首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The era of microbiology: a golden phoenix.   总被引:1,自引:0,他引:1  
The discoveries over the last decade have demonstrated that microbiology is a central scientific discipline with practical applications in agriculture, medicine, bioremediation, biotechnology, engineering, and other fields. It is clear that the roles of microbes in nature are so diverse that the process of mining this genetic variation for new applications will continue long into the future. Moreover, the rapid rate of microbial evolution ensures that there will be no permanent solution to agricultural, medical, or environmental problems caused by microbes. These problems will demand a continual stream of creative new approaches that evolve along with the microbes. Thus, the excitement of this field will continue long into the future. However, these opportunities and imperatives demand a deep understanding of basic microbial physiology, genetics, and ecology. Major challenges that lay ahead are to impart the broad training needed to entice and enable the next generation of microbiologists, and to educate the public and government representatives about the continued and critical importance of this field for health and the economy.  相似文献   

2.
Exploring novel bioactive compounds from marine microbes   总被引:3,自引:0,他引:3  
The historical paradigm of the deep ocean as a biological 'desert' has shifted to one of a 'rainforest' owing to the isolation of many novel microbes and their associated bioactive compounds. Recently, there has been an explosion of information about novel bioactive compounds that have been isolated from marine microbes in an effort to further explore the relatively untapped marine microbes and their secondary metabolites for drug discovery. The microbes are recovered and purified from the ocean by both conventional and innovative isolation methods to obtain those previously thought to be 'uncultivable'. To overcome the difficulties and limitations associated with cultivation techniques, several DNA-based molecular methods have been developed to bypass the culture-dependent bottleneck. Bioactive compounds isolated using the above strategies have not only shown importance in biotechnological and pharmaceutical applications but have also increased our understanding of the diversity of marine microbiota, ecosystem functions and the exploitable biology.  相似文献   

3.
Sponges are well known to harbor diverse microbes and represent a significant source of bioactive natural compounds derived from the marine environment. Recent studies of the microbial communities of marine sponges have uncovered previously undescribed species and an array of new chemical compounds. In contrast to natural compounds, studies on enzymes with biotechnological potential from microbes associated with sponges are rare although enzymes with novel activities that have potential medical and biotechnological applications have been identified from sponges and microbes associated with sponges. Both bacteria and fungi have been isolated from a wide range of marine sponge, but the diversity and symbiotic relationship of bacteria has been studied to a greater extent than that of fungi isolated from sponges. Molecular methods (e.g., rDNA, DGGE, and FISH) have revealed a great diversity of the unculturable bacteria and archaea. Metagenomic approaches have identified interesting metabolic pathways responsible for the production of natural compounds and may provide a new avenue to explore the microbial diversity and biotechnological potential of marine sponges. In addition, other eukaryotic organisms such as diatoms and unicellular algae from marine sponges are also being described using these molecular techniques. Many natural compounds derived from sponges are suspected to be of bacterial origin, but only a few studies have provided convincing evidence for symbiotic producers in sponges. Microbes in sponges exist in different associations with sponges including the true symbiosis. Fungi derived from marine sponges represent the single most prolific source of diverse bioactive marine fungal compounds found to date. There is a developing interest in determining the true diversity of fungi present in marine sponges and the nature of the association. Molecular methods will allow scientists to more accurately identify fungal species and determine actual diversity of sponge-associated fungi. This is especially important as greater cooperation between bacteriologists, mycologists, natural product chemists, and bioengineers is needed to provide a well-coordinated effort in studying the diversity, ecology, physiology, and association between bacteria, fungi, and other organisms present in marine sponges.  相似文献   

4.
Marine microbes are capable of producing secondary metabolites for defense and competition. Factors exerting an impact on secondary metabolite production of microbial communities included bioactive natural products and co-culturing. These external influences may have practical applications such as increased yields or the generation of new metabolites from otherwise silent genes in addition to reducing or limiting the production of undesirable metabolites. In this paper, we discuss the metabolic profiles of a marine Pseudomonas aeruginosa in the presence of a number of potential chemical epigenetic regulators, adjusting carbon sources and co-culturing with other microbes to induce a competitive response. As a result of these stressors certain groups of antibiotics or antimalarial agents were increased most notably when treating P. aeruginosa with sceptrin and co-culturing with another Pseudomonas sp. An interesting cross-talking event between these two Pseudomonas species when cultured together and exposed to sceptrin was observed.  相似文献   

