首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromatofocusing, which separates proteins based on differences in isoelectric point, has been used on the Fast Protein Liquid Chromatography (FPLC) system (Pharmacia) to separate the C apolipoproteins from human very low density lipoproteins (VLDL). Using a Mono P column (Pharmacia), a pH gradient between pH 6.2 and pH 4.0 was generated using buffers containing 6 M urea, at a flow rate of 0.5 ml/min. Typically, runs took approximately 45 min. Chromatofocusing of delipidated whole VLDL produced sharp, well-resolved peaks for the C apolipoproteins. However, as determined by analytical isoelectric focusing (IEF), the apolipoprotein E isoforms were not separated from apoC-II, and they contaminated the other apoC species to a variable extent. In addition, apoC-II was not resolved from apoC-III0. Preliminary precipitation of VLDL with acetone prior to delipidation removed both apolipoproteins E and B. Using a start buffer of 25 mM histidine, pH 6.2, and a 1:30 dilution of the polybuffer exchanger (eluting buffer), apoC-II, C-III0, C-III1, and C-III2 were well resolved in run-times of approximately 60 min. The C apoproteins proved to be pure by analytical IEF and immunoassay with monospecific antisera against apoC-II and C-III. Recovery was over 90% of the protein chromatographed. In addition, a variant of apoC-II present in VLDL of a hypertriglyceridemic subject was clearly resolved from the other C apolipoproteins. This technique is superior to conventional methodology in terms of its time saving and high resolution. The application of this technique to the study of C apolipoprotein variants and C apolipoprotein specific radioactivity determinations is possible.  相似文献   

2.
To elucidate the mechanism by which apolipoprotein C-II (apoC-II) enhances the activity of lipoprotein lipase (LpL), discoidal phospholipid complexes were prepared with apoC-III and di[(14)C]palmitoyl phosphatidylcholine (DPPC) and containing various amounts of apoC-II. The rate of DPPC hydrolysis catalyzed by purified bovine milk LpL was determined on the isolated complexes. The rate of hydrolysis was optimal at pH 8.0. Analysis of enzyme kinetic data over a range of phospholipid concentrations revealed that the major effect of apoC-II was to increase the maximal velocity (V(max)) some 50-fold with a limited effect on the Michaelis constant (K(m)). V(max) of the apoC-III complex containing no apoC-II was 9.2 nmol/min per mg LpL vs. 482 nmol/min per mg LpL for the complex containing only apoC-II. The effect of apoC-II on enzyme kinetic parameters for LpL-catalyzed hydrolysis of DPPC complexes was compared to that on the parameters for hydrolysis of DPPC and trioleoylglycerol incorporated into guinea pig very low density lipoproteins (VLDL(p)) which lack the equivalent of human apoC-II. Tri[(3)H]oleoylglycerol-labeled VLDL(p) were obtained by perfusion of guinea pig liver with [(3)H]oleic acid. Di[(14)C]palmitoyl phosphatidylcholine was incorporated into the VLDL(p) by incubation of VLDL(p) with sonicated vesicles of di[(14)C]palmitoyl phosphatidylcholine and purified bovine liver phosphatidylcholine exchange protein. The rates of LpL-catalyzed hydrolysis of trioleoylglycerol and DPPC were determined at pH 7.4 and 8.5 in the presence and absence of apoC-II. In the presence of apoC-II, the V(max) for DPPC hydrolysis in guinea pig VLDL(p) increased at both pH 7.4 and pH 8.5 (2.4- and 3.2-fold, respectively); the value of K(m) did not change at either pH (0.23 mm). On the other hand, the kinetic value of K(m) for triacylglycerol hydrolysis in the presence of apoC-II decreased at both pH 7.4 (3.05 vs. 0.54 mm) and pH 8.5 (2.73 vs. 0.62 mm). These kinetic studies suggest that apoC-II enhances phospholipid hydrolysis by LpL in apoC-III-DPPC discoidal complexes and VLDL(p) mainly by increasing the V(max) of the enzyme for the substrates, whereas the activator protein primarily causes a decrease in the apparent K(m) for triacylglycerol hydrolysis.-Shirai, K., T. J. Fitzharris, M. Shinomiya, H. G. Muntz, J. A. K. Harmony, R. L. Jackson and D. M. Quinn. Lipoprotein lipase-catalyzed hydrolysis of phosphatidylcholine of guinea pig very low density lipoproteins and discoidal complexes of phospholipid and apolipoprotein: effect of apolipoprotein C-II on the catalytic mechanism.  相似文献   

