0%, and a control group (n = 8) showed no change in performance when tested approximately 2 wk apart without SIT. We conclude that short sprint interval training (approximately 15 min of intense exercise over 2 wk) increased muscle oxidative potential and doubled endurance capacity during intense aerobic cycling in recreationally active individuals.  相似文献   

7.
Twelve boys, 7-9 years old, who, by use of questionnaires, were found to be ignorant of the concept of "warm-up", performed maximal aerobic and anaerobic tasks 4 min after completing a 15 min intermittent warm-up (WU) (30 sec treadmill run, 30 sec pause). The WU required some 60% of the individual's VO2max, and raised rectal temp. by 0.52 +/- 0.19 degrees C. The aerobic criterion task (CT) was a one-stage bicycle ride at a load predetermined to exhaust the subject after 4 min. The anaerobic CT was a 30 sec all-out ride against resistance of 35 gm/kg BW. Subjects also performed both CT's without any WU. VO2max (aerobic CT), HRmax, as well as total mechanical work output achieved during the aerobic CT, were significantly higher with WU, compared with the non-WU sessions. During the anaerobic CT total revolutions, total power output, as well as peak HR, were significantly higher following WU. It is suggested that the benefits of intermittent WU, as used in this study in young children, can be attributed to physiological rather than psychological mechanisms.  相似文献   

8.
The purpose of this study was to examine the effects of muscular power engagement, anaerobic participation, aerobic power level, and energy expenditure on postexercise parasympathetic reactivation. We compared the response of heart rate (HR) after repeated sprinting with that of exercise sessions of comparable net energy expenditure and anaerobic energy contribution. Fifteen moderately trained athletes performed 1) 18 maximal all-out 15-m sprints interspersed with 17 s of passive recovery (RS), 2) a moderate isocaloric continuous exercise session (MC) at a level of mean oxygen uptake similar to that of the RS trial, and 3) a high-intensity intermittent exercise session (HI) conducted at a level of anaerobic energy expenditure similar to that of the RS trial. Subjects were immediately seated after the exercise trials, and beat-to-beat HR was recorded for 10 min. Parasympathetic reactivation was evaluated through 1) immediate postexercise HR recovery, 2) the time course of the root mean square for the successive R-R interval difference between successive 30-s segments (RMSSD(30s)) and 3) HR variability vagal-related indexes calculated for the last 5-min stationary period of recovery. RMSSD(30s) increased during the 10-min period after the MC trial, whereas RMSSD(30s) remained depressed after both the RS and HI trials. Parasympathetic reactivation indexes were similar for the RS and HI trials but lower than for the MC trial (P < 0.001). When data of the three exercise trials were considered together, only anaerobic contribution was related to HR trial-derived indexes. Parasympathetic reactivation is highly impaired after RS exercise and appears to be mainly related to anaerobic process participation.  相似文献   

9.
The purpose of this study was to develop a 3-minute, all-out test protocol using the Monark cycle ergometer for estimating the critical power (CP) and anaerobic work capacity (AWC) with the resistance based on body weight. Twelve moderately trained adults (mean age ± SD = 23.2 ± 3.5 years) performed an incremental cycle ergometer test to exhaustion. The CP and AWC were estimated from the original work limit (W(lim)) vs. time limit (T(lim)) relationship (CP(PT)) and a 3-minute all-out test (CP(3min)) against a fixed resistance and compared with the CP and AWC estimated from the new 3-minute tests on the Monark cycle ergometer (CP(3.5%) and CP(4.5%)). The resistance values for the CP(3.5%) and CP(4.5%) tests were set at 3.5 and 4.5% of the subject's body weight (kilograms). The results indicated that there were no significant differences (p > 0.05) among mean CP values for CP(PT) (178 ± 47 W), CP(3.5%) (173 ± 40 W), and CP(4.5%) (186 ± 44 W). The mean CP(3min) (193 ± 54 W), however, was significantly greater than CP(PT) and CP(3.5%). There were no significant differences in AWC for the CP(PT) (13,412 ± 6,247 J), CP(3min) (10,895 ± 2,923 J), and CP(4.5%) (9,842 ± 4,394 J). The AWC values for the CP(PT) and CP(3min), however, were significantly greater than CP(3.5%) (8,357 ± 2,946 J). The results of this study indicated that CP and AWC could be estimated from a single 3-minute work bout test on the Monark cycle ergometer with the resistance set at 4.5% of the body weight. A single work bout test with the resistance based on the individual's body weight provides a practical and accessible method to estimate CP and AWC.  相似文献   

10.
Brief episodes of nonlethal ischemia, commonly known as "ischemic preconditioning" (IP), are protective against cell injury induced by infarction. Moreover, muscle IP has been found capable of improving exercise performance. The aim of the study was the comparison of standard exercise performances carried out in normal conditions with those carried out following IP, achieved by brief muscle ischemia at rest (RIP) and after exercise (EIP). Seventeen physically active, healthy male subjects performed three incremental, randomly assigned maximal exercise tests on a cycle ergometer up to exhaustion. One was the reference (REF) test, whereas the others were performed after the RIP and EIP sessions. Total exercise time (TET), total work (TW), and maximal power output (W(max)), oxygen uptake (VO(2max)), and pulmonary ventilation (VE(max)) were assessed. Furthermore, impedance cardiography was used to measure maximal heart rate (HR(max)), stroke volume (SV(max)), and cardiac output (CO(max)). A subgroup of volunteers (n = 10) performed all-out tests to assess their anaerobic capacity. We found that both RIP and EIP protocols increased in a similar fashion TET, TW, W(max), VE(max), and HR(max) with respect to the REF test. In particular, W(max) increased by ~ 4% in both preconditioning procedures. However, preconditioning sessions failed to increase traditionally measured variables such as VO(2max), SV(max,) CO(max), and anaerobic capacity(.) It was concluded that muscle IP improves performance without any difference between RIP and EIP procedures. The mechanism of this effect could be related to changes in fatigue perception.  相似文献   

11.
The aims of this study were to determine the most appropriate duration for the measurement of the maximal accumulated O2 deficit (MAOD), which is analogous to the anaerobic capacity, to ascertain the effects of mass, fat free mass (FFM), leg volume (V leg) and lower body volume (V 1b) on anaerobic test performance, to examine the reproducibility for peak power output ( ) or maximal anaerobic power using an air-braked cycle ergometer and to produce approximations for the percentages of aerobic and anaerobic metabolism during exercise of short duration but high intensity. A group of 12 endurance trained cyclists [mean age 25.1 (SD 4.6) years; mean body mass 73.43 (SD 7.12) kg; mean maximal oxygen consumption 5.12 (SD 0.35) l·min–1; mean body fat 12.5 (SD 4.1) %] accordingly performed four counterbalanced treatments of 45, 60, 75 and 90 s of maximal cycling on an air-braked ergometer. The mean O2 deficit of 3.52 l for the 45-s treatment was significantly less (P < 0.01) than those for the 60 (3.75 l), 75 (3.80 l) and 90-s (3.75 l) treatments. These data therefore indicate that in predominantly aerobically trained subjects the O2 deficit attains a plateau after 60 s of maximal cycling on an air-braked ergometer. Statistically significant interclass correlation coefficients (P<0.05) between the anthropometric variables (mass, FFM, V leg and V1b) and or maximal anaerobic power (0.624–0.748) and MAOD (ml) or anaerobic capacity (0.666–0.772) furthermore would suggest the relevance of taking into account muscle mass during anaerobic tests. Intraclass correlation coefficients (0.935–0.946; all P<0.001) would indicate a high degree of reliability for the measurement of . The relative importance of anaerobic work decreased from 60% for the 45-s test to 40% for the 90-s one. Hence our study showed that both aerobic and anaerobic metabolism contributed significantly during all-out tests of 45–90 s duration.  相似文献   

12.
The collection of primary data in laboratory classes enhances undergraduate practical and critical thinking skills. The present article describes the use of a lecture program, running in parallel with a series of linked practical classes, that emphasizes classical or standard concepts in exercise physiology. The academic and practical program ran under the title of a particular year II module named Sports Performance: Physiology and Assessment, and results are presented over a 3-yr period (2004-2006), based on an undergraduate population of 31 men and 34 women. The module compared laboratory-based indexes of endurance (e.g., ventilatory threshold and exercise economy) and high-intensity exercise (e.g., anaerobic power), respectively, with measures of human performance (based on 20-m shuttle run tests). The specific experimental protocols reinforced the lecture content to improve student understanding of the physiological and metabolic responses (and later adaptations) to exercise. In the present study, the strongest relationship with endurance performance was the treadmill velocity at maximal aerobic power (r = +0.88, P < 0.01, n = 51); in contrast, the strongest relationship with high-intensity exercise performance was the mean power output (in W/kg) measured during a 30-s all-out cycle ergometer sprint (r = +0.80, P < 0.01, n = 48). In class student data analysis improved undergraduate indepth or critical thinking during seminars and enhanced computer and data presentation skills. The endurance-based laboratories are particularly useful for examining the underlying scientific principles that determine aerobic performance but could equally well be adapted to investigate other topics, e.g., differences in the exercise response between men and women.  相似文献   

13.
The lactate minimum test (LACmin) has been considered an important indicator of endurance exercise capacity and a single session protocol can predict the maximal steady state lactate (MLSS). The objective of this study was to determine the best swimming protocol to induce hyperlactatemia in order to assure the LACmin in rats (Rattus norvegicus), standardized to four different protocols (P) of lactate elevation. The protocols were P1: 6 min of intermittent jumping exercise in water (load of 50% of the body weight - bw); P2: two 13% bw load swimming bouts until exhaustion (tlim); P3: one tlim 13% bw load swimming bout; and P4: two 13% bw load swimming bouts (1st 30 s, 2nd to tlim), separated by a 30 s interval. The incremental phase of LACmin beginning with initial loads of 4% bw, increased in 0.5% at each 5 min. Peak lactate concentration was collected after 5, 7 and 9 min (mmol L(-1)) and differed among the protocols P1 (15.2+/-0.4, 14.9+/-0.7, 14.8+/-0.6) and P2 (14.0+/-0.4, 14.9+/-0.4, 15.5+/-0.5) compared to P3 (5.1+/-0.1, 5.6+/-0.3, 5.6+/-0.3) and P4 (4.7+/-0.2, 6.8+/-0.2, 7.1+/-0.2). The LACmin determination success rates were 58%, 55%, 80% and 91% in P1, P2, P3 and P4 protocols, respectively. The MLSS did not differ from LACmin in any protocol. The LACmin obtained from P4 protocol showed better assurance for the MLSS identification in most of the tested rats.  相似文献   

14.
The reliability and validity of a continuous progressive arm test, in which maximal 02 consumption (V02 max arm) is determined, were analyzed. Forty-one men (28.2 +/- 8.8 yr) performed the test twice. Eighteen additional men (22.6 +/- 5.6 yr) performed the arm test, as well as the treadmill run, in which maximal O2 consumption VO2max leg) was determined. The validity of the VO2 max arm test was computed, using VO2 max leg as a criterion for the individual's aerobic capacity. The reliability coefficients of VO2 max arm, VEmax arm, and HRmax arm were 0.94, 0.98, and 0.76, respectively, indicating a high reliability of the testmthe validity coefficient of VO2max arm was only 0.74. The regression equation of VO2max leg on VO2max arm was y = 24.4 + 0.9 +/- 4.4 (Syx). These findings indicate that, following the suggested protocol, the individual repeatedly uses the same muscles and does reach an all-out stage. However, different individuals apparently are aided by their trunk and leg muscles to different degrees, which lowers the validity of this test as a predictor of aerobic capacity.  相似文献   