5.
Genomics and marine microbial ecology.   总被引:1,自引:0,他引:1  
  相似文献   

6.
胃肠道微生态系统及其功能研究   总被引:4,自引:0,他引:4  
随着生物技术和生理科学研究的不断深入,人们对胃肠道微生物生态及其功能的研究取得了重大进步。对胃肠道微生物的多样性、不同生理时期微生物菌群的演化和特定微生物种属的研究有新的发现。胃肠道微生物生态系统的生理功能得到不断的揭示,成为许多学者和多个学科关注的焦点。  相似文献   

7.
Genome analysis of marine photosynthetic microbes and their global role   总被引:7,自引:0,他引:7  
Four recently completed genome projects on marine Cyanobacteria have started the age of comparative genomics for marine microbes. Cyanobacteria are a group of photoautotrophic bacteria that have traditionally been under-represented in studies of complete genome sequences, as have microbes from the marine environment in general. The new genome information is of crucial importance to understanding their role in oceanic primary production, global carbon cycling and functioning of the biosphere. Marine microbes are a still almost untapped resource for the identification of novel beneficial metabolites and activities. The availability of an increasing number of genome sequences will eventually lead to a sustained development of marine biotechnology.  相似文献   

8.
Symbioses between eukaryotes and unicellular organisms are quite common, with examples copiously disseminated throughout the earth's biota. Arthropods, in particular, owe much of their ecological success to their microbial flora, which often provide supplements either lacking in the limited host diet or which the hosts are unable to synthesize. In addition to harboring beneficial microbes, many arthropods (vectors) also transmit pathogens to the animals and plants upon which they prey. Vector-borne diseases exact a high public health burden and additionally have a devastating impact on livestock and agriculture. Recent scientific discoveries have resulted in the development of powerful technologies for studying the vector's biology, to discover the weak links in disease transmission. One of the more challenging applications of these developments is transgenesis, which allows for insertion of foreign DNA into the insect's genome to modify its phenotype. In this review, we discuss an approach in which the naturally occurring commensal flora of insects are manipulated to express products that render their host environment inhospitable for pathogen transmission. Replacing susceptible insect genotypes with modified counterparts with reduced pathogen transmission ability, might provide a new set of armaments in the battle for vector-borne disease reduction.  相似文献   

9.
1. For solitary bees that specialise on select pollen types (oligoleges), larval development depends on the availability of forage pollen from appropriate host plants and the naturally occurring microbiota present therein. While access to host pollen may be critical for the development of oligolectic bees, the extent to which pollen microbiota contribute to their brood success is unknown. 2. To investigate, we used a diet manipulation experiment to rear larvae of the oligolege, Osmia ribifloris, under in-vitro conditions. Larvae were reared either on host pollen provisioned by their mother or on non-host pollen collected by honey bees, in the presence or absence of the respective pollen-associated microbiota. We assessed impacts on components of larval fitness: developmental time, biomass, and survivorship. 3. Our results revealed a significant interaction between pollen type and pollen-associated microbes. The relative effect of microbes on larval performance was substantially greater than that of pollen type. Host pollen substrate produced the fittest larvae but only when combined with its full complement of naturally occurring microbiota. In contrast, host pollen without microbes resulted in a marked decline in fitness components. Larvae consuming non-host pollen showed intermediate fitness, regardless of whether microbes were present or not. 4. These findings imply that the microbiota associated with maternally provisioned host pollen perform critical functions in larval nutrition and survival. For oligoleges in particular, the ability to develop on poorer quality host pollen likely derives from this sustained symbiosis with their microbial exosymbionts, rather than the biochemical characteristics of pollen type alone.  相似文献   

10.
Lipopolysaccharides (LPS) are associated with various inflammatory diseases; therefore, the inhibition of LPS-induced nitric oxide (NO) production may have extensive therapeutic applications. We searched for inhibitors of NO production in the LPS-stimulated murine macrophage-like cell line RAW264.7 from MeOH extracts of marine organisms. The MeOH extract of the marine cyanobacterium Okeania sp., collected in Okinawa, Japan, showed inhibitory activity. Biseokeaniamide A was isolated from the MeOH extract by chromatographic separation. Biseokeaniamide A inhibited NO production without cytotoxicity. It reduced inducible nitric oxide synthase levels and suppressed the expression of IL-1β in LPS-stimulated RAW264.7 cells. Biseokeaniamide A did not inhibit IκBα degradation but inhibited IκBα expression. Thus, biseokeaniamide A, a naturally occurring lipopeptide, was identified as a selective inhibitor of LPS signal transduction.  相似文献   

