首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mispah type soil (FAO : Lithosol) contaminated with >250 000 mg kg-1 creosote was collected from the yard of a creosote treatment plant. The soils carbon, nitrogen and phosphorus contents were determined. Due to creosote contamination, thecarbon content of the soil was found to be 130,000 mg C kg-1. This concentration was found to greatly affect the nitrogen content (0.08%). The phosphorus content was less affected (4.5%). It was estimated that a nutrient amendment to bring the soil to a C : N 10 : 1 would be adequate to stimulate microbial growth and creosote degradation. The soil was amended with a range of C : N ratios below and above the estimated ratio. In one of the treatments, the phosphorus content was amended. Sterile and natural controls were also set up. The soil was incubated at 30 °C on a rotaryshaker at 150 rpm in the dark for six weeks. Water content was maintained at 70% field capacity. The lowest nitrogen supplementation (C : N = 25 : 1) was more effective in enhancing microbial growth (3.12E + 05) and creosote removal (68.7%) from the soil. Additional phosphorus was not very effective in enhancing the growth of microorganisms and removal of creosote. The highest nitrogen supplementation(C : N = 5 : 1) did not enhance microbial growth and creosote removal.A relationship between mass loss and creosote removal was also observed. Phenolics and lower molecular mass polycyclic aromatic hydrocarbons (PAHs) were observed to be more susceptible to microbial degradation than higher molecular mass compounds. Nutrient concentration, moisture content and pH were thus observed to play very significant roles in the utilization of creosote in soil. These results are being used for the development of a bioremediation technology for the remediation of creosote contaminated soils in a treatment plant in South Africa.  相似文献   

2.
The microbial community structure changes of an aged-coal-tar soil contaminated with polycyclic aromatic hydrocarbons (PAHs) were investigated during simulated bioremediation at the laboratory-scale using an in-vessel composting approach. The composting reactors were operated using a logistic three-factor factorial design with three temperatures (T=38, 55 or 70 °C), four soil to green-waste amendment ratios (S:GW=0.6:1, 0.7:1, 0.8:1 or 0.9:1 on a dry weight basis) and three moisture contents (MC=40%, 60% or 80%). Relative changes in microbial populations were investigated by following the dynamics of phospholipid fatty acid (PLFA) signatures using a 13C-labeled palmitic acid internal standard and sensitive GC/MS analysis during in-vessel composting over 98 days. The results of this investigation indicated that fungal to bacterial PLFA ratios were significantly influenced by temperature (p<0.05), and Gram-positive to Gram-negative bacterial ratios were significantly influenced by temperature (p<0.001) and S:GW ratio (p<0.01) during in-vessel composting. Additionally, the Gram-positive to Gram-negative bacterial ratios were correlated to the extent of PAH losses (p<0.005) at 70 °C.  相似文献   

3.
Summary Microbiological decontamination of technical chlorophenol-containing soil by composting was studied. In two 50 m3 windrows the concentration of chlorophenols went down from 212 mg kg-1 to 30 mg kg-1 in 4 summer months and after the second summer of composting it was only 15 mg kg-1. All chlorophenol congeners present in the technical chlorophenol were degraded, but the main dimeric impurities, polychlorinated phenoxyphenols were recalcitrant. The contaminated soil was found to contain chlorophenol-degrading microbes, 5x106 cfu g-1 of dry windrow soil. Laboratory experiments with samples from the windrow compost showed that chlorophenols were truly degraded and that chlorophenol loss by evaporation was less than 1.5% under the circumstances studied. Laboratory experiments also showed that degradation of chlorophenols (120 mg kg-1) was accelerated when sterilized contaminated soil was inoculated with Rhodococcus chlorophenolicus (mineralizer of several chlorophenols) or naturally occurring microbes of the field composts. Biomethylation of chlorophenols in the composts was insignificant compared to biodegradation.  相似文献   

4.
Vermitechnology was investigated as a means of reducing organic waste materials. Vermicomposting conditions were optimized to convert the biowastes to nutritious composts for amending agricultural soil. Studies were undertaken to select the most suitable earthworm species for vermicomposting, to enrich vermicompost by inoculation with beneficial microbes, to standardize an economically feasible method of vermicomposting, to achieve nutrient economy through vermicompost application in acid soils (pH 4.5), and to assess the performance of vermicompost as a bioinoculant in cow-pea, banana, and cassava. Earthworm species Eudrillus eugineae, Eisenia foetida, Perionyx sansibaricus, Pontoscolex corethrurus and Megascolex chinensis were compared for their efficiencies in biodegrading organic wastes. E. eugineae was found to be a superb agent. As a bioinoculant, vermicompost increased nitrogen and phosphorous availability by enhancing biological nitrogen fixation and phosphorous solubilisation. Vermicompost-amended acid-agriculture-soil significantly improved the yield, biometric character and quality of banana, cassava and cow-pea. Vermicompost application stimulated root growth, facilitating nutrient absorption and thereby favouring higher yield.  相似文献   

5.
This study aimed to optimize, by means of an experimental design multivariate strategy, a liposomal formulation for topical delivery of the local anaesthetic agent benzocaine. The formulation variables for the vesicle lipid phase uses potassium glycyrrhizinate (KG) as an alternative to cholesterol and the addition of a cationic (stearylamine) or anionic (dicethylphosphate) surfactant (qualitative factors); the percents of ethanol and the total volume of the hydration phase (quantitative factors) were the variables for the hydrophilic phase. The combined influence of these factors on the considered responses (encapsulation efficiency (EE%) and percent drug permeated at 180 min (P%)) was evaluated by means of a D-optimal design strategy. Graphic analysis of the effects indicated that maximization of the selected responses requested opposite levels of the considered factors: For example, KG and stearylamine were better for increasing EE%, and cholesterol and dicethylphosphate for increasing P%. In the second step, the Doehlert design, applied for the response-surface study of the quantitative factors, pointed out a negative interaction between percent ethanol and volume of the hydration phase and allowed prediction of the best formulation for maximizing drug permeation rate. Experimental P% data of the optimized formulation were inside the confidence interval (P < 0.05) calculated around the predicted value of the response. This proved the suitability of the proposed approach for optimizing the composition of liposomal formulations and predicting the effects of formulation variables on the considered experimental response. Moreover, the optimized formulation enabled a significant improvement (P < 0.05) of the drug anaesthetic effect with respect to the starting reference liposomal formulation, thus demonstrating its actually better therapeutic effectiveness.  相似文献   

6.
Two-phase olive mill waste (TPOMW) is a semisolid sludge generated by the olive oil industry. Its recycling as a soil amendment, either unprocessed or composted, is being promoted as a beneficial agricultural practice in the Mediterranean area. One of the major difficulties when composting TPOMW is the compaction of the material due to its dough-like texture, which leads to an inadequate aeration. For this reason, the addition of bulking agents is particularly important to attain a proper composting process. In this study we followed the evolution of two composting mixtures (A and B) prepared by mixing equal amounts of TPOMW and sheep litter (SL) (in a dry weight basis). In pile B grape stalks (GS) were added (10% dry weight) as bulking agent to study their effect on the development of the composting process and the final compost quality. The incorporation of grape stalks to the composting mixture changed the organic matter (OM) degradation dynamics and notably reduced the total amount of lixiviates. The evolution of several maturation indices (C/N, germination index, water soluble carbon, humification indices, C/N in the leachates) showed a faster and improved composting process when GS were added. Moreover, chemical (NH4 +, NO3 , cation exchange capacity, macro and micronutrients, heavy metals) and physical properties (bulk and real densities, air content, total water holding capacity, porosity) of the final composts were analysed and confirmed the superior quality of the compost where GS were added.  相似文献   

7.
石油污染土壤堆制微生物降解研究   总被引:11,自引:0,他引:11  
采用异位生物修复技术堆式堆制处理方法 ,对辽河油田原油污染土壤进行了生物修复处理研究 .处理工程设 4个处理料堆单元 ,每个处理单元长 118.5cm ,宽 6 5 .5cm ,高 12 .5cm .研究结果表明 ,当进行处理的石油污染土壤中石油烃总量为 5 .2 2 g·10 0 g-1土时 ,利用黄孢原毛平革菌 (Phanerochaetechrysospori um) ,经过 5 5d的运行 ,石油烃总量去除率达 5 4.2 % .堆制处理中影响污染土壤石油烃总量生物降解的主要变化因子为污染土壤的O2 和CO2 含量、降解石油烃微生物的数量、污染土壤pH的变化 .通过监测这些数据的变化 ,可直接反映该工程的处理石油污染土壤的效果 .本处理工程采用定期通风措施 ,操作简单、运行费用低廉 ,为石油污染土壤生物修复实用化提供了一种简单易行的污染土壤清洁技术 .  相似文献   

8.
Polymer beads have been used to absorb high concentrations of phenol from soil decreasing the initial concentration of 2.3 g kg−1 soil to 100 mg kg−1 soil and achieving a phenol loading within the polymer beads of 27.5 mg phenol g−1 beads. The phenol-loaded polymer beads were removed from the soil and placed in a bioreactor, which was then inoculated with a phenol-degrading microbial consortium. All of the phenol contained within the polymer beads was shown to desorb from the polymer matrix and was degraded by the microbial consortium. The beads were used again (twice) in a similar manner with no loss in performance.  相似文献   

