首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Modulator is a novel ether aminophosphoglyceride that is commonly known as the low-molecular weight inhibitor of glucocorticoid-receptor complex activation. An ultra-large scale purification of modulator has been performed from 1000 rat livers. This purification was similar to our previous one (Bodine, P. V., and Litwack, G. (1988) J. Biol. Chem. 263, 3501-3512), but involved the chromatography of heated rat liver cytosol on a 7-liter bed volume Sephadex G-15 gel filtration column. Two peaks of modulator activity eluted from the giant gel-filtration column, and these two modulators (peak-1 and peak-2) were chromatographed separately on Dowex-1 anion-exchange columns. Both modulators were determined to be homogeneous after this step by analytical high-performance thin-layer chromatography, analytical high-performance liquid chromatography, and nuclear magnetic resonance spectroscopy. Furthermore, although peak-1 and peak-2 differed in molecular weight, the two modulators co-chromatographed by anion-exchange, high-performance thin-layer, and high-performance liquid chromatography. These results suggest that the two modulators have similar structures and therefore appear to be isoforms of each other. In addition, both of the modulators are organic molecules that are devoid of molybdenum and 62 other metals. Activity assays indicated that the larger peak-1 modulator was five times more potent than the smaller peak-2 modulator at inhibiting receptor activation and at stabilizing the steroid-binding ability of the occupied and unoccupied receptors. Mixing experiments indicated that the activities of the two modulators were synergistic for both receptor activation inhibition and for occupied receptor steroid-binding stabilization. However, the effects of peak-1 and peak-2 modulator on unoccupied receptor steroid-binding stabilization were additive. Thus, although the two modulators have similar chemical structures, the biological potencies of the two compounds are different. Moreover, these results suggest that although the unoccupied/unactivated receptor has only one modulator binding site, the occupied/unactivated receptor has two modulator binding sites, one site for each of the isoforms.  相似文献   

2.
The possible reversibility of pH induced activation of the glucocorticoid-receptor complex was studied. Generally, this was accomplished by activating rat liver cytosol at pH 8.5 (15 degrees C, 30 min), and then returning it to pH 6.5 for a second incubation (15 degrees C, 30 min). Activation was quantitated by measuring the binding of [3H]triamcinolone acetonide [( 3H]TA)-receptor complexes to DNA-cellulose. When cytosol was incubated at pH 6.5, only 4.1% of the [3H]TA-receptor complexes bound to DNA-cellulose. However, 39.2% of the complexes bound when the cytosol was pH activated. When pH activation was followed by a second incubation at pH 6.5, 47.0% of the steroid-receptor complexes bound. Thus, according to the DNA-cellulose binding assay, pH induced activation was irreversible. In order to visualize both activated and unactivated [3H]TA-receptor complexes during this process, diethylaminoethyl (DEAE)-cellulose chromatography was performed. When cytosol was incubated at pH 6.5, only 19.6% of the [3H]TA-receptor complexes were eluted in the activated form from DEAE-cellulose. However, 67.5% of the complexes were eluted in the activated form when cytosol was pH activated. When pH activation was followed by a second incubation at pH 6.5, 74.9% of the steroid-receptor complexes were eluted in the activated form. Thus, DEAE-cellulose chromatography also showed that pH induced activation was irreversible. This is the first known report that the combination of DNA-cellulose binding and DEAE-cellulose chromatography have been used to study pH induced activation of the glucocorticoid-receptor complex. By these criteria, we conclude that in vitro pH induced activation is irreversible.  相似文献   