3.
《Journal of lipid research》2017,58(6):1214-1220
Cholesteryl ester transfer protein (CETP) mediates the transfer of HDL cholesteryl esters for triglyceride (TG) in VLDL/LDL. CETP inhibition, with anacetrapib, increases HDL-cholesterol, reduces LDL-cholesterol, and lowers TG levels. This study describes the mechanisms responsible for TG lowering by examining the kinetics of VLDL-TG, apoC-II, apoC-III, and apoE. Mildly hypercholesterolemic subjects were randomized to either placebo (N = 10) or atorvastatin 20 mg/qd (N = 29) for 4 weeks (period 1) followed by 8 weeks of anacetrapib, 100 mg/qd (period 2). Following each period, subjects underwent stable isotope metabolic studies to determine the fractional catabolic rates (FCRs) and production rates (PRs) of VLDL-TG and plasma apoC-II, apoC-III, and apoE. Anacetrapib reduced the VLDL-TG pool on a statin background due to an increased VLDL-TG FCR (29%; P = 0.002). Despite an increased VLDL-TG FCR following anacetrapib monotherapy (41%; P = 0.11), the VLDL-TG pool was unchanged due to an increase in the VLDL-TG PR (39%; P = 0.014). apoC-II, apoC-III, and apoE pool sizes increased following anacetrapib; however, the mechanisms responsible for these changes differed by treatment group. Anacetrapib increased the VLDL-TG FCR by enhancing the lipolytic potential of VLDL, which lowered the VLDL-TG pool on atorvastatin background. There was no change in the VLDL-TG pool in subjects treated with anacetrapib monotherapy due to an accompanying increase in the VLDL-TG PR.  相似文献   

4.
The apoproteins (apo) C-I, C-II, and C-III are low molecular weight amphiphilic proteins that are associated with the lipid surface of the plasma chylomicron, very low density lipoprotein (VLDL), and high-density lipoprotein (HDL) subfractions. Purified apoC-I spontaneously reassociates with VLDL, HDL, and single-bilayer vesicles (SBV) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. ApoC-I also transfers reversibly from VLDL to HDL and from VLDL and HDL to SBV. The kinetics of association of the individual apoC proteins with SBV are second order overall and first order with respect to lipid and protein concentrations. At 37 degrees C, the rates of association were 2.5 x 10(10), 4.0 x 10(10) and 3.8 x 10(10) M-1 s-1 for apoC-I, apoC-II, and apoC-III, respectively. Arrhenius plots of association rate vs temperature were linear and yielded activation energies of 11.0 (apoC-I), 9.0 (apoC-II), and 10.6 kcal/mol (apoC-III). The kinetics of vesicle to vesicle apoprotein transfer are biexponential for intermembrane transfer, indicating two concurrent transfer processes. Rate constants at 37 degrees C for the fast component of dissociation were 11.7, 9.5, and 9.9 s-1, while rate constants for the slow component were 1.3, 0.6, and 0.9 s-1 for apoC-I, apoC-II, and apoC-III, respectively. The dissociation constants, Kd, of apoC-I, apoC-II, and apoC-III bound to the surface monolayer of phospholipid-coated latex beads were 0.5, 1.4, and 0.5 microM, respectively. These studies show that the apoC proteins are in dynamic equilibrium among phospholipid surfaces on a time scale that is rapid compared to lipolysis, lipid transfer, and lipoprotein turnover.  相似文献   

5.
Apolipoprotein C-III (apoC-III) is an important regulator of lipoprotein metabolism. Radioisotope and stable isotope kinetic studies show differing results in relation to the kinetics of apoC-III in HDL. Kinetic analysis of HDL apoC-III may be difficult because of its low concentration, as well as the presence of other apoproteins at higher concentration, in the HDL fraction. We used Intralipid(R) (IL), known to preferentially extract apoC proteins from plasma, as a means of extracting apoC-III from HDL before apoprotein separation by isoelectric focusing gel electrophoresis for the measurement of tracer enrichment. Protein purity was assessed by an isoleucine-to-leucine (Ile/Leu) ratio, as apoC-III contains no isoleucine. We compared apoC-III kinetics in 14 men using a bolus infusion of deuterated leucine. The Ile/Leu ratio for IL-extracted HDL (IL-HDL) apoC-III (3.0 +/- 0.7%) was not different from that of VLDL apoC-III (2.6 +/- 0.6%) but was significantly lower than that of untreated HDL apoC-III (9.0 +/- 2.9%) (P < 0.001). The isotopic enrichment curves and fractional catabolic rates (FCRs) for IL-HDL apoC-III were not different from those of VLDL apoC-III. In contrast, HDL apoC-III had significantly lower isotopic enrichments and FCRs than IL-HDL apoC-III (P < 0.001). In conclusion, this simple IL method can be used to isolate apoC-III from HDL with minimal interference from other HDL apoproteins, and it demonstrates that the kinetics of apoC-III in VLDL and HDL are similar, supporting the concept of a single kinetically homogeneous pool of apoC-III in plasma.  相似文献   

6.
1. The in vitro effects of serum and apolipoproteins (apo), and the influence of the nutritional state of the animals were compared on triacylglycerol lipase (TAGL), diacylglycerol lipase (DAGL) and monoacylglycerol lipase (MAGL) activities in post-heparin effluent from rat heart. 2. Serum and apoC-II stimulated DAGL and MAGL 3-fold less than TAGL, the activity that measures lipoprotein lipase (LPL). 3. The preexisting nutritional state of the heart, that strongly modulated LPL, did not influence DAGL and MAGL. 4. ApoA-I, apoC-I, apoC-III1 and apoC-III2 did not stimulate LPL and counteracted its stimulation by apoC-II; MAGL, and not DAGL, was inhibited by apoA-I and apoC-I, an effect reversed by apoC-II. 5. TAGL, DAGL and MAGL appeared to act as a single physiological unit, although differing in functional details; MAGL displayed the greatest dissimilarity.  相似文献   

7.
Plasma low- and high-density lipoproteins (LDL and HDL) are cleared from the circulation by specific receptors and are either totally degraded or their cholesteryl esters (CE) are selectively delivered to cells by receptors such as the scavenger receptor class B type I (SR-BI). The aim of the present study was to define the effect of apoC-II and apoC-III on the uptake of LDL and HDL by HepG2 cells. Stable transformants were obtained with sense or antisense strategies that secrete 47-294% the normal level of apoC-II or 60-200% that of apoC-III. Different levels of secreted apoC-II or apoC-III had little effect on LDL and HDL protein degradation by HepG2 cells. However, compared to controls, cells under-expressing apoC-II showed a 160% higher capacity to selectively take up HDL-CE, while cells under-expressing apoC-III demonstrated 70 and 160% higher capacity to take up CE from LDL and HDL, respectively. In experiments conducted with exogenously added apoC-II or apoC-III, no significant effect was observed on lipoprotein-protein association/degradation; however, LDL-CE and HDL-CE selective uptake was significantly reduced in a dose-dependent manner. These results indicate that apoC-II and apoC-III inhibit CE-selective uptake.  相似文献   

8.
Using immunoaffinity chromatography to isolate apoC-III from radiolabeled lipoproteins for direct determination of specific radioactivity, we have studied the metabolism of human apoC-III in VLDL and in HDL following the bolus injection of 125I-labeled VLDL. Transfer of apoC-III radioactivity from VLDL to HDL was detected in the plasma sample drawn 5 min after injection of the tracer. However, the specific radioactivity of apoC-III in VLDL was found to be higher than that in HDL, with this difference being maintained throughout the sampling period (48-72 hr). The ratios of the respective specific activities ranged from 1.2 to 1.9 in six subjects studied (two normolipidemics and four hypertriglyceridemics). When 125I-labeled HDL was injected as the tracer, however, the higher apoC-III specific radioactivity was associated with the HDL fraction. This lack of complete equilibration of apoC-III between VLDL and HDL in vivo was further characterized by in vitro studies using either 125I-labeled VLDL or 125I-labeled HDL. All incubations were carried out for 3 hr at 37 degrees C followed by 16 hr at 4 degrees C and the apoC-III specific activity in each lipoprotein fraction was directly determined after immunoaffinity chromatography. In a study of plasma from a mildly hypertriglyceridemic subject in which 125I-labeled VLDL was incubated with unlabeled HDL, apoC-III specific activities in VLDL remained 30% greater than that in HDL. When 125I-labeled HDL (from the same subject) was incubated with unlabeled VLDL of apoC-III, final specific activity in VLDL was less than 10% of that of HDL apoC-III. Differences in specific activities were also demonstrated when radiolabeled purified apoC-III was exchanged onto VLDL prior to its incubation with HDL. A consistent difference in apoC-III specific activities in VLDL and HDL was observed after isolation of the particles either by molecular sieve chromatography or by ultracentrifugation. These studies demonstrated that, while the exchange of apoC-III between VLDL and HDL may be very rapid, this equilibration is not complete. Pools of apoC-III that do not participate in the equilibration process are present in both the VLDL and HDL fractions and could account for 30-60% of the total apoC-III mass in each lipoprotein fraction.  相似文献   

9.
A study was undertaken to determine the relative association of lipid and apolipoproteins among lipoproteins produced during lipolysis of very low density lipoproteins (VLDL) in perfused rat heart. Human VLDL was perfused through beating rat hearts along with various combinations of albumin (0.5%), HDL2, the infranatant of d greater than 1.08 g/ml of serum, and labeled sucrose. The products were resolved by gel filtration, ultracentrifugation, and hydroxylapatite chromatography. The composition of the lipoprotein products was assessed by analysis of total lipid profiles by gas-liquid chromatography and immunoassay of apolipoproteins. A vesicle particle, which trapped and retained 1-2% of medium sucrose, co-isolated with VLDL and VLDL remnants by gel filtration chromatography but primarily with the low density lipoprotein (LDL) fraction when isolated by ultracentrifugation. The vesicle was resolved from apoB-containing LDL lipolysis products by hydroxylapatite chromatography of the lipoproteins. The vesicle lipoprotein contained unesterified cholesterol (34%), phosphatidylcholine and sphingomyelin (50%), cholesteryl ester (6%), triacylglycerol (5%), and apolipoprotein (5%). The apolipoprotein consisted of apoC-II (7%), apoC-III (93%), and trace amounts of apoE (1%). When viewed by electron microscopy the vesicles appeared as rouleaux structures with a diameter of 453 A, and a periodicity of 51.7 A. The mass represented by the vesicle particle in terms of the initial amount in VLDL was: cholesterol (5%), phosphatidylcholine and sphingomyelin (3%), apoC-II (0.5%), apoC-III (2.2%). The majority of the apoC and E released from apoB-containing lipoproteins was associated with neutral-lipid core lipoproteins proteins which possessed size characteristics of HDL. The vesicles were also formed in the presence of HDL and serum and were not disrupted by serum HDL. It is concluded that lipolysis of VLDL in vitro results in the production of VLDL remnants and LDL apoB-containing lipoproteins, as well as HDL-like lipoproteins. A vesicular lipoprotein which has many characteristics of lipoprotein X found in cholestasis, lecithin: cholesterol acyltransferase deficiency, and during Intralipid infusion is also formed. The majority of apolipoprotein C and E released from apoB-containing lipoproteins is associated with the HDL-like lipoprotein. It is suggested that the formation and stability of the vesicle lipoprotein may be related to the high ratio of cholesterol/phospholipid in this particle.  相似文献   

