首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetic comparisons of mesophilic and thermophilic aerobic biomass   总被引:1,自引:0,他引:1  
Kinetic parameters describing growth and decay of mesophilic (30°C) and thermophilic (55°C) aerobic biomass were determined in continuous and batch experiments by using oxygen uptake rate measurements. Biomass was cultivated on a single soluble substrate (acetate) in a mineral medium. The intrinsic maximum growth rate (μ max) at 55°C was 0.71±0.09 h−1, which is 1.5 times higher than the μ max at 30°C (0.48±0.11 h−1). The biomass decay rates increased from 0.004 h−1 at 30°C to 0.017 h−1 at 55°C. Monod constants were very low for both types of biomass: 9±2 mg chemical oxygen demand (COD) l−1at 30°C and 3±2 mg COD l−1at 55°C. Theoretical biomass yields were similar at 30 and 55°C: 0.5 g biomass COD (g acetate COD)−1. The observed biomass yields decreased under both temperature conditions as a function of the cell residence time. Under thermophilic conditions, this effect was more pronounced due to the higher decay rates, resulting in lower biomass production at 55°C compared to 30°C. Electronic Publication  相似文献   

2.
The maximum specific growth rate (μmax) of an ethanolic D-xylose-fermenting yeast, Pichia stipitis, showing non-linear growth trends in batch culture, was calculated using the rate equation μ2 = (1/Δt) ln(x 2/x 1). The absolute error Δμ, affecting μ2, was derived using an equation given by Borzani (1994). Based on the assumption of linearity of growth curves between two closest time points, the relation between the two rate formulae, μ1 = (1/)dx t /dt and μ2 = (1/Δt) ln(x 2/x 1) was established. In a particular condition, when μ1 = μ2, an equation has been developed, the roots of which are the specific growth rates at different time points. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
In this study, biomass, growth and free proline concentration were investigated in Spirulina platensis treated with different concentrations of NaCl (50, 100, 150, and 200 mM) and 24-epibrassinolide (24-epiBL) hormone (0.5, 1.0, and 3.0 μM) over 5 days. As a result of analysing the cultures under salinity stress, it was determined that biomass and growth rate decreased significantly, while proline concentration increased considerably under salinity stress. The increase in the concentration of proline suggests a role in response to NaCl stress. Among the cultures treated with different concentrations of 24-epiBL, maximum growth was determined at the cultures at 1.0 μM 24-epiBL. Algal growth was also greater at the 0.5 and 3.0 μM concentrations of 24-epiBL with respect to control cultures. With respect to control, 24-epiBL affected growth rate and biomass positively, but proline concentration did not change. Among the cultures supplied with different combinations of NaCl and 24-epiBL, growth rate increased in 150/0.5 and 150/3.0 mM/μM concentrations, but was maximal for the culture containing 150/1.0 mM/μM combination. The increase in algal growth suggests a role for 24-epiBL in partially alleviated to NaCl stress. These results suggest that 24-epiBL may have a protective role for S. platensis reducing the inhibitor effects of salinity stress.  相似文献   

4.
Quasi steady state growth of Lactococcus lactis IL 1403 was studied in glucose-limited A-stat cultivation experiments with acceleration rates (a) from 0.003 to 0.06 h−2 after initial stabilization of the cultures in chemostat at D = 0.2–0.3 h−1. It was shown that the high limit of quasi steady state growth rate depended on the acceleration rate used—at an acceleration rate 0.003 h−2 the quasi steady state growth was observed until μ crit = 0.59 h−1, which is also the μ max value for the culture. Lower values of μ crit were observed at higher acceleration rates. The steady state growth of bacteria stabilized at dilution rate 0.2 h−1 was immediately disrupted after initiating acceleration at the highest acceleration rate studied—0.06 h−2. Observation was made that differences [Δ(μ − D)] of the specific growth rates from pre-programmed dilution rates were the lowest using an acceleration rate of 0.003 h−2 (< 4% of preset changing growth rate). The adaptability of cells to follow preprogrammed growth rate was found to decrease with increasing dilution rate—it was shown that lower acceleration rates should be applied at higher growth rates to maintain the culture in the quasi steady state. The critical specific growth rate and the biomass yields based on glucose consumption were higher if the medium contained S 0 = 5 g L−1 glucose instead of S 0 = 10 g L−1. It was assumed that this was due to the inhibitory effect of lactate accumulating at higher concentrations in the latter cultures. Parallel A-stat experiments at the same acceleration and dilution rates showed good reproducibility—Δ(μ − D) was less than 5%, standard deviations of biomass yields per ATP produced (Y ATP), and biomass yields per glucose consumed (Y XS) were less than 15%.  相似文献   