3.
Activation of the glucocorticoid-receptor complex   总被引:2,自引:0,他引:2  
A crucial step in the interaction of glucocorticoids with target cells is the activation step, which involves a conformational change in the cytoplasmic glucocorticoid-receptor protein complexes and facilitates their binding to the cell nucleus. Activation can be quantified by measuring the ability of glucocorticoid-receptor complexes to bind to polyanions, such as DNA-cellulose, and unactivated complexes can be separated from activated complexes by rapid ion exchange chromatography using diethylaminoethyl (DEAE)-Sephadex or DEAE-cellulose. Activation occurs in vivo under physiological conditions and the rate of activation of cytoplasmic glucocorticoid-receptor complexes can be enhanced in vitro by physical manipulations (elevated temperature, increased ionic strength, dilution). In vitro studies suggest that activation is a regulated process and a low molecular weight component termed modulator, which has been identified in rat hepatic cytosol, inhibits activation. Additional studies employing phosphatase inhibitors, such as molybdate, and purified calf intestinal alkaline phosphatase suggest that either the receptor protein or a regulatory component is dephosphorylated during activation. Results obtained with specific chemical probes suggest that activation results in the exposure of basic amino acid residues consisting minimally of lysine, arginine, and histidine. Pyridoxal 5'-phosphate, a specific probe for lysine residues, exerts dual effects on glucocorticoid-receptor complexes, since it stimulates the rate of activation and also inhibits the binding of previously activated complexes to nuclei or DNA-cellulose. The ability of 1,10-phenanthroline, a metal chelator, to inhibit the DNA-cellulose binding of activated complexes suggests that a metal ion(s) located at or near the DNA binding site may become exposed as a consequence of activation. Collectively, the results of these various experiments suggest that activation is a regulated biochemical phenomenon with physiological significance.  相似文献   

4.
Receptors for the luteotropin/human chorionogonadotropin hormone belong to the G-protein-coupled receptor family by their membrane-anchoring domains. They also possess a large extracellular domain (ECD) responsible for most of the hormone-receptor interactions. Structure-function studies identified several contacts between hormone and receptor ECD, but the precise topology of the complex is still unknown because of the lack of suitable heterologous expression means. Receptor ECDs exhibit leucine repeats and have been modelized on the basis of the three-dimensional structure of the porcine ribonuclease inhibitor, the first structurally known leucine-rich repeats protein. Here we report overexpression (up to 20 mg per liter) and purification to homogeneity of a soluble human chorionogonadotropin-ECD receptor complex secreted by stably cotransfected Chinese hamster ovary cells. Biochemical analysis and surface plasmon resonance data were in favor of a unique dimer with a 1:1 ligand-receptor stoichiometry. Immunopurified complex was submitted to circular dichroism characterization; CD spectra deconvolution indicated more than 25% alpha helices contributed by the receptor, in agreement with the porcine ribonuclease inhibitor-based modelization.  相似文献   

5.
A number of N-linked membrane glycoproteins are induced during chick oviduct differentiation. We have purified a major estrogen-inducible glycoprotein (Mr = 91,000) to homogeneity by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Comparison of partial NH2-terminal sequence data with membrane glycoproteins having similar Mr showed a limited homology with human and murine transferrin receptors. We observed that oviduct membranes contain estrogen-inducible transferrin receptor activity (Kd = 2-8 x 10(-8) M). Analytical purification of the putative receptor on an ovotransferrin-Affi-Gel affinity column and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis reveals a protein of Mr, 180,000, which contains two disulfide-linked subunits of Mr 91,000. The receptor reacts very strongly with antibodies prepared against the 91-kDa glycoprotein on Western blots. Western blot analysis confirms that the 91-kDa glycoprotein is induced by estrogen. The protein has 2% total carbohydrate with Man, GlcNAc, Gal, GalNAc, and NeuAc in a molar ratio of 6:4:2:1:1. The protein contains at least one O-linked moiety. Analysis of the O-linked moiety by glycosidase digestions and gel filtration indicates there are sialo tetra- and trisaccharides and a neutral disaccharide(s). Labeled N-linked glycopeptides were prepared by pronase digestion, beta-elimination, and 3H-acetylation. The N-linked oligosaccharides include high mannose and complex neutral nonbisected biantennary types in an approximate ratio of 3:1 as determined by serial lectin affinity chromatography.  相似文献   