10.
In this study we have examined effects of synthetic polypeptide fragments of apoC-III on the kinetic properties of lipoprotein lipase (LPL) activity. Based on the loss of 79% of LPL-inhibitory activity after CNBr cleavage at the N-terminal portion of apoC-III and a systematic search for synthetic peptides with LPL-inhibitory activity spanning the apoC-III sequence, we concluded that the N-terminal domain is the most important in the modulation of LPL activity. In addition, there are multiple attachment sites in apoC-III for its interaction with LPL and these sites reside in the hydrophilic sequences of apoC-III. Probably for this reason the intact apo-CIII exhibited higher inhibitory potential than its peptide components. Based on the deduced inhibition constants derived for the synthetic apoC-III1-79 we concluded that apoC-III is likely to exhibit a physiological role in regulating LPL activity since the derived dissociation constants for the LPL-apoC-III interaction are within the physiological concentration range of plasma apoC-III. In addition, as the synthetic apoC-III1-79 lacks the carbohydrate moiety, we also concluded that the presence of the oligosaccharide in native apoC-III is not essential for its inhibitory activity on LPL. The fact that the I50 (concentration for inhibition of LPL at 50% activity) decreases for apoC-III-1 when assayed in the presence of apoC-II indicated that the activator actually caused an increased affinity between LPL and apoC-III and demonstrated that apoC-III does not compete for the activator site of apoC-II.  相似文献   

11.
Lipoprotein lipase (LPL) is the major enzyme involved in triglyceride hydrolysis of lymph chylomicrons and plasma very low density lipoproteins. LPL can be isolated from human post heparin plasma by heparin-Sepharose 4B affinity chromatography. In the present study the effects of apolipoproteins (apo) C-II, C-III, and H on the enzymic activity of LPL were investigated. ApoH is a recently described protein (β2-glycoprotein I) constituent of triglyceride rich lipoproteins in human lymph and plasma. Human LPL was activated by apoC-II, and the apoC-II activation of LPL was inhibited by apoC-III. ApoH increased the enzymic activity of LPL in the presence of apoC-II by 45±17 percent. ApoC-III decreased the apoH + apoC-II enhanced activity of LPL by 77 percent. These results provide evidence for the concept that the enzymic activity of LPL in triglyceride metabolism is modulated by apoH. The relative proportion of apoH, apoC-II, and apoC-III in triglyceride rich lipoprotein particles may determine the ultimate rate of LPL catalyzed triglyceride hydrolysis.  相似文献   

12.
Moderate chronic kidney disease (CKD) (defined by an estimated glomerular filtration rate of 30–60 ml/min) is associated with mild hypertriglyceridemia related to delayed catabolism of triglyceride-rich lipoprotein particles. Altered apolipoprotein C-III (apoC-III) metabolism may contribute to dyslipidemia in CKD. To further characterize the dyslipidemia of CKD, we investigated the kinetics of plasma apoC-III in 7 nonobese, nondiabetic, non-nephrotic CKD subjects and 7 age- and sex-matched healthy controls, using deuterated leucine ([5, 5, 5, 2H3]leucine), gas chromatography-mass spectrometry, and multicompartmental modeling. Compared with controls, CKD subjects had higher concentrations of plasma and VLDL triglycerides and plasma and VLDL apoC-III (P < 0.05). The increased plasma apoC-III concentration was associated with a decreased apoC-III fractional catabolic rate (FCR) (1.21 ± 0.15 vs. 0.74 ± 0.12 pools/day, P = 0.03). There were no differences between apoC-III production rates of controls and those of CKD subjects. In CKD subjects, plasma apoC-III concentration was significantly and negatively correlated with apoC-III FCR (r = −0.749, P = 0.05) but not with apoC-III production rate. Plasma apoC-III concentration was positively correlated with plasma and VLDL triglycerides and VLDL apoB concentrations and negatively correlated with VLDL apoB FCR (P < 0.05 for all). ApoC-III FCR was negatively correlated with plasma and VLDL triglycerides and VLDL apoB concentration and positively correlated with VLDL apoB FCR (P < 0.05 for all). Altered plasma apoC-III metabolism is a feature of dyslipidemia in moderate CKD. Modification of apoC-III catabolism may be an important therapeutic target for reducing cardiovascular disease risk in moderate CKD.  相似文献   

13.
The very low density lipoprotein (VLDL) apolipoproteins from a Type IV hypertriglyceridemic Caucasian subject (plasma TG: 645 mg/dl) and his brother (plasma TG: 328 mg/dl) were separated by isoelectric focusing gel electrophoresis (IEF) and found to contain two isoforms of apoC-II, identified by immunoblot. These corresponded to normal apoC-II-1 (isoelectric point: pI 4.88) and a variant isoform (apoC-II-v, pI 4.74). The pI of C-II-v was not altered by neuraminidase treatment, indicating that it was not sialylated. The concentration of total immunoreactive C-II in VLDL was elevated (18 mg/dl vs normal; 5.0 +/- 2 mg/dl) but similar to that in other Type IV subjects. In VLDL, which contained 90% of the plasma immunoreactive apoC-II, the ratio (by IEF) of C-II-1:C-II-v was 2:1, whereas in high density lipoproteins (HDL) the ratio was 1:1. VLDL apoB turnover was measured after the pulse injection of 125I-labeled VLDL. VLDL apoB kinetic parameters for the proband and four Type IV subjects were similar: production rate, 28 mg/kg per day versus 30 mg/kg per day; fractional catabolic rate, 1.62.day-1 versus 1.96.day-1; and pool size, 17 mg/kg versus 18 mg/kg. The decline in VLDL triglyceride (TG) after the infusion of heparin (9,000 IU over 4 h) was also similar to that observed in Type IV subjects. In VLDL, the fractional catabolic rates of apoC-II-1 and C-II-v were similar (C-II-1: 0.31.day-1, C-II-v: 0.29.day-1) whereas in HDL, although similar to each other, the rates were greater than in VLDL (C-II-1: 0.48.day-1, C-II-v: 0.44.day-1). VLDL and HDL from the proband were normal in their ability to activate bovine skim milk lipase, compared to Type IV VLDL and HDL without C-II-v. Purified apoC-II-1 and apoC-II-v activated the milk lipase to a similar extent (at 1 microgram of C-II; C-II-1: 34 units/h, C-II-v: 35 units/h). Thus, apoC-II-v is a newly recognized isoform of apoC-II-1. It remains to be determined whether this mutation plays a role in the genesis of hypertriglyceridemia.  相似文献   

14.
Apolipoprotein (apo) C-III plays a regulatory role in VLDL lipolysis and clearance. In this study, we determined a potential intracellular role of apoC-III in hepatic VLDL assembly and secretion. Stable expression of recombinant apoC-III in McA-RH7777 cells resulted in increased secretion efficiency of VLDL-associated triacylglycerol (TAG) and apoB-100 in a gene-dosage-dependent manner. The stimulatory effect of apoC-III on TAG secretion was manifested only when cells were cultured under lipid-rich (i.e., media supplemented with exogenous oleate) but not lipid-poor conditions. The stimulated TAG secretion was accompanied by increased secretion of apoB-100 and apoB-48 as VLDL1. Expression of apoC-III also increased mRNA and activity of microsomal triglyceride transfer protein (MTP). Pulse-chase experiments showed that apoC-III expression promoted VLDL1 secretion even under conditions where the MTP activity was inhibited immediately after the formation of lipid-poor apoB-100 particles, suggesting an involvement of apoC-III in the second-step VLDL assembly process. Consistent with this notion, the newly synthesized apoC-III was predominantly associated with TAG within the microsomal lumen that resembled lipid precursors of VLDL. Introducing an Ala23-to-Thr mutation into apoC-III, a naturally occurring mutation originally identified in two Mayan Indian subjects with hypotriglyceridemia, abolished the ability of apoC-III to stimulate VLDL secretion from transfected cells. Thus, expression of apoC-III in McA-RH7777 cells enhances hepatic TAG-rich VLDL assembly and secretion under lipid-rich conditions.  相似文献   

15.
Retention of apolipoprotein (apo)B and apoE-containing lipoproteins by extracellular vascular proteoglycans is critical in atherogenesis. Moreover, high circulating apoC-III levels are associated with increased atherosclerosis risk. To test whether apoC-III content of apoB-containing lipoproteins affects their ability to bind to the vascular proteoglycan biglycan, we evaluated the impact of apoC-III on the interaction of [(35)S]SO(4)-biglycan derived from cultured arterial smooth muscle cells with lipoproteins obtained from individuals across a spectrum of lipid concentrations. The extent of biglycan binding correlated positively with apoC-III levels within VLDL (r = 0.78, P < 0.01), IDL (r = 0.67, P < 0.01), and LDL (r = 0.52, P < 0.05). Moreover, the biglycan binding of VLDL, IDL, and LDL was reduced after depletion of apoC-III-containing lipoprotein particles in plasma by anti-apoC-III immunoaffinity chromatography. Since apoC-III does not bind biglycan directly, enhanced biglycan binding may result from a conformational change associated with increased apo C-III content by which apoB and/or apoE become more accessible to proteoglycans. This may be an intrinsic property of lipoproteins, since exogenous apoC-III enrichment of LDL and VLDL did not increase binding. ApoC-III content may thus be a marker for lipoproteins characterized as having an increased ability to bind proteoglycans.  相似文献   

16.
Hydrolysis of VLDL triacylglycerol (TG) by lipoprotein lipase (LpL) is a major step in energy metabolism and VLDL-to-LDL maturation. Most functional LpL is anchored to the vascular endothelium, yet a small amount circulates on TG-rich lipoproteins. As circulating LpL has low catalytic activity, its role in VLDL remodeling is unclear. We use pre-heparin plasma and heparin-sepharose affinity chromatography to isolate VLDL fractions from normolipidemic, hypertriglyceridemic, or type-2 diabetic subjects. LpL is detected only in the heparin-bound fraction. Transient binding to heparin activates this VLDL-associated LpL, which hydrolyses TG, leading to gradual VLDL remodeling into IDL/LDL and HDL-size particles. The products and the timeframe of this remodeling closely resemble VLDL-to-LDL maturation in vivo. Importantly, the VLDL fraction that does not bind heparin is not remodeled. This relatively inert LpL-free VLDL is rich in TG and apoC-III, poor in apoE and apoC-II, shows impaired functionality as a substrate for the exogenous LpL or CETP, and likely has prolonged residence time in blood, which is expected to promote atherogenesis. This non-bound VLDL fraction increases in hypertriglyceridemia and in type-2 diabetes but decreases upon diabetes treatment that restores the glycemic control. In stark contrast, heparin binding by LDL increases in type-2 diabetes triggering pro-atherogenic LDL modifications. Therefore, the effects of heparin binding are associated negatively with atherogenesis for VLDL but positively for LDL. Collectively, the results reveal that binding to glycosaminoglycans initiates VLDL remodeling by circulating LpL, and suggest heparin binding as a marker of VLDL functionality and a readout for treatment of metabolic disorders.  相似文献   

17.
We used antisera to human A and C apolipoproteins to identify homologues of these proteins among the high-density lipoprotein apoproteins of Macaca fascicularis (cynomolgus) monkeys, and NH2-terminal analysis was used to verify the homology. The NH2-terminal sequence of the M. fascicularis apoA-I is identical with that of another Old World species, Erythrocebus patas, and differs from human apoA-I at only 4 of the first 24 residues. M. fascicularis apoA-II contains a serine for cysteine replacement at position 6 and is therefore monomeric like the apoA-II from all species below apes. Human and monkey apoA-II are not otherwise different through their first 25 residues. About 20% of M. fascicularis apoC-I aligns with human apoC-I through residue 22, and 80% lacks an NH2-terminal dipeptide. Otherwise, the monkey apoC-I differs from the human protein at only 2 of 25 positions. Two forms of M. fascicularis apoC-II were identified. ApoC-II1 is highly homologous with human apoC-II, whereas an NH2-terminal hexapeptide is absent from apoC-II2. ApoC-II2 was the predominant species, and apoC-II1 appears to represent a propeptide from which a hexapeptide prosegment is cleaved at a Gln-Asp bond. Both forms of monkey apoC-II are potent activators of lipoprotein lipase. There are two polymorphic forms of M. fascicularis apoC-III, and their electrophoretic mobilities become identical after treatment with neuraminidase. Except for a glycine for serine substitution at position 10, the first 15 NH2-terminal residues of M. fascicularis and human apoC-III are the same.  相似文献   

18.
The effect of human plasma apolipoproteins C-II and C-III on the hydrolytic activity of lipoprotein lipase from bovine milk was determined using dimyristoyl phosphatidylcholine (DMPC) vesicles as substrate. In the absence of apoC-II or C-III, lipoprotein lipase has limited phospholipase activity. When the vesicles were preincubated with apoC-II and then phospholipase activity determined, there was a time dependent release of lysolecithin; activity was dependent upon both apoC-II and lipoprotein lipase concentrations. The addition of apoC-III to DMPC did not stimulate phospholipase activity. We conclude that apoC-II has an activator effect on the phospholipase activity of lipoprotein lipase and that the mechanism is beyond that of simply altering the lateral compressibility of the lipid.  相似文献   

19.
The physicochemical properties of recombinant wild type and three site-directed mutants of apolipoprotein C-III (apoC-III), designed by molecular modeling to alter specific amino acid residues implicated in lipid binding (L9T/T20L, F64A/W65A) or LPL inhibition (K21A), were compared. Relative lipid binding efficiencies to dimyristoylphosphatidylcholine (DMPC) were L9T/T20L > WT >K21A > F64A/W65A with an inverse correlation with size of the discoidal complexes formed. Physicochemical analysis (Trp fluorescence, circular dichroism, and GdnHCl denaturation) suggests that L9T/T20L forms tighter and more stable lipid complexes with phospholipids, while F64A/W65A associates less tightly. Lipid displacement properties were tested by gel-filtrating apoE:dipalmitoylphosphatidylcholine (DPPC) discoidal complexes mixed with the various apoC-III variants. All apoC-III proteins bound to the apoE:DPPC complexes; the amount of apoE displaced from the complex was dependent on the apoC-III lipid binding affinity. All apoC-III proteins inhibited LPL in the presence or absence of apoC-II, with F64A/W65A displaying the most inhibition, suggesting that apoC-III inhibition of LPL is independent of lipid binding and therefore of apoC-II displacement. Taken together. these data suggest that the hydrophobic residues F64 and W65 are crucial for the lipid binding properties of apoC-III and that redistribution of the N-terminal helix of apoC-III (L9T/T20L) enhances the stability of the lipid-bound protein, while LPL inhibition by apoC-III is likely to be due to protein:protein interactions.  相似文献   

20.
Mipomersen, an antisense oligonucleotide that reduces hepatic production of apoB, has been shown in phase 2 studies to decrease plasma apoB, LDL cholesterol (LDL-C), and triglycerides. ApoC-III inhibits VLDL and LDL clearance, and it stimulates inflammatory responses in vascular cells. Concentrations of VLDL or LDL with apoC-III independently predict cardiovascular disease. We performed an exploratory posthoc analysis on a subset of hypercholesterolemic subjects obtained from a randomized controlled dose-ranging phase 2 study of mipomersen receiving 100, 200, or 300 mg/wk, or placebo for 13 wk (n = 8 each). ApoC-III-containing lipoproteins were isolated by immuno-affinity chromatography and ultracentrifugation. Mipomersen 200 and 300 mg/wk reduced total apoC-III from baseline by 6 mg/dl (38-42%) compared with placebo group (P < 0.01), and it reduced apoC-III in both apoB lipoproteins and HDL. Mipomersen 100, 200, and 300 mg doses reduced apoB concentration of LDL with apoC-III (27%, 38%, and 46%; P < 0.05). Mipomersen reduced apoC-III concentration in HDL. The drug had no effect on apoE concentration in total plasma and in apoB lipoproteins. In summary, antisense inhibition of apoB synthesis reduced plasma concentrations of apoC-III and apoC-III-containing lipoproteins. Lower concentrations of apoC-III and LDL with apoC-III are associated with reduced risk of coronary heart disease (CHD) in epidemiologic studies independent of traditional risk factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号