9.
This paper presents results obtained on the evaluation of static composting process aimed at bioremediation of the hazardous solid olive mill waste (OMW). The static composting process carried out in gas-permeable polyethylene bags followed the fluctuating temperature and oxygen profiles similar to those seen in aerated composting systems. Static composting resulted in apparent increases and decreases in values for total nitrogen and C:N ratios respectively during the process. The amount of nitrogen (>3%) in the composting end product was in agreement with the Italian legislation (Decreto Legislativo 29 aprile 2010, n. 75) specification for nitrogen fertilizer. A gradual decrease in polyphenols during the storage of compost resulted in a non-phytotoxic composted organic matter high in humic substances. Different respirometric tests also stated high biological stability of the end compost product.  相似文献   

10.
This study examined the effect of rotor speed, amount of water sprayed, and atomizing air pressure on the geometric mean diameter and geometric standard deviation of pellets produced in a fluid-bed rotor granulator using a 23 factorial design and an optimization technique. Pellets were prepared by wet granulation. Equal amounts of microcrystalline cellulose, α-lactose monohydrate, and distilled water were used as the granulation liquid. The size and the size distribution of the pellets were determined by sieve analysis. The size of the pellets was found to be dependent on the amount of water added, while an increase in rotor speed decreased their size. Both factors were found to be statistically significant (P<.05). The effect of atomizing air pressure on pellet size was not statistically significant. None of the 3 factors significantly affected the geometric standard deviation of the pellets. The rotor speed and the amount of water sprayed were further selected in order to construct a mathematical model that correlates these factors with the geometric mean diameter of the pellets. For this purpose, the optimization technique 32 was used. The derived equation described the relationship between the the experimental design techniques applied were found to be suitable in optimizing the pelletization process carried out in a fluid-bed rotor granulator.  相似文献   

11.
The recent discovery of leptin as a major controller of appetite has led to a detailed analysis of its specific actions in this process as well as any potential role in the etiology of obesity. It has also emerged that leptin has a wider spectrum of biological activities and has been strongly implicated in fertility and reproduction. The structural similarity between leptin and its receptor and cytokine-receptor systems that control hemopoiesis has also prompted investigation of the potential for this hormone to influence blood cell formation. Recent studies have shown that the leptin receptor is expressed on a diverse range of hemopoietic cells. Leptin itself appears to enhance proliferation of hemopoietic cells in vitro, particularly in combination with other cytokines and may augment some mature hemopoietic cell functions. Although only relatively minor hemopoietic deficiencies have been reported in mice lacking leptin or its receptor, these emerging studies suggest that further analysis of leptin actions in hemopoiesis may be warranted.  相似文献   

12.
Enhanced bioremediation of phenanthrene-contaminated soil with Mycobacterium pallens was conducted. Kaolinite was used in the tests as a soil matrix and was artificially contaminated with phenanthrene at a concentration of 2 mg phenanthrene per gram dry soil. Mycobacterim pallens at concentration of 108 colony-forming units (CFU) per milliliter was used as a potential microorganism to degrade phenanthrene. Aspects of the study included evaluating efficacy of using Mycobacterium pallens for degrading phenanthrene, electrokinetics for delivering nutrients and microorganisms to contaminated soil, and solar panels for generating power for electrokinetic bioremediation. A novel anode-cathode configuration, in which the anode and cathode are placed in the same compartment, was implemented to control/minimize changes in pH during electrokinetic bioremediation. The nutrients (NO3?), electrical current, temperature, Mycobacterium pallens (CFU), and phenatherene concentration were evaluated. The results showed that solar panels generated sufficient power for electrokinetic bioremediation. The highest current obtained was generated when bacteria and nutrients were added to the soil. This was associated with the highest phenanthrene removal from the soil (50% of the initial concentration). Additionally, we determined that the novel anode-cathode configuration in the electrokinetic bioremediation cell was successful in delivering the bacteria and nutrients to the contaminated soil and in maintaining a relatively neutral pH around the electrode compartments, which improved the remediation. Overall, this study showed that the use of solar power with electrokinetic bioremediation can provide a cost-effective approach to reduce and remove hydrocarbon contaminations in soil.  相似文献   