6.
The unactivated molybdate-stabilized glucocorticoid receptor (GcR) was purified from rat kidney cortex cytosol (RKcC) by using a modification of the procedure previously described by this laboratory for rat hepatic receptor. The purification includes affinity chromatography, gel filtration, and ion-exchange chromatography. The final preparation (approximately 1000-fold pure as determined from specific radioactivity) was used in subsequent physicochemical and functional analyses. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed a single heavily Coomassie-stained band at 90 kilodaltons. Density gradient ultracentrifugation indicated a sedimentation coefficient of 10.5 +/- 0.05 S (n = 2). Chromatography on an analytical gel filtration column produced a Stokes radius (Rs) of 6.4 +/- 0.07 nm (n = 5). The Rs was unchanged when the molybdate-stabilized GcR was analyzed in the presence of 400 mM KCl or when analyzed in the unpurified (cytosolic) state. In contrast, the hepatic GcR was observed to exist as a larger form in cytosol (7.7 +/- 0.2 nm). Following purification, or upon gel filtration analysis under hypertonic conditions, the Rs was similar to that of the unpurified RKcC GcR. Following removal of molybdate from RKcC GcR and thermal activation (25 degrees C/30 min), DNA-cellulose binding increased 1.5-2-fold over the unheated control. Addition of RKcC or hepatic cytosol (endogenous receptors thermally denatured at 90 degrees C/30 min or presaturated with 10(-7) M radioinert ligand) during thermal activation increased DNA-cellulose binding an additional 2-6-fold beyond the heated control.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
B Karniol  P Malec    D A Chamovitz 《The Plant cell》1999,11(5):839-848
The COP9 complex is a regulator essential for repression of light-mediated development in Arabidopsis. Using partial amino acid sequence data generated from purified COP9 complexes, we cloned the Arabidopsis cDNA encoding the 27-kD subunit of the COP9 complex and showed that it is encoded by the previously identified FUSCA5 (FUS5) locus. fus5 mutants exhibit constitutive photomorphogenic phenotypes similar to those of cop9 and fus6. Point mutations in FUS5 that led to a loss of FUS5 protein were detected in four fus5 allelic strains. FUS5 contains the PCI/PINT and mitogen-activated protein kinase kinase activation loop motifs and is highly conserved with the mammalian COP9 complex subunit 7 and the Aspergillus nidulans AcoB proteins. FUS5 is present in both complex and monomeric forms. In the COP9 complex, FUS5 may interact directly with FUS6 and COP9. Mutations in FUS6 and COP9 result in a shift in the electrophoretic mobility of FUS5. This shift can be mimicked by in vitro phosphorylation of FUS5 by plant extracts. These findings further support the hypothesis that the COP9 complex is a central and common regulator that may interact with multiple signaling pathways.  相似文献   

8.
9.
10.
T cell activation through the CD2 cell surface receptor is transmitted by proline-rich sequences within its cytoplasmic tail. A membrane-proximal proline-rich tandem repeat, involved in cytokine production, is recognized by the intracellular CD2 binding protein CD2BP2. We solved the solution structure of the CD2 binding domain of CD2BP2, which we name the glycine-tyrosine-phenylalanine (GYF) domain. The GYF sequence is part of a structurally unique bulge-helix-bulge motif that constitutes the major binding site for the CD2 tail. A hydrophobic surface patch is created by motif residues that are highly conserved among a variety of proteins from diverse eukaryotic species. Thus, the architecture of the GYF domain may be widely used in protein-protein associations.  相似文献   

