首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The protein eukaryotic initiation factor 5A (eIF5A) is highly conserved among archaea and eukaryotes, but not in bacteria. Bacteria have the elongation factor P (EF-P), which is structurally and functionally related to eIF5A. eIF5A is essential for cell viability and the only protein known to contain the amino acid residue hypusine, formed by post-translational modification of a specific lysine residue. Although eIF5A was initially identified as a translation initiation factor, recent studies strongly support a function for eIF5A in the elongation step of translation. However, the mode of action of eIF5A is still unknown. Here, we analyzed the oligomeric state of yeast eIF5A. First, by using size-exclusion chromatography, we showed that this protein exists as a dimer in vitro, independent of the hypusine residue or electrostatic interactions. Protein–protein interaction assays demonstrated that eIF5A can form oligomers in vitro and in vivo, in an RNA-dependent manner, but independent of the hypusine residue or the ribosome. Finally, small-angle X-ray scattering (SAXS) experiments confirmed that eIF5A behaves as a stable dimer in solution. Moreover, the molecular envelope determined from the SAXS data shows that the eIF5A dimer is L-shaped and superimposable on the tRNAPhe tertiary structure, analogously to the EF-P monomer.  相似文献   

3.
The unusual basic amino acid, hypusine [Nε-(4-amino-2-hydroxybutyl)-lysine], is a modified lysine with the addition of the 4-aminobutyl moiety from the polyamine spermidine. This naturally occurring amino acid is a product of a unique posttranslational modification that occurs in only one cellular protein, eukaryotic translation initiation factor 5A (eIF5A, eIF-5A). Hypusine is synthesized exclusively in this protein by two sequential enzymatic steps involving deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). The deoxyhypusine/hypusine synthetic pathway has evolved in archaea and eukaryotes, and eIF5A, DHS and DOHH are highly conserved suggesting a vital cellular function of eIF5A. Gene disruption and mutation studies in yeast and higher eukaryotes have provided valuable information on the essential nature of eIF5A and the deoxyhypusine/hypusine modification in cell growth and in protein synthesis. In view of the extraordinary specificity and functional significance of hypusine-containing eIF5A in mammalian cell proliferation, eIF5A and the hypusine biosynthetic enzymes are novel potential targets for intervention in aberrant cell proliferation.  相似文献   

4.
Wolff EC  Kang KR  Kim YS  Park MH 《Amino acids》2007,33(2):341-350
Summary. A naturally occurring unusual amino acid, hypusine [N ɛ-(4-amino-2-hydroxybutyl)-lysine] is a component of a single cellular protein, eukaryotic translation initiation factor 5A (eIF5A). It is a modified lysine with structural contribution from the polyamine spermidine. Hypusine is formed in a novel posttranslational modification that involves two enzymes, deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). eIF5A and deoxyhypusine/hypusine modification are essential for growth of eukaryotic cells. The hypusine synthetic pathway has evolved in eukaryotes and eIF5A, DHS and DOHH are highly conserved, suggesting maintenance of a fundamental cellular function of eIF5A through evolution. The unique feature of the hypusine modification is the strict specificity of the enzymes toward its substrate protein, eIF5A. Moreover, DHS exhibits a narrow specificity toward spermidine. In view of the extraordinary specificity and the requirement for hypusine-containing eIF5A for mammalian cell proliferation, eIF5A and the hypusine biosynthetic enzymes present new potential targets for intervention in aberrant cell proliferation.  相似文献   

5.
The putative eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved and essential protein present in all organisms except bacteria. To be activated, eIF5A requires the conversion of a specific residue of lysine into hypusine. This hypusine modification occurs posttranslationally in two enzymatic steps, and the polyamine spermidine is the substrate. Despite having an essential function in translation elongation, the critical role played by eIF5A remains unclear. In addition to demonstrating genetic interactions with translation factors, eIF5A mutants genetically interact with mutations in YPT1, which encodes an essential protein involved in endoplasmic reticulum (ER)-to-Golgi vesicle transport. In this study, we investigated the correlation between the function of eIF5A in translation and secretion in yeast. The results of in vivo translocation assays and genetic interaction analyses suggest a specific role for eIF5A in the cotranslational translocation of proteins into the ER, but not in the posttranslational pathway. Additionally, we observed that a block in eIF5A activation up-regulates stress-induced chaperones, which also occurs when SRP function is lost. Finally, loss of eIF5A function affects binding of the ribosome-nascent chain complex to SRP. These results link eIF5A function in translation with a role of SRP in the cell and may help explain the dual effects of eIF5A in differential and general translation.  相似文献   