15.
The physiological response to continuous and intermittent handgrip exercise was evaluated. Three experiments were performed until exhaustion at 25% of maximal voluntary contraction (MVC): experiment 1, continuous handgrip (CH) (n = 8); experiment 2, intermittent handgrip with 10-s rest pause every 3 min (IH) (n = 8); and experiment 3, as IH but with electrical stimulation (ES) of the forearm extensors in the pauses (IHES) (n = 4). Before, during, and after exercise, recordings were made of heart rate (HR), arterial blood pressure (BP), exercising forearm blood flow, and concentrations of potassium [K+] and lactate [La-] in venous blood from both arms. The electromyogram (EMG) of the exercising forearm extensors and perceived exertion were monitored during exercise. Before and up to 24 h after exercise, observations were made of MVC, of force response to electrical stimulation and of the EMG response to a 10-s test contraction (handgrip) at 25% of the initial MVC. Maximal endurance time (tlim) was significantly longer in IH (23.1 min) than in CH (16.2 min). The ES had no significant effect on tlim. During exercise, no significant differences were seen between CH and IH in blood flow, venous [K+] and [La-], or EMG response. The HR and BP increased at the same rate in CH and IH but, because of the longer duration of IH, the levels at exhaustion were higher in this protocol. The subjects reported less subjective fatigue in IH. During recovery, return to normal MVC was slower after CH (24 h) than after IH (4 h).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Mathematical analysis of running performance and world running records   总被引:3,自引:0,他引:3  
The objective of this study was to develop an empirical model relating human running performance to some characteristics of metabolic energy-yielding processes using A, the capacity of anaerobic metabolism (J/kg); MAP, the maximal aerobic power (W/kg); and E, the reduction in peak aerobic power with the natural logarithm of race duration T, when T greater than TMAP = 420 s. Accordingly, the model developed describes the average power output PT (W/kg) sustained over any T as PT = [S/T(1 - e-T/k2)] + 1/T integral of T O [BMR + B(1 - e-t/k1)]dt where S = A and B = MAP - BMR (basal metabolic rate) when T less than TMAP; and S = A + [Af ln(T/TMAP)] and B = (MAP - BMR) + [E ln(T/TMAP)] when T greater than TMAP; k1 = 30 s and k2 = 20 s are time constants describing the kinetics of aerobic and anaerobic metabolism, respectively, at the beginning of exercise; f is a constant describing the reduction in the amount of energy provided from anaerobic metabolism with increasing T; and t is the time from the onset of the race. This model accurately estimates actual power outputs sustained over a wide range of events, e.g., average absolute error between actual and estimated T for men's 1987 world records from 60 m to the marathon = 0.73%. In addition, satisfactory estimations of the metabolic characteristics of world-class male runners were made as follows: A = 1,658 J/kg; MAP = 83.5 ml O2.kg-1.min-1; 83.5% MAP sustained over the marathon distance. Application of the model to analysis of the evolution of A, MAP, and E, and of the progression of men's and women's world records over the years, is presented.  相似文献   

17.
We hypothesized that the anaerobic power and aerobic power outputs during all-out runs of any common duration between 10 and 150 s would be proportional to the maximum anaerobic (E(an-max)) and aerobic powers (E(aer-max)) available to the individual runner. Seventeen runners who differed in E(an-max) and E(aer-max) (5 sprinters, 5 middle-distance runners, and 7 long distance runners) were tested during treadmill running on a 4.6 degrees incline. E(an-max) was estimated from the fastest treadmill speed subjects could attain for eight steps. E(aer-max) was determined from a progressive, discontinuous, treadmill test to failure. Oxygen deficits and rates of uptake were measured to assess the respective anaerobic and aerobic power outputs during 11-16 all-out treadmill runs that elicited failure between 10 and 220 s. We found that, during all-out runs of any common duration, the relative anaerobic and aerobic powers utilized were largely the same for sprint, middle-distance, and long-distance subjects. The similar fractional utilization of the E(an-max) and E(aer-max) available during high-speed running 1) provides empirical values that modify and advance classic theory, 2) allows rates of anaerobic and aerobic energy release to be quantified from individual maxima and run durations, and 3) explains why the high-speed running performances of different event specialists can be accurately predicted (R(2) = 0.97; n = 254) from two direct measurements and the same exponential time constant.  相似文献   