5.
The effects of UVB on the kinetics of stem elongation of wild type (WT) and photomorphogenic mutants of tomato were studied by using linear voltage transducers connected to a computer. Twenty-one or twenty-six-day-old plants, grown in 12 h white light (150 μmol m−2 s−1 PAR)/12 h dark cycles, were first transferred to 200 μmol m−2 s−1 monochromatic yellow light for 12 h, then irradiated with 0.1 or 4.5 μmol m−2 s−1 UVB for 12 h and finally kept in darkness for another 24 h. The measurements of the kinetics of stem elongation started after 4 h under yellow light. Significant differences in stem growth during the irradiation with yellow light, as well as during the dark period, were found between the genotypes. In darkness, the magnitude of stem growth followed the order: tri > AC = fri > MMau > hp1. Two factors determined the large differences of growth in darkness: 1) the different stem elongation rate (SER) and 2) the different duration of the growing phase among the genotypes. In darkness the stem growth of au and hp1 mutants lasted for about 18 h, whereas it continued for the whole experimental period (36 h) in the other genotypes. UVB irradiation substantially reduced elongation growth of all genotypes (4.5 μmol m−2 s−1 being more effective than 0.1 μmol m−2 s−1). Both fluence rates of UVB induced a detectable reduction of SER already after 15 min of irradiation. Red light inhibited, while far red light promoted stem growth of all the genotypes tested. fri (phyA null), tri (phyB1 null), hp1 (exhibiting exaggerated phytochrome responses) mutants and WT tomato showed similar levels of UVB–induced inhibition of growth, while the aurea mutant showed the largest growth inhibition during the 12 h of irradiation. These results indicate that phytochrome is not directly involved in UVB control of stem elongation. The results of dichromatic irradiations UVB + red or UVB + far red indicate the presence of distinct and additive action of UVB photoreceptor and of the phytochrome system in the photoregulation of stem growth. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
We estimated the biomass and growth of arbuscular mycorrhizal (AM) mycelium in sand dunes using signature fatty acids. Mesh bags and tubes, containing initially mycelium-free sand, were buried in the field near the roots of the dune grass Ammophila arenaria L. AM fungal mycelia were detected at a distance of about 8.5 cm from the roots after 68 days of growth by use of neutral lipid fatty acid (NLFA) 16:1ω5. The average rate of mycelium extension during September and October was estimated as 1.2 mm day−1. The lipid and fatty acid compositions of AM fungal mycelia of isolates and from sand dunes were analysed and showed all to be of a similar composition. Phospholipid fatty acids (PLFAs) can be used as indicators of microbial biomass. The mycelium of G. intraradices growing in glass beads contained 8.3 nmol PLFAs per mg dry biomass, and about 15% of the PLFAs in G. intraradices, G. claroideum and AM fungal mycelium extracted from sand dunes, consisted of the signature PLFA 16:1ω5. We thus suggest a conversion factor of 1.2 nmol PLFA 16:1ω5 per mg dry biomass. Calculations using this conversion factor indicated up to 34 μg dry AM fungal biomass per g sand in the sand dunes, which was less than one tenth of that found in an experimental system with Glomus spp. growing with cucumber as plant associate in agricultural soil. The PLFA results from different systems indicated that the biomass of the AM fungi constitutes a considerable part of the total soil microbial biomass. Calculations based on ATP of AM fungi in an experimental growth system indicated that the biomass of the AM fungi constituted approximately 30% of the total microbial biomass. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Biosynthesis of six saponins (ginsenosides) in suspension culture of P. quinquefolium Z5 was investigated. Ginsenoside content in biomass reached the highest level, nearly 30 mg g−1 d.w., between 25 and 30 days of the culture. Saponins were synthesized simultaneously with cell growth but their synthesis rate was not proportional to the growth rate. During the phase of rapid biomass multiplication, after which biomass reached 90% of its maximum yield, only half examined ginsenosides was produced. The second half of the final saponins yield was produced during the slow growth phase, in which only 10% of biomass was grown. During the intensive growth phase the productivity of six saponins examined per biomass (dry weight) unit was 3.4 μg mg−1 d.w. day−1, however, this parameter calculated for slow growth phase reached nearly 30 μg mg−1 d.w. day−1. There were differences in increase of the contents of six saponins determined in biomass, and it was the highest for saponins Re (20(S)-protopanaxatriol-6-[O-α-l-rhamnopyranosyl(1 → 2)-β-d-glucopyranoside]-20-O-β-d-glucopyranoside) and Rg1 (20(S)-protopanaxatriol-6,20-di-O-β-d-glucoside).  相似文献   

8.
Azolla, an aquatic fern is ideal candidate for exploitation in constructed wetlands for treating metal-contaminated wastewaters. This study demonstrates the potential of Azolla spp. namely A. microphylla, A. pinnata and A.␣filiculoides to tolerate Cr ions in the growth environment and bioconcentrate them. These species could grow in presence of up to 10 μg ml−1 Cr and showed biomass production 30–70% as compared to controls. Nitrogenase activity was not affected at 1–5 μg ml−1 but at higher concentrations it diminished. There was no growth at higher concentrations of chromium. However, the necrosed biomass harvested from treatments containing higher concentrations of chromium, accumulated Cr to the levels 5000–15,000 μg g−1. At increased levels of Cr, the metal was accumulated in higher amount in dry biomass. Bioconcentration Factor (BCF) ranged between 243 and 4617 for the three species. A. microphylla showed highest bioconcentration potential. Thus, these Azolla spp. can be exploited for treatment of tannery and other Cr contaminated wastewaters.  相似文献   

9.
Pseudomonas putida KT2440 grew on glucose at a specific rate of 0.48 h−1 but accumulated almost no poly-3-hydroxyalkanoates (PHA). Subsequent nitrogen limitation on nonanoic acid resulted in the accumulation of only 27% medium-chain-length PHA (MCL-PHA). In contrast, exponential nonanoic acid-limited growth (μ = 0.15 h−1) produced 70 g l−1 biomass containing 75% PHA. At a higher exponential feed rate (μ = 0.25 h−1), the overall productivity was increased but less biomass (56 g l−1) was produced due to higher oxygen demand, and the biomass contained less PHA (67%). It was concluded that carbon-limited exponential feeding of nonