首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular coupling of CAS and Crk in response to integrin activation is an evolutionary conserved signaling module that controls cell proliferation, survival and migration. However, when deregulated, CAS/Crk signaling also contributes to cancer progression and developmental defects in humans. Here we highlight recent advances in our understanding of how CAS/Crk complexes assemble in cells to modulate the actin cytoskeleton, and the molecular mechanisms that regulate this process. We discuss in detail the spatiotemporal dynamics of CAS/Crk assembly and how this scaffold recruits specific effector proteins that couple integrin signaling networks to the migration machinery of cells. We also highlight the importance of CAS/Crk signaling in the dual regulation of cell migration and survival mechanisms that operate in invasive cells during development and pathological conditions associated with cancer metastasis.  相似文献   

2.
Nonmotile cells extend and retract pseudopodia-like structures in a random manner, whereas motile cells establish a single dominant pseudopodium in the direction of movement. This is a critical step necessary for cell migration and occurs prior to cell body translocation, yet little is known about how this process is regulated. Here we show that myosin II light chain (MLC) phosphorylation at its regulatory serine 19 is elevated in growing and retracting pseudopodia. MLC phosphorylation in the extending pseudopodium was associated with strong and persistent amplification of extracellular-regulated signal kinase (ERK) and MLC kinase activity, which specifically localized to the leading pseudopodium. Interestingly, inhibition of ERK or MLC kinase activity prevented MLC phosphorylation and pseudopodia extension but not retraction. In contrast, inhibition of RhoA activity specifically decreased pseudopodia retraction but not extension. Importantly, inhibition of RhoA activity specifically blocked MLC phosphorylation associated with retracting pseudopodia. Inhibition of either ERK or RhoA signals prevents chemotaxis, indicating that both pathways contribute to the establishment of cell polarity and migration. Together, these findings demonstrate that ERK and RhoA are distinct pathways that control pseudopodia extension and retraction, respectively, through differential modulation of MLC phosphorylation and contractile processes.  相似文献   

3.
The concept of pilot pseudopodia is reconsidered 30 years after its inauguration (Gerisch, G., Hülser, D., Malchow, D., Wick, U., 1975. Cell communication by periodic cyclic-AMP pulses. Phil. Trans. R. Soc. Lond. B 272, 181-192). The original hypothesis stated that protruding pseudopodia serve as dynamic sensory organelles that aid a cell in perceiving variations of chemoattractant concentration and, consequently, in navigation during chemotaxis. This influential idea is reevaluated in the light of recent findings about the mechanisms governing chemotactic cell motility, morphology and dynamics of pseudopodia, and about molecular constituents and regulators of pseudopod extension and retraction. It is proposed that stimulation by a chemoattractant modulates speed of pseudopod protrusion and thereby increases cell elongation. Elongation further enhances chemotactic sensitivity of the cell to shallow chemoattractant gradients, reinforces cell polarization, and finally leads to suppression of lateral pseudopodia and continuation of cell migration in the gradient direction.  相似文献   

4.
Directional sensing during chemotaxis   总被引:3,自引:0,他引:3  
Janetopoulos C  Firtel RA 《FEBS letters》2008,582(14):2075-2085
Cells have the innate ability to sense and move towards a variety of chemoattractants. We investigate the pathways by which cells sense and respond to chemoattractant gradients. We focus on the model system Dictyostelium and compare our understanding of chemotaxis in this system with recent advances made using neutrophils and other mammalian cell types, which share many molecular components and signaling pathways with Dictyostelium. This review also examines models that have been proposed to explain how cells are able to respond to small differences in ligand concentrations between the anterior leading edge and posterior of the cell. In addition, we highlight the overlapping functions of many signaling components in diverse processes beyond chemotaxis, including random cell motility and cell division.  相似文献   