13.
A central composite design was employed for the optimization of heterogeneous enzymatic hydrolysis of sucrose. The reaction was catalyzed by whole yeast cells of Saccharomyces cerevisiae immobilized in Ca-pectate gel. Bioreactor volumetric productivity was chosen as an optimization criterion, while temperature and gel biomass concentration were optimization parameters. Sucrose inlet concentration of 700 kg m–3 and outlet conversion of 65% were constant in all experiments. In the temperature range 51–73 °C and biomass concentration range 11–39 kg m–3 (dry mass of cells), the dependence of bioreactor productivity on the two factors was described by a second order polynom regression equation. No simple optimum was revealed by the experimental design. The bioreactor productivity increased within the whole experimental range of biomass concentration, whereas a temperature optimum was found to be between 60 and 65 °C.List of Symbols b j jth regression coefficient - c Si kg m–3 inlet sucrose concentration - F m3 min–1 flow rate - F F distribution - f LF degrees of freedom of lack of fit variance - f P degrees of freedom of pure error variance - N total number of runs - n 0 number of runs in the centre of design - P kg m–3 min–1 productivity - s LF 2 lack of fit variance - SS LF lack of fit sum of squares - S p 2 pure error variance - SS P pure error sum of squares - SS R total residual sum of squares - V b m3 bioreactor bed volume - X O outlet conversion - x 1 1st factor - coded temperature - x 2 2nd factor - coded biomass concentration - y kgm–3min–1 measured response (productivity) - kg m–3 min–1 estimated response (productivity) - y Oi kg m–3 min–1 measured response in the centre of design - ¯y 0 kg m–3 min–1 average of response in the centre of design  相似文献   

14.
Biodegradation and bioremediation of endosulfan contaminated soil   总被引:1,自引:0,他引:1  
Among the three mixed bacterial culture AE, BE, and CE, developed by enrichment technique with endosulfan as sole carbon source, consortium CE was found to be the most efficient with 72% and 87% degradation of alpha-endosulfan and beta-endosulfan, respectively, in 20 days. In soil microcosm, consortium AE, BE and CE degraded alpha-endosulfan by 57%, 88% and 91%, respectively, whereas beta-endosulfan was degraded by 4%, 60% and 67% after 30 days. Ochrobacterum sp., Arthrobacter sp., and Burkholderia sp., isolated and identified on the basis of 16s rDNA gene sequence, individually showed in situ biodegradation of alpha-endosulfan in contaminated soil microcosm by 61, 73, and 74, respectively, whereas degradation of beta-endosulfan was 63, 75, and 62, respectively, after 6 weeks of incubation over the control which showed 26% and 23 % degradation of alpha-endosulfan and beta-endosulfan, respectively. Population survival of Ochrobacterum sp., Arthrobacter sp., and Burkholderia sp., by plate count on Luria Broth with carbenicillin showed 75-88% survival of these isolates as compared to 36-48% of survival obtained from PCR fingerprinting. Arthrobacter sp. oxidized endosulfan to endosulfan sulfate which was further metabolized but no known metabolite of endosulfan sulfate was detected.  相似文献   

15.
微生物修复石油烃土壤污染技术研究进展   总被引:1,自引:0,他引:1  
随着人民生活水平的提高,环境保护问题愈发受到人们重视。其中石油烃的土壤污染因其持续时间长、污染去除难度大而受到广泛关注。在各类修复技术中,原位微生物修复强化技术因其成本较低、环境影响小、无二次污染、可原位修复的特点成为了当前的技术热门。文中综述了生物投加法、生物刺激法、联合修复法等原位微生物修复技术,并介绍了一些典型工程案例,为原位微生物修复强化技术的选择及工程应用提供了参考,并对未来原位微生物修复强化技术的研究重点进行了展望。  相似文献   

16.
Liposomes (composed of soy phosphatides) in the form of small unilamellar vesicles (SUV), when added to soil contaminated by crude oil, accelerate bioremediation. After three weeks incubation at 30 degrees C, using soil experimentally contaminated (with 10,000 ppm crude oil), level of bioremediation increased from 40% without SUV to 75% with SUV (0.1 wt% phospholipids per dry weight soil). Similarly, for accidentally contaminated soil (with approximately 17,000 ppm crude oil), addition of 0.1 wt% SUV to the soil increased the bioremediation level from 55 to 80%. The enhancing effect of liposomes is explained by two interrelated phenomena: a large increase both in total bacteria number and in diversity of bacterial species in the soil. Comparison after four weeks revealed 21 bacterial species in the presence of liposomes (many being oil-degrading bacterial species) and only nine species in the absence of liposomes. Both effects may be related to the physical effects of liposome phospholipids, which modify the crude oil by wetting it, thereby making it more accessible to the microorganisms. In addition, liposome phospholipids serve as phosphate and nitrogen sources for the bacteria.  相似文献   