6.
Eukaryotic initiation factor 5A (eIF5A) is the only protein in nature that contains hypusine, an unusual amino acid derived from the modification of lysine by spermidine. Two genes, TIF51A and TIF51B, encode eIF5A in the yeast Saccharomyces cerevisiae. In an effort to understand the structure–function relationship of eIF5A, we have generated yeast mutants by introducing plasmid-borne tif51A into a double null strain where both TIF51A and TIF51B have been disrupted. One of the mutants, tsL102A strain (tif51A L102A tif51aΔ tif51bΔ) exhibits a strong temperature-sensitive growth phenotype. At the restrictive temperature, tsL102A strain also exhibits a cell shape change, a lack of volume change in response to temperature increase and becomes more sensitive to ethanol, a hallmark of defects in the PKC/WSC cell wall integrity pathway. In addition, a striking change in actin dynamics and a complete cell cycle arrest at G1 phase occur in tsL102A cells at restrictive temperature. The temperature-sensitivity of tsL102A strain is due to a rapid loss of mutant eIF5A with the half-life reduced from 6 h at permissive temperature to 20 min at restrictive temperature. Phenylmethyl sulfonylfluoride (PMSF), an irreversible inhibitor of serine protease, inhibited the degradation of mutant eIF5A and suppressed the temperature-sensitive growth arrest. Sorbitol, an osmotic stabilizer that complement defects in PKC/WSC pathways, stabilizes the mutant eIF5A and suppresses all the observed temperature-sensitive phenotypes.  相似文献   

7.
Identification and characterization of eukaryotic initiation factor 5A-2.   总被引:3,自引:0,他引:3  
The phylogenetically conserved eukaryotic translation initiation factor 5A (eIF5A) is the only known cellular protein to contain the post-translationally derived amino acid hypusine [Nepsilon-(4-amino-2-hydroxybutyl)lysine]. Both eIF5A and its hypusine modification are essential for sustained cell proliferation. Normally only one eIF5A protein is expressed in human cells. Recently, we identified a second human EIF5A gene that would encode an isoform (eIF5A-2) of 84% sequence identity. Overexpression of eIF5A-2 mRNA in certain human cancer cells, in contrast to weak normal expression limited to human testis and brain, suggests EIF5A2 as a potential oncogene. However, eIF5A-2 protein has not been described in human or mammalian cells heretofore. Here, we describe the identification of eIF5A-2 protein in human colorectal and ovarian cancer lines, SW-480 and UACC-1598, that overexpress eIF5A-2 mRNAs. Functional characterization of the human isoforms revealed that either human EIF5A gene can complement growth of a yeast strain in which the yeast EIF5A genes were disrupted. This indicates functional similarity of the human isoforms in yeast and suggests that eIF5A-2 has an important role in eukaryotic cell survival similar to that of the ubiquitous eIF5A-1. Detectable structural differences were also noted, including lack of immunological cross-reactivity, formation of different complexes with deoxyhypusine synthase, and Km values (1.5 +/- 0.2 vs. 8.3 +/- 1.4 microm for eIF5A-1 and -2, respectively) as substrates for deoxyhypusine synthase in vitro. These physical characteristics and distinct amino acid sequences in the C-terminal domain together with differences in gene expression patterns imply differentiated, tissue-specific functions of the eIF5A-2 isoform in the mammalian organism and in cancer.  相似文献   

8.
The putative eukaryotic translation initiation factor 5A (eIF5A) is an essential protein for cell viability and the only cellular protein known to contain the unusual amino acid residue hypusine. eIF5A has been implicated in translation initiation, cell proliferation, nucleocytoplasmic transport, mRNA decay, and actin polarization, but the precise biological function of this protein is not clear. However, eIF5A was recently shown to be directly involved with the translational machinery. A screen for synthetic lethal mutations was carried out with one of the temperature-sensitive alleles of TIF51A (tif51A-3) to identify factors that functionally interact with eIF5A and revealed the essential gene YPT1. This gene encodes a small GTPase, a member of the rab family involved with secretion, acting in the vesicular trafficking between endoplasmatic reticulum and the Golgi. Thus, the synthetic lethality between TIF51A and YPT1 may reveal the connection between translation and the polarized distribution of membrane components, suggesting that these proteins work together in the cell to guarantee proper protein synthesis and secretion necessary for correct bud formation during G1/S transition. Future studies will investigate the functional interaction between eIF5A and Ypt1 in order to clarify this involvement of eIF5A with vesicular trafficking.  相似文献   

9.
The eukaryotic translation initiation factor 5A (eIF5A) is the only cellular protein that contains the unique polyamine-derived amino acid, hypusine [Nepsilon-(4-amino-2-hydroxybutyl)lysine]. Hypusine is formed in eIF5A by a novel post-translational modification reaction that involves two enzymatic steps. In the first step, deoxyhypusine synthase catalyzes the cleavage of the polyamine spermidine and transfer of its 4-aminobutyl moiety to the epsilon-amino group of one specific lysine residue of the eIF5A precursor to form a deoxyhypusine intermediate. In the second step, deoxyhypusine hydroxylase converts the deoxyhypusine-containing intermediate to the hypusine-containing mature eIF5A. The structure and mechanism of deoxyhypusine synthase have been extensively characterized. Deoxyhypusine hydroxylase is a HEAT-repeat protein with a symmetrical superhelical structure consisting of 8 helical hairpins (HEAT motifs). It is a novel metalloenzyme containing tightly bound iron at the active sites. Four strictly conserved His-Glu pairs were identified as iron coordination sites. The structural fold of deoxyhypusine hydroxylase is entirely different from those of the other known protein hydroxylases such as prolyl 4-hydroxylase and lysyl hydroxylases. The eIF5A protein and deoxyhypusine/hypusine modification are essential for eukaryotic cell proliferation. Thus, hypusine synthesis represents the most specific protein modification known to date, and presents a novel target for intervention in mammalian cell proliferation.  相似文献   

10.
在蛋白质合成过程中,除核糖体、氨酰 tRNA和mRNA外,还有多种翻译因子参与其中。真核翻译起始因子5A(eukaryotic translation initiation factor 5A, eIF5A)是维持细胞活性必不可少的翻译因子,在进化上高度保守。eIF5A是真核细胞中唯一含有羟腐胺赖氨酸(hypusine)的蛋白质,该翻译后修饰对eIF5A的活性至关重要。1978年,人们首次鉴定出eIF5A,认为它在翻译起始阶段促进第1个肽键的形成。直到2013年才证实它主要在翻译延伸阶段调控含多聚脯氨酸基序蛋白质的翻译。在经过四十多年研究后,人们对eIF5A的功能有了新的认识。近期基于核糖体图谱数据的分析表明,eIF5A能够缓解翻译延伸过程中核糖体在多种基序处的停滞,并不局限于多聚脯氨酸基序,并且它还能够通过促进肽链的释放增强翻译终止。此外,eIF5A还可以通过调控某些蛋白质的翻译,间接影响细胞内的各种生命活动。本文综述了eIF5A的多种翻译后修饰、在蛋白质合成和细胞自噬过程中的调控作用以及与人类疾病的关系,并与细菌及古细菌中的同源蛋白质进行了比较,探讨了该因子在进化中的保守性,以期为相关领域的研究提供一定的理论基础。  相似文献   