5.
Directed cell migration occurs in response to extracellular cues. Following stimulation of a cell with chemoattractant, a significant rearrangement of the actin cytoskeleton is mediated by intracellular signaling pathways and results in polarization of the cell and movement via pseudopod extension. Amoeboid myosin Is play a critical role in regulating pseudopod formation in Dictyostelium, and their activity is activated by heavy chain phosphorylation. The effect of chemotactic stimulation on the in vivo phosphorylation level of a Dictyostelium myosin I, myoB, was tested. The myoB heavy chain is phosphorylated in vivo on serine 322 (the myosin TEDS rule phosphorylation site) in chemotactically competent cells. The level of myoB phosphorylation increases following stimulation of starving cells with the chemoattractant cAMP. A 3-fold peak increase in the level of phosphorylation is observed at 60 s following stimulation, a time at which the Dictyostelium cell actively extends pseudopodia. These findings suggest that chemotactic stimulation results in increased myoB activity via heavy chain phosphorylation and contributes to the global extension of pseudopodia that occurs prior to polarization and directed motility.  相似文献   

6.
The serine/threonine protein kinase Akt is a major signal transducer of the phosphoinositide 3-kinase (PI 3-K) pathway in all cells and tissues and plays a pivotal role in the maintenance of cellular processes including cell growth, proliferation, survival and metabolism. The frequent aberrant activation of the PI 3-K/Akt pathway in human cancer has made it an attractive therapeutic target. Numerous studies have provided a comprehensive understanding of the specific functions of Akt signaling in cancer cells as well as the surrounding tumor microenvironment and this has informed and enabled the development of therapeutic drugs to target both PI 3-K and Akt. However, recent studies have provided evidence for distinct functions of the three mammalian Akt isoforms, particularly with respect to the regulation of cell motility and metastasis of breast cancer. Here we discuss the mechanisms by which Akt signaling contributes to invasive migration and tumor metastasis, and highlight recent advances in our understanding of the contribution of the Akt pathway in the tumor-associated stroma.  相似文献   

7.
Initiation of cell migration requires morphological polarization with formation of a dominant leading pseudopodium and rear compartment. A molecular understanding of this process has been limited, due to the inability to biochemically separate the leading pseudopodium from the rear of the cell. Here we examine the spatio-temporal localization and activation of cytoskeletal-associated signals in purified pseudopodia directed to undergo growth or retraction. Pseudopodia growth requires assembly of a p130Crk-associated substrate (CAS)/c-CrkII (Crk) scaffold, which facilitates translocation and activation of Rac1. Interestingly, Rac1 activation then serves as a positive-feedback loop to maintain CAS/Crk coupling and pseudopodia extension. Conversely, disassembly of this molecular scaffold is critical for export and down regulation of Rac1 activity and induction of pseudopodia retraction. Surprisingly, the uncoupling of Crk from CAS during pseudopodium retraction is independent of changes in focal adhesion kinase activity and CAS tyrosine phosphorylation. These findings establish CAS/Crk as an essential scaffold for Rac1-mediated pseudopodia growth and retraction, and illustrate spatio-temporal segregation of cytoskeletal signals during cell polarization.  相似文献   

8.
ObjectivesCancer cell migration to secondary organs remains an essential cause of death among breast cancer (BrCa) patients. Cell motility mainly relies on actin dynamics. Our previous reports verified that dishevelled‐associated activator of morphogenesis 1 (Daam1) regulates invadopodia extension and BrCa cell motility. However, how Daam1 is involved in actin filament assembly and promotes pseudopodia formation in BrCa cells remains unclear.Materials and methodsOne hundred human BrCa samples were collected at Women''s Hospital of Nanjing Medical University. Immunohistochemistry (IHC) was used to examine Daam1 and Fascin expression. Wound healing and Boyden chamber assays were used to explore cell migration and pseudopodia extension of BrCa cells. Co‐IP/pull down and Western blotting were performed to study the physical interaction between Daam1 and Fascin. Immunofluorescence assays were performed to observe whether Daam1 and Fascin were colocalized and mediated actin filament assembly.ResultsFascin was upregulated in BrCa tissues compared with that in paracarcinoma tissues. The downregulation of Fascin caused a decline in pseudopodia formation and cell motility. Moreover, we found that Daam1 interacted with Fascin via formin homology (FH) domains, especially the FH2 domain. Immunofluorescence assays showed that Daam1 and Fascin partially colocalized to actin filaments, and the knockdown of Daam1 or Fascin failed to colocalize to short and curved actin filaments.ConclusionsDaam1 specifically binds to Fascin via FH domains and cooperatively facilitates pseudopodia formation and cell migration by promoting actin filament assembly in BrCa.

Daam1 notably collaborates with Fascin to promote the assembly of actin filament, pseudopodia extension and cell migration.  相似文献   

9.
The germ cells of Caenorhabditis elegans serve as a useful model to study the balance between proliferation and differentiation within the context of development and changing environmental signals experienced by the animal. Germ cells adjacent to a stem cell niche in the distal region of the gonad retain the capacity to divide during adulthood, making them unique from other cells in the organism. We will highlight recent advances in our understanding of mechanisms that control proliferation, as well as the signaling pathways involved in promoting mitosis at the expense of differentiation.  相似文献   

10.
Tendon injuries are common in sports and are frequent reasons for orthopedic consultations. The management of damaged tendons is one of the most challenging problems in orthopedics. Mechano-growth factor (MGF), a recently discovered growth repair factor, plays positive roles in tissue repair through the improvement of cell proliferation and migration and the protection of cells against injury-induced apoptosis. However, it remains unclear whether MGF has the potential to accelerate tendon repair. We used a scratch wound assay in this study to demonstrate that MGF-C25E (a synthetic mechano-growth factor E peptide) promotes the migration of rat tenocytes and that this promotion is accompanied by an elevation in the expression of the following signaling molecules: focal adhesion kinase (FAK) and extracellular signal regulated kinase1/2 (ERK1/2). Inhibitors of the FAK and ERK1/2 pathways inhibited the MGF-C25E-induced tenocyte migration, indicating that MGF-C25E promotes tenocyte migration through the FAK-ERK1/2 signaling pathway. The analysis of the mechanical properties showed that the Young's modulus of tenocytes was decreased through treatment of MGF-C25E, and an obvious formation of pseudopodia and F-actin was observed in MGF-C25E-treated tenocytes. The inhibition of the FAK or ERK1/2 signals restored the decrease in Young's modulus and inhibited the formation of pseudopodia and F-actin. Overall, our study demonstrated that MGF-C25E promotes rat tenocyte migration by lessening cell stiffness and increasing pseudopodia formation via the FAK-ERK1/2 signaling pathway.  相似文献   

11.
Autotaxin (ATX), or nucleotide pyrophosphatase/phosphodiesterase 2 (NPP2), is an exo-enzyme originally identified as a tumor cell autocrine motility factor. ATX is unique among the NPPs in that it primarily functions as a lysophospholipase D, converting lysophosphatidylcholine into the lipid mediator lysophosphatidic acid (LPA). LPA acts on specific G protein-coupled receptors to elicit a wide range of cellular responses, ranging from cell proliferation and migration to neurite remodeling and cytokine production. While LPA signaling has been studied extensively over the last decade, we are only now beginning to explore the properties and biological importance of ATX as the major LPA-producing phospholipase. In this review, we highlight recent advances in our understanding of the ATX-LPA axis, giving first an update on LPA action and then focusing on ATX, in particular its regulation, its link to cancer and its vital role in vascular development.  相似文献   

12.
In recent years we have learned a great deal about the molecular mechanisms underlying axonal elongation and navigation and the manner in which extracellular signals modify a growth cone's course of action. Yet, the mechanisms responsible for the earlier events of axonal and dendritic generation are just beginning to be understood. The recent advances in this exciting field highlight the importance of studies of cell migration and axonal elongation for our current understanding of the establishment of neuronal polarity.  相似文献   