11.
12.
Native polyacrylamide gels of extracellular proteins produced by several Streptomyces isolates grown with suberin were assayed in situ for esterase activity. Two pathogenic isolates of Streptomyces scabies from different geographical regions were found to produce a similar esterase activity that was not produced by nonpathogenic strains. After treatment with EDTA, suberin no longer induced esterase production. Expression was restored when EDTA-treated suberin was supplemented with zinc. The optimal concentration of zinc required for esterase production was 2 microM. This esterase was purified from one of the pathogenic isolates and characterized. The enzyme was 38,000 daltons when determined by gel filtration on Sephadex G-100 and 36,000 daltons when determined by denaturing polyacrylamide gel electrophoresis. The esterase showed maximal activity in sodium phosphate buffer above pH 8.0, was stable to temperatures of up to 60 degrees C, and had an apparent Km of 125 microM p-nitrophenyl butyrate.  相似文献   

13.
14.
Anion exchange chromatography of reticulocyte lysates revealed that the ubiquitin cell-free system can be resolved into two essential fractions: unadsorbed material (Fraction I) that contains ubiquitin and a high salt eluate (Fraction II) that contains the conjugating enzymes and the conjugate-degrading protease. Many proteins with exposed NH2 termini are degraded in a ubiquitin-supplemented Fraction II. However, this partially purified and reconstituted system does not degrade N-alpha-acetylated proteins. These proteins are degraded in whole lysates in a ubiquitin-dependent manner (Mayer, A. Siegel, N. R., Schwartz, A. L., and Ciechanover, A. (1989) Science 244, 1480-1483). It appears that a protein factor which is specifically required for the degradation of N-alpha-acetylated proteins is removed or inactivated during the fractionation of the lysate. Here we report the purification and characterization of a novel protein that is required along with the protease for the degradation of ubiquitin conjugates of histone H2A, an N-alpha-acetylated protein. The protein is not required for the degradation of ubiquitin conjugates of proteins with free NH2 termini. The protein, which is found in crude Fraction I, was purified approximately 200-fold by (NH4)2SO4 precipitation, Sephadex G-100 gel-filtration chromatography, Mono Q anion exchange chromatography, and an additional Sephadex G-100 gel filtration chromatography step. The protein is removed from Fraction I during the purification of ubiquitin and has not been previously recognized since the majority of the protein substrates evaluated in the cell-free system have free NH2 termini. The protein has an apparent molecular mass of approximately 92 kDa. It is a homodimer that is composed of two identical 46-kDa subunits. Initial analysis of the mechanism of action of this protein revealed that it must interact with the conjugates in order to allow proteolysis to occur. We designated the protein Factor H (Factor Hedva).  相似文献   

15.
16.
17.
18.
19.
Evidence that ficin is a glycoprotein   总被引:1,自引:0,他引:1  
  相似文献   

20.
The bacterium Bacillus subtilis undergoes endospore formation in response to starvation. sigma factors play a key role in spatiotemporal regulation of gene expression during development. Activation of sigma factors is coordinated by signal transduction between the forespore and the mother cell. sigma(E) is produced as pro-sigma(E), which is activated in the mother cell by cleavage in response to a signal from the forespore. We report that expression of SpoIIR, a putative signaling protein normally made in the forespore, and SpoIIGA, a putative protease, is necessary and sufficient for accurate, rapid, and abundant processing of pro-sigma(E) to sigma(E) in Escherichia coli. Modeling and mutational analyses provide evidence that SpoIIGA is a novel type of aspartic protease whose C-terminal half forms a dimer similar to the human immunodeficiency virus type 1 protease. Previous studies suggest that the N-terminal half of SpoIIGA is membrane-embedded. We found that SpoIIGA expressed in E. coli is membrane-associated and that after detergent treatment SpoIIGA was self-associated. Also, SpoIIGA interacts with SpoIIR. The results support a model in which SpoIIGA forms inactive dimers or oligomers, and interaction of SpoIIR with the N-terminal domain of SpoIIGA on one side of a membrane causes a conformational change that allows formation of active aspartic protease dimer in the C-terminal domain on the other side of the membrane, where it cleaves pro-sigma(E).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号