11.
eIF5A (eukaryotic translation initiation factor 5A) is the only cellular protein containing hypusine [N?-(4-amino-2-hydroxybutyl)lysine]. eIF5A is activated by the post-translational synthesis of hypusine and the hypusine modification is essential for cell proliferation. In the present study, we report selective acetylation of the hypusine and/or deoxyhypusine residue of eIF5A by a key polyamine catabolic enzyme SSAT1 (spermidine/spermine-N1-acetyltransferase 1). This enzyme normally catalyses the N1-acetylation of spermine and spermidine to form acetyl-derivatives, which in turn are degraded to lower polyamines. Although SSAT1 has been reported to exert other effects in cells by its interaction with other cellular proteins, eIF5A is the first target protein specifically acetylated by SSAT1. Hypusine or deoxyhypusine, as the free amino acid, does not act as a substrate for SSAT1, suggesting a macromolecular interaction between eIF5A and SSAT1. Indeed, the binding of eIF5A and SSAT1 was confirmed by pull-down assays. The effect of the acetylation of hypusine on eIF5A activity was assessed by comparison of acetylated with non-acetylated bovine testis eIF5A in the methionyl-puromycin synthesis assay. The loss of eIF5A activity by this SSAT1-mediated acetylation confirms the strict structural requirement for the hypusine side chain and suggests a possible regulation of eIF5A by hypusine acetylation/deacetylation.  相似文献   

12.
eIF5A is highly conserved from archaea to mammals, essential for cell viability and the only protein known to contain the essential amino acid residue hypusine, generated by a unique posttranslational modification. eIF5A was originally identified as a translation initiation factor due to its ability to stimulate the formation of the first peptide bond. However, recent studies have shown that depletion of eIF5A causes a significant decrease in polysome run-off and an increase in the ribosome transit time, suggesting that eIF5A is actually involved in the elongation step of protein synthesis. We have previously shown that the depletion mutant tif51A-3 (eIF5A(C39Y/G118D)) shows a sicker phenotype when combined with the dominant negative mutant eft2 ( H699K ) of the elongation factor eEF2. In this study, we used the eIF5A(K56A) mutant to further investigate the relationship between eIF5A and eEF2. The eIF5A(K56A) mutant is temperature sensitive and has a defect in protein synthesis, but instead of causing depletion of the eIF5A protein, this mutant has a defect in hypusine modification. Like the mutant tif51A-3, the eIF5A(K56A) mutant is synthetic sick with the mutant eft2 ( H699K ) of eEF2. High-copy eEF2 not only improves cell growth of the eIF5A(K56A) mutant, but also corrects its increased cell size defect. Moreover, eEF2 suppression of the eIF5A(K56A) mutant is correlated with the improvement of total protein synthesis and with the increased resistance to the protein synthesis inhibitor hygromycin B. Finally, the polysome profile defect of the eIF5A(K56A) mutant is largely corrected by high-copy eEF2. Therefore, these results demonstrate that eIF5A is closely related to eEF2 function during translation elongation.  相似文献   

13.
Eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein essential for eukaryotic cell proliferation and is the only protein containing hypusine, [Nε-(4-amino-2-hydroxybutyl)lysine]. eIF5A is activated by the post-translational synthesis of hypusine. eIF5A also undergoes an acetylation at specific Lys residue(s). In this study, we have investigated the effect of hypusine modification and acetylation on the subcellular localization of eIF5A. Immunocytochemical analyses showed differences in the distribution of non-hypusinated eIF5A precursor and the hypusine-containing mature eIF5A. While the precursor is found in both cytoplasm and nucleus, the hypusinated eIF5A is primarily localized in cytoplasm. eIF5A mutant proteins, defective in hypusine modification (K50A, K50R) were localized in a similar manner to the eIF5A precursor, whereas hypusine-modified mutant proteins (K47A, K47R, K68A) were localized mainly in the cytoplasm. These findings provide strong evidence that the hypusine modification of eIF5A dictates its localization in the cytoplasmic compartment where it is required for protein synthesis.  相似文献   