13.
To better understand the potential function of carotenoids in the chemoprevention of cancers, mechanistic understanding of carotenoid action on genetic and epigenetic signaling pathways is critically needed for human studies. The use of appropriate animal models is the most justifiable approach to resolve mechanistic issues regarding protective effects of carotenoids at specific organs and tissue sites. While the initial impetus for studying the benefits of carotenoids in cancer prevention was their antioxidant capacity and pro-vitamin A activity, significant advances have been made in the understanding of the action of carotenoids with regards to other mechanisms. This review will focus on two common carotenoids, provitamin A carotenoid β-cryptoxanthin and non-provitamin A carotenoid lycopene, as promising chemopreventive agents or chemotherapeutic compounds against cancer development and progression. We reviewed animal studies demonstrating that β-cryptoxanthin and lycopene effectively prevent the development or progression of various cancers and the potential mechanisms involved. We highlight recent research that the biological functions of β-cryptoxanthin and lycopene are mediated, partially via their oxidative metabolites, through their effects on key molecular targeting events, such as NF-κB signaling pathway, RAR/PPARs signaling, SIRT1 signaling pathway, and p53 tumor suppressor pathways. The molecular targets by β-cryptoxanthin and lycopene, offer new opportunities to further our understanding of common and distinct mechanisms that involve carotenoids in cancer prevention.This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.  相似文献   

14.
Redox signaling contributes to the regulation of cancer cell proliferation, survival, and invasion and participates in the adaptation of cancer cells to their microenvironment. NADPH oxidases are important mediators of redox signaling in normal and cancer cells. Redox signal specificity in normal cells is in part achieved by targeting enzymes that generate reactive oxygen species to specific subcellular microdomains such as focal adhesions, dorsal ruffles, lipid rafts, or caveolae. In a similar fashion, redox signal specificity during cancer cell invasion can be regulated by targeting reactive oxygen generation to invasive microdomains such as invadopodia. Here we summarize recent advances in the understanding of the redox signaling processes that control the cancer cell proinvasive program by modulating cell adhesion, migration, and proteolysis as well as the interaction of cancer cells with the tumor microenvironment. We focus on redox signaling events mediated by invadopodia NADPH oxidase complexes and their contribution to cancer cell invasion.  相似文献   

15.
Phosphoinositide 3-kinase (PI 3-kinase) activity is required for growth factor-induced cytoskeletal regulation and cell migration. We previously found that in MTLn3 rat adenocarcinoma cells, EGF-stimulated induction of actin barbed ends and lamellipod extension specifically requires the p85/p110alpha isoform of PI 3-kinase. To further characterize signaling by distinct PI 3-kinase isoforms, we have developed MTLn3 cells that transiently or stably overexpress either p110alpha or p110beta. Transient overexpression of p110beta inhibited EGF-stimulated lamellipod extension, whereas p110alpha-transfected cells showed normal EGF-stimulated lamellipod extension. Similar results were obtained by overexpression of kinase-dead p110beta, suggesting that effects on cytoskeletal signaling were due to competition with p85/p110alpha complexes. Stable overexpression of p110alpha appeared to be toxic, based on the difficulty in obtaining stable overexpressing clones. In contrast, cells expressing a 2-fold increase in p110beta were readily obtainable. Interestingly, cells stably expressing p110beta showed a marked inhibition of EGF-stimulated lamellipod extension. Using computer-assisted analysis of time-lapse images, we found that overexpression of p110beta caused a nearly complete inhibition of motility. Cells overexpressing p110beta showed normal activation of Akt and Erk, suggesting that overall PI 3-kinase signaling was intact. A chimeric p110 molecule containing the p85-binding and Ras-binding domains of p110alpha and the C2, helical, and kinase domains of p110beta, was catalytically active yet also inhibited EGF-stimulated lamellipod extension. These data highlight the differential signaling by distinct p110 isoforms. Identification of effectors that are differently regulated by p110alpha versus p110beta will be important for understanding cell migration and its role in metastasis.  相似文献   

16.
Living cells orient the cytoskeleton polarity and directional migration in response to spatial gradients of multiple types of cues. The resulting tactic behaviors are critical for the proper cell localization in the context of complex single-cell and tissue behaviors. In this perspective, we highlight the recent discovery of, to our knowledge, a new -taxis phenomenon, the topotaxis, which mediates directional cell migration in response to the gradients of such topographic features as the density of extracellular matrix fibers. The direction of topotactic migration critically depends on the effective stiffness of the cortical cytoskeleton, which is controlled by the balance between two parallel signaling pathways activated by the extracellular matrix input. Topotaxis can account for such striking cell behaviors as the opposite directionality of migration of benign and metastatic cancer cells and certain aspects of the wound-healing process. We anticipate that, in conjunction with other tactic phenomena, topotaxis can provide critical information for understanding and design of tissue structure and function.  相似文献   