17.
本试验以毒死蜱污染土壤为研究材料,利用降解菌DSP-A分别与高丹草、紫花苜蓿、多花黑麦草进行联合修复,探讨了植物-微生物联合修复毒死蜱污染土壤的效果,以及影响联合修复的因素,结果表明,植物.微生物联合修复的效果优于单一的植物修复及单一的微生物修复效果。与DSP—A菌群较合适的植物是高丹草,该组合对毒死蜱的降解率达到96.44%,其次是多花黑麦草。研究了微生物数量、植株密度以及土壤湿度对联合修复效果的影响,结果表明,DSP.A菌菌液稀释倍数越大,联合修复的效果越差。植株密度对联合修复的影响,主要表现为对植物根系生长的影响。植株密度越大,对生存环境的竞争越激烈,植物根系的生长越不好。除了紫花苜蓿外,高丹草和多花黑麦草根系的生长均受到影响。高丹草种植密度为12株/盆时,与DSP—A菌的联合修复效果最好,多花黑麦草则为10株/盆。土壤湿度是影响联合修复的重要因素,不仅影响植物的生长,对微生物的生长也有影响。土壤湿度过大,造成土壤的含氧量降低,不利于植物根系和好氧细菌的生长,从而影响土壤中农药的降解。土壤湿度过小,容易造成植株缺水,根系生长和微生物的生长。高丹草与DSP.A菌、多花黑麦草与DSP—A菌联合修复最适浇水量都为20mL/d,紫花苜蓿与DSP—A菌联合修复最适浇水量都为15mL/d。  相似文献   

18.
A chlorophenol-contaminated soil was tested for the biodegradability in a semi-pilot scale microcosm using indigenous microorganisms. More than 90% of 4-chlorophenol and 2,4,6-trichlorophenol, initially at 30 mg kg–1, were removed within 60 days and 30 mg pentachlorophenol kg–1 was completely degraded within 140 days. The chlorophenols were degraded more effectively under aerobic condition than under anaerobic condition. Soil moisture had a significant effect with the slowest degradation rate of chlorophenols at 25% in the range of 10–40% moisture content. At 25–40%, the rate of chlorophenol degradation was directly related to the soil moisture content, whereas at 10–25%, it was inversely related. Limited oxygen availability through soil agglomeration at 25% moisture content might decrease the degradation rate of chlorophenols.  相似文献   

19.
Degradation of diesel oil in soil using a food waste composting process   总被引:1,自引:0,他引:1  
Joo HS  Shoda M  Phae CG 《Biodegradation》2007,18(5):597-605
We investigated the simultaneous degradation of diesel oil in soil and the organic matter in food waste by composting in 8 l reactors. Using a 0.5 l/min air flow rate, and 0.5-1% diesel oil concentrations together with 20% food waste, high composting temperatures (above 60°C) were attained due to the efficient degradation of the food waste. Petroleum hydrocarbons were degraded by 80% after only 15 days composting in the presence of food waste. In a 28 l reactor scale-up experiment using 1% oil, 20% food waste and 79% soil, removal efficiencies of petroleum hydrocarbons and food waste after 15 days were 79% and 77%, respectively.  相似文献   

20.
AIMS: To study the impact of fungal bioremediation of phenanthrene on trace cadmium solid-solution fluxes and solution phase concentration. METHODS AND RESULTS: The bioremediation of phenanthrene in soils was performed using the fungus Penicillium frequentans. Metal behaviour was evaluated by the techniques of diffusive gradient in thin-films (DGT) and filtration. Fluxes of cadmium (Cd) show a significant (P < 0.002) increase after the start of bioremediation, indicating that the bioremediation process itself releases significant amount of Cd into solution from the soil solid-phase. Unlike DGT devices, the solution concentration from filtration shows a clear bimodal distribution. We postulate that the initial action of the fungi is most likely to breakdown the surface of the solid phase to smaller, 'solution-phase' material (<0.45 microm) leading to a peak in Cd concentration in solution. CONCLUSIONS: Phenanthrene removal from soils by bioremediation ironically results in the mobilization of another toxic pollutant (Cd). SIGNIFICANCE AND IMPACT OF THE STUDY: Bioremediation of organic pollutants in contaminated soil will likely lead to large increases in the mobilization of toxic metals, increasing metal bio-uptake and incorporation into the wider food chain. Bioremediation strategies need to account for this behaviour and further research is required both to understand the generality of this behaviour and the operative mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号