14.
eIF5A is the only protein known to contain the essential and unique amino acid residue hypusine. eIF5A functions in both translation initiation due to its stimulation of methionyl-puromycin synthesis and translation elongation, being highly required for peptide-bound formation of specific ribosome stalling sequences such as poly-proline. The functional interaction between eIF5A, tRNA, and eEF2 on the surface of the ribosome is further clarified herein. Fluorescence anisotropy assays were performed to determine the affinity of eIF5A to different ribosomal complexes and reveal its interaction exclusively and directly with the 60S ribosomal subunit in a hypusine-dependent manner (Ki60S-eIF5A-Hyp = 16 nM, Ki60S-eIF5A-Lys = 385 nM). A 3-fold increase in eIF5A affinity to the 80S is observed upon charged-tRNAiMet binding, indicating positive cooperativity between P-site tRNA binding and eIF5A binding to the ribosome. Previously identified conditional mutants of yeast eIF5A, eIF5AQ22H/L93F and eIF5AK56A, display a significant decrease in ribosome binding affinity. Binding affinity between ribosome and eIF5A-wild type or mutants eIF5AK56A, but not eIF5AQ22H/L93F, is impaired in the presence of eEF2 by 4-fold, consistent with negative cooperativity between eEF2 and eIF5A binding to the ribosome. Interestingly, high-copy eEF2 is toxic only to eIF5AQ22H/L93F and causes translation elongation defects in this mutant. These results suggest that binding of eEF2 to the ribosome alters its conformation, resulting in a weakened affinity of eIF5A and impairment of this interplay compromises cell growth due to translation elongation defects.  相似文献   

15.
The putative translation factor eIF5A is essential for cell viability and is highly conserved from archebacteria to mammals. Although this protein was originally identified as a translation initiation factor, subsequent experiments did not support a role for eIF5A in general translation. In this work, we demonstrate that eIF-5A interacts with structural components of the 80S ribosome, as well as with the translation elongation factor 2 (eEF2). Moreover, eIF5A is further shown to cofractionate with monosomes in a translation-dependent manner. Finally, eIF5A mutants show altered polysome profiles and are sensitive to translation inhibitors. Our results re-establish a function for eIF5A in translation and suggest a role for this factor in translation elongation instead of translation initiation.  相似文献   

16.

Background  

The bacterial elongation factor P (EF-P) is strictly conserved in bacteria and essential for protein synthesis. It is homologous to the eukaryotic translation initiation factor 5A (eIF5A). A highly conserved eIF5A lysine is modified into an unusual amino acid derived from spermidine, hypusine. Hypusine is absolutely required for eIF5A's role in translation in Saccharomyces cerevisiae. The homologous lysine of EF-P is also modified to a spermidine derivative in Escherichia coli. However, the biosynthesis pathway of this modification in the bacterial EF-P is yet to be elucidated.  相似文献   

17.
Hypusination is a unique posttranslational modification by which lysine is transformed into the atypical amino acid hypusine. eIF5A (eukaryotic initiation factor 5A) is the only known protein to contain hypusine. In this study, we describe the identification and characterization of nero, the Drosophila melanogaster deoxyhypusine hydroxylase (DOHH) homologue. nero mutations affect cell and organ size, bromodeoxyuridine incorporation, and autophagy. Knockdown of the hypusination target eIF5A via RNA interference causes phenotypes similar to nero mutations. However, loss of nero appears to cause milder phenotypes than loss of eIF5A. This is partially explained through a potential compensatory mechanism by which nero mutant cells up-regulate eIF5A levels. The failure of eIF5A up-regulation to rescue nero mutant phenotypes suggests that hypusination is required for eIF5A function. Furthermore, expression of enzymatically impaired forms of DOHH fails to rescue nero clones, indicating that hypusination activity is important for nero function. Our data also indicate that nero and eIF5A are required for cell growth and affect autophagy and protein synthesis.  相似文献   