17.
RhoA, Cdc42, and Rac1 are small GTPases that regulate cytoskeletal reorganization leading to changes in cell morphology and cell motility. Their signaling pathways are activated by guanine nucleotide exchange factors and inactivated by GTPase-activating proteins (GAPs). We have identified a novel RhoGAP, BPGAP1 (for BNIP-2 and Cdc42GAP Homology (BCH) domain-containing, Proline-rich and Cdc42GAP-like protein subtype-1), that is ubiquitously expressed and shares 54% sequence identity to Cdc42GAP/p50RhoGAP. BP-GAP1 selectively enhanced RhoA GTPase activity in vivo although it also interacted strongly with Cdc42 and Rac1. "Pull-down" and co-immunoprecipitation studies indicated that it formed homophilic or heterophilic complexes with other BCH domain-containing proteins. Fluorescence studies of epitope-tagged BPGAP1 revealed that it induced pseudopodia and increased migration of MCF7 cells. Formation of pseudopodia required its BCH and GAP domains but not the proline-rich region, and was differentially inhibited by coexpression of the constitutively active mutant of RhoA, or dominant negative mutants of Cdc42 and Rac1. However, the mutant without the proline-rich region failed to confer any increase in cell migration despite the induction of pseudopodia. Our findings provide evidence that cell morphology changes and migration are coordinated via multiple domains in BPGAP1 and present a novel mode of regulation for cell dynamics by a RhoGAP protein.  相似文献   

18.
The enteric nervous system (ENS) forms from migrating neural crest-derived precursors that differentiate into neurons and glia, aggregate into ganglion cell clusters, and extend neuronal processes to form a complex interacting network that controls many aspects of intestinal function. Bone morphogenetic proteins (BMPs) have diverse roles in development and influence the differentiation, proliferation, and survival of ENS precursors. We hypothesized that BMP signaling might also be important for the ENS precursor migration, ganglion cell aggregation, and neurite fasciculation necessary to form the enteric nervous system. We now demonstrate that BMP signaling restricts murine ENS precursors to the outer bowel wall during migration. In addition, blocking BMP signaling causes faster colonization of the murine colon, reduces ganglion cell aggregation, and reduces neurite fasciculation. BMP signaling also influences patterns of neurite extension within the developing bowel wall. These effects on ENS precursor migration and neurite fasciculation appear to be mediated at least in part by increased polysialic acid addition to neural cell adhesion molecule (Ncam1) in response to BMP. Removing PSA enzymatically reverses the BMP effects on ENS precursor migration and neurite fasciculation. These studies demonstrate several novel roles for BMP signaling and highlight new functions for sialyltransferases in the developing ENS.  相似文献   

19.
Cell-substrate interactions and signaling through ILK   总被引:19,自引:0,他引:19  
Interactions between cells and the extracellular matrix (ECM) result in the regulation of cell growth, cell differentiation and cell migration. These interactions are mediated by integrins and growth factor receptors and intracellular effectors that couple these receptors to downstream components are key to the transduction of ECM signals. This review summarizes recent advances in our understanding of signal transduction via integrins, focusing on the role of integrin-linked kinase in some of these pathways. Research into this interesting protein is uncovering novel aspects of coordinated signaling by the ECM and growth factors.  相似文献   

20.
Osteopontin: role in cell signaling and cancer progression   总被引:21,自引:0,他引:21  
Cell migration and degradation of the extracellular matrix (ECM) are crucial steps in tumor progression. Several matrix-degrading proteases, including matrix metalloproteases, are highly regulated by growth factors, cytokines and ECM proteins. Osteopontin (OPN), a chemokine-like, calcified ECM-associated protein, plays a crucial role in determining the metastatic potential of various cancers. Since its first identification in bone, the multifaceted roles of OPN have been an area of intense investigation. Extensive research has elucidated the pivotal role of OPN in regulating the cell signaling that controls tumor progression and metastasis. This review focuses on recent advances in understanding the functional role of the OPN-induced signaling pathway in the regulation of cell migration and tumor progression and the implications for identifying novel targets for cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号