11.
The emergence of drug-resistant microbes left us with a great need for new antimicrobial agents. Flavonoids, with their wide range of biological activities, are good candidates in this respect. Although naturally occurring flavonoids are the most studied ones, semi-synthetic or synthetic flavonoids have proven to have great potential, inhibiting and even killing microbes at concentrations below 1 μg ml−1. The substitution pattern of these flavonoids often includes hydroxy groups, halogens or other heteroatomic rings, such as pyridine, piperidine or 1,3-dithiolium cations. However, the great variety in substituents makes it difficult to draw any definitive conclusion regarding their structure–activity relationship.  相似文献   

12.
Squalene, a naturally occurring linear triterpene formed via MVA or MEP biosynthetic pathway, is widely distributed in microorganisms, plants and animals. At present, squalene is used extensively in the food, cosmetic and medicine industries because of its antioxidant, antistatic and anti-carcinogenic properties. Increased consumer demand has led to the development of microbial bioprocesses for the commercial production of squalene, in addition to the traditional methods of isolating squalene from the liver oils of deep-sea sharks and plant seed oils. As knowledge of the biosynthetic enzymes and of regulatory mechanisms modulating squalene production increases, opportunities arise for the genetic engineering of squalene production in hosts. In this review, we present the various strategies used up to date to improve and/or engineer squalene production in microbes and analyze yields.  相似文献   

13.
The biological resources of the oceans have been exploited since ancient human history, mainly by catching fish and harvesting algae. Research on natural products with special emphasis on marine animals and also algae during the last decades of the 20th century has revealed the importance of marine organisms as producers of substances useful for the treatment of human diseases. Though a large number of bioactive substances have been identified, some many years ago, only recently the first drugs from the oceans were approved. Quite astonishingly, the immense diversity of microbes in the marine environments and their almost untouched capacity to produce natural products and therefore the importance of microbes for marine biotechnology was realized on a broad basis by the scientific communities only recently. This has strengthened worldwide research activities dealing with the exploration of marine microorganisms for biotechnological applications, which comprise the production of bioactive compounds for pharmaceutical use, as well as the development of other valuable products, such as enzymes, nutraceuticals and cosmetics. While the focus in these fields was mainly on marine bacteria, also marine fungi now receive growing attention. Although culture-dependent studies continue to provide interesting new chemical structures with biological activities at a high rate and represent highly promising approaches for the search of new drugs, exploration and use of genomic and metagenomic resources are considered to further increase this potential. Many efforts are made for the sustainable exploration of marine microbial resources. Large culture collections specifically of marine bacteria and marine fungi are available. Compound libraries of marine natural products, even of highly purified substances, were established. The expectations into the commercial exploitation of marine microbial resources has given rise to numerous institutions worldwide, basic research facilities as well as companies. In Europe, recent activities have initiated a dynamic development in marine biotechnology, though concentrated efforts on marine natural product research are rare. One of these activities is represented by the Kieler Wirkstoff-Zentrum KiWiZ, which was founded in 2005 in Kiel (Germany).  相似文献   

14.
Soil microbes promote plant growth through several mechanisms such as secretion of chemical compounds including plant growth hormones. Among the phytohormones, auxins, ethylene, cytokinins, abscisic acid and gibberellins are the best understood compounds. Gibberellins were first isolated in 1935 from the fungus Gibberella fujikuroi and are synthesized by several soil microbes. The effect of gibberellins on plant growth and development has been studied, as has the biosynthesis pathways, enzymes, genes and their regulation. This review revisits the history of gibberellin research highlighting microbial gibberellins and their effects on plant health with an emphasis on the early discoveries and current advances that can find vital applications in agricultural practices.  相似文献   

15.
Photosynthetic microorganisms play a crucial role in the marine environment. In vast areas of the oceans, marine primary productivity is performed by cells smaller than 2-3 micro m (picoplankton). Here, we report on molecular analyses of the conserved photosynthetic psbA gene (coding for protein D1 of photosystem II reaction centre) as a diversity indicator of naturally occurring marine oxygenic picophytoplankton. The psbA genes proved to be good indicators of the presence of a wide variety of photosynthetic marine microbial groups, including new cyanobacterial groups and eukaryotic algae (prasinophytes). Furthermore, using environmental bacterial artificial chromosome (BAC) libraries, we were able to correlate psbA genes with small subunit rRNAs and, therefore, to confirm their phylogenetic affiliation.  相似文献   

16.
海洋沉积物是营养较为丰富的微生物栖息地,近年来从海洋沉积物中分离培养出了大量海洋链霉菌,从中还发现了一些新的属种。人们已从海洋沉积物来源链霉菌属中发现了许多具有药用价值的活性化合物,有力推动了海洋天然产物化学的发展,并为新药研发提供基础。本文就海洋沉积物来源链霉菌属次生代谢产物的结构类型及其生物活性进行简要综述。  相似文献   

17.
Biopolymers can be a green alternative to fossil-based polymers and can contribute to environmental protection because they are produced using renewable raw materials. Biopolymers are composed of various small subunits (building blocks) that are the intermediates or end products of major metabolic pathways. Most building blocks are secreted directly outside of cells, making downstream processes easier and more economic. These molecules can be extracted from fermentation broth and polymerized to produce a variety of biopolymers, e.g., polybutylene terephthalate, polyethylene terephthalate, polytrimethylene terephthalate, nylon-5,4 and nylon-4,6, with applications in medicine, pharmaceuticals, and textiles. Microbes are unable to naturally produce these types of polymers; thus, the production of building blocks and their polymerization is a fascinating approach for the production of these polymers. In comparison to naturally occurring biopolymers, synthesized polymers have improved and controlled structures and higher purity. The production of monomer units provides a new direction for polymer science because new classes of polymers with unique properties that were not previously possible can be prepared. Furthermore, the engineering of microbes for building-block production is an easy process compared to engineering an entire biopolymer synthesis pathway in a single microbe. Polyesters and polyamide polymers have become an important part of human life, and their demand is increasing daily. In this review, recent approaches and technology are discussed for the production of polyester/polyamide building blocks, i.e., 2-hydroxyisobutyric acid, 3-hydroxypropionic acid, mandelic acid, itaconic acid, adipic acid, terephthalic acid, succinic acid, 1,3-propanediol, 2,3-butanediol, 1,4-butanediol, 1,3-butanediol, cadaverine, and putrescine.  相似文献   

18.
Microorganisms are usually studied either in highly complex natural communities or in isolation as monoclonal model populations that we manage to grow in the laboratory. Here, we uncover the biology of some of the most common and yet‐uncultured bacteria in freshwater environments using a mixed culture from Lake Grosse Fuchskuhle. From a single shotgun metagenome of a freshwater mixed culture of low complexity, we recovered four high‐quality metagenome‐assembled genomes (MAGs) for metabolic reconstruction. This analysis revealed the metabolic interconnectedness and niche partitioning of these naturally dominant bacteria. In particular, vitamin‐ and amino acid biosynthetic pathways were distributed unequally with a member of Crenarchaeota most likely being the sole producer of vitamin B12 in the mixed culture. Using coverage‐based partitioning of the genes recovered from a single MAG intrapopulation metabolic complementarity was revealed pointing to ‘social’ interactions for the common good of populations dominating freshwater plankton. As such, our MAGs highlight the power of mixed cultures to extract naturally occurring ‘interactomes’ and to overcome our inability to isolate and grow the microbes dominating in nature.  相似文献   

19.
In 1985, we reported that a naturally occurring human antibody (anti-Gal), produced as the most abundant antibody (1% of immunoglobulins) throughout the life of all individuals, recognizes a carbohydrate epitope Galalpha1-3Galbeta1-4GlcNAc-R (the alpha-gal epitope). Since that time, an extensive literature has developed on discoveries related to the alpha-gal epitope and the anti-Gal antibody, including the barrier they form in xenotransplantation and their reciprocity in mammalian evolution. This review covers these topics and new avenues of clinical importance related to this unique antigen/antibody system (alpha-gal epitope/anti-Gal) in improving the efficacy of viral vaccines and in immunotherapy against cancer.  相似文献   

20.
The origins of biological complexity in microbial ecosystems are encoded within the collective genomes of the community. Cultivation-independent genomic studies provide direct access to the genomes of naturally occurring microbes, cultivated or not. Genome-enabled approaches are now significantly advancing current knowledge of genome content, diversity, population biology and evolution in natural microbial populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号