18.
The 30-second, all-out Wingate test evaluates anaerobic performance using an upper or lower body cycle ergometer (cycle Wingate test). A recent study showed that using a modified electromagnetically braked elliptical trainer for Wingate testing (EWT) leads to greater power outcomes because of larger muscle group recruitment. The main purpose of this study was to modify an elliptical trainer using an easily understandable mechanical brake system instead of an electromagnetically braked modification. Our secondary aim was to determine a proper test load for the EWT to reveal the most efficient anaerobic test outcomes such as peak power (PP), average power (AP), minimum power (MP), power drop (PD), and fatigue index ratio (FI%) and to evaluate the retest reliability of the selected test load. Delta lactate responses (ΔLa) were also analyzed to confirm all the anaerobic performance of the athletes. Thirty healthy and well-trained male university athletes were selected to participate in the study. By analysis of variance, an 18% body mass workload yielded significantly greater test outcomes (PP = 19.5 ± 2.4 W·kg, AP = 13.7 ± 1.7 W·kg, PD = 27.9 ± 5 W·s, FI% = 58.4 ± 3.3%, and ΔLa = 15.4 ± 1.7 mM) than the other (12-24% body mass) tested loads (p < 0.05). Test and retest results for relative PP, AP, MP, PD, FI%, and ΔLa were highly correlated (r = 0.97, 0.98, 0.94, 0.91, 0.81, and 0.95, respectively). In conclusion, it was found that the mechanically braked modification of an elliptical trainer successfully estimated anaerobic power and capacity. A workload of 18% body mass was optimal for measuring maximal and reliable anaerobic power outcomes. Anaerobic testing using an EWT may be more useful to athletes and coaches than traditional cycle ergometers because a greater proportion of muscle groups are worked during exercise on an elliptical trainer.  相似文献   

19.
Present study was undertaken to elucidate possible distortion of phase response and amplitude response of various respiratory parameter such as VO2, VCO2 and VE to sinusoidal work load by comparing model analysis with manual analysis. Also, an attempt was made to determine whether there is any relationship between the characteristics of response of these parameters and the aerobic capacity of subjects. Six healthy male subjects were performed exercise on an electrically braked bicycle ergometer for 32 min. The work load was varied sinusoidally between 30 watts and 60% VO2max being under anaerobic threshold with periods from 1 to 16 min. These parameters were determined in breath-by-breath mode with a computer system and mass spectrometer. In model analysis, amplitude and phase responses were well described by first order exponential model, and strong correlations were observed between magnitude of phase response or time constant of amplitude response and aerobic capacity. Manual analysis revealed that respiratory responses to sinusoidal work load are not completely sinusoidal but somewhat distorted forming saw-tooth waves with steeper downslopes.  相似文献   

20.
A total of six male and six female sprinters at the same national competition level and aged 18–20 years performed a force/velocity test and a 30-s supramaximal exercise test (Wingate test) on 2 different days, separated by a maximal interval of 15 days. The maximal anaerobic power (W max) was determined from the force/velocity test, and the mean anaerobic power (W) from the Wingate test. Immediately after the Wingate test, a 5-ml venous blood sample was drawn via a heparinized catheter in an antebrachial vein for subsequent catecholamine (adrenaline and noradrenaline) analysis. After 5 min recovery a few microlitres of capillary blood were also taken for an immediate lactate determination. Even expressed per kilogram lean body mass,W max andW were significantly lower in women. The lactate and adrenaline responses induced by the Wingate test were also less pronounced in this group whereas the noradrenaline levels were not significantly different in men and women. Above all, very different relationships appeared between lactate, adrenaline, noradenaline and W according to sex. Thus, as reported by other authors, the adrenergic response to a supramaximal exercise seemed to be lower in women than in men. Nevertheless a different training status between the two groups, even at same national competition level, could not be excluded and might contribute, at least in part, to the gender differences observed in the present study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号