18.
The eukaryotic translation initiation factor 5A (eIF5A) is the only protein that contains hypusine [Nepsilon-(4-amino-2-hydroxybutyl)lysine], which is required for its activity. Hypusine is formed by post-translational modification of one specific lysine (Lys50 for human eIF5A) by deoxyhypusine synthase and deoxyhypusine hydroxylase. To investigate the features of eIF5A required for its activity, we generated 49 mutations in human eIF5A-1, with a single amino acid substitution at the highly conserved residues or with N-terminal or C-terminal truncations, and tested mutant proteins in complementing the growth of a Saccharomyces cerevisiae eIF5A null strain. Growth-supporting activity was abolished in only a few mutant eIF5As (K47D, G49A, K50A, K50D, K50I, K50R, G52A and K55A), with substitutions at or near the hypusine modification site or with truncation of 21 amino acids from either the N-terminus or C-terminus. The inactivity of the Lys50 substitution proteins is obviously due to lack of deoxyhypusine modification. In contrast, K47D and G49A were effective substrates for deoxyhypusine synthase, yet failed to support growth, suggesting critical roles of Lys47 and Gly49 in eIF5A activity, possibly in its interaction with effector(s). By use of a UBHY-R strain harboring genetically engineered unstable eIF5A, we present evidence for the primary function of eIF5A in protein synthesis. When selected eIF5A mutant proteins were tested for their activity in protein synthesis, a close correlation was observed between their ability to enhance protein synthesis and growth, lending further support for a central role of eIF5A in translation.  相似文献   

19.
The putative eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein among archaea and eukaryotes that has recently been implicated in the elongation step of translation. eIF5A undergoes an essential and conserved posttranslational modification at a specific lysine to generate the residue hypusine. The enzymes deoxyhypusine synthase (Dys1) and deoxyhypusine hydroxylase (Lia1) catalyze this two-step modification process. Although several Saccharomyces cerevisiae eIF5A mutants have importantly contributed to the study of eIF5A function, no conditional mutant of Dys1 has been described so far. In this study, we generated and characterized the dys1-1 mutant, which showed a strong depletion of mutated Dys1 protein, resulting in more than 2-fold decrease in hypusine levels relative to the wild type. The dys1-1 mutant demonstrated a defect in total protein synthesis, a defect in polysome profile indicative of a translation elongation defect and a reduced association of eIF5A with polysomes. The growth phenotype of dys1-1 mutant is severe, growing only in the presence of 1 M sorbitol, an osmotic stabilizer. Although this phenotype is characteristic of Pkc1 cell wall integrity mutants, the sorbitol requirement from dys1-1 is not associated with cell lysis. We observed that the dys1-1 genetically interacts with the sole yeast protein kinase C (Pkc1) and Asc1, a component of the 40S ribosomal subunit. The dys1-1 mutant was synthetically lethal in combination with asc1Δ and overexpression of TIF51A (eIF5A) or DYS1 is toxic for an asc1Δ strain. Moreover, eIF5A is more associated with translating ribosomes in the absence of Asc1 in the cell. Finally, analysis of the sensitivity to cell wall-perturbing compounds revealed a more similar behavior of the dys1-1 and asc1Δ mutants in comparison with the pkc1Δ mutant. These data suggest a correlated role for eIF5A and Asc1 in coordinating the translational control of a subset of mRNAs associated with cell integrity.  相似文献   

20.
Stress granules (SGs) are cytoplasmic foci at which untranslated mRNAs accumulate in cells exposed to environmental stress. We have identified ornithine decarboxylase (ODC), an enzyme required for polyamine synthesis, and eIF5A, a polyamine (hypusine)-modified translation factor, as proteins required for arsenite-induced SG assembly. Knockdown of deoxyhypusine synthase (DHS) or treatment with a deoxyhypusine synthase inhibitor (GC7) prevents hypusine modification of eIF5A as well as arsenite-induced polysome disassembly and stress granule assembly. Time-course analysis reveals that this is due to a slowing of stress-induced ribosome run-off in cells lacking hypusine-eIF5A. Whereas eIF5A only marginally affects protein synthesis under normal conditions, it is required for the rapid onset of stress-induced translational repression. Our results reveal that hypusine-eIF5A-facilitated translation elongation promotes arsenite-induced polysome disassembly and stress granule assembly in cells subjected to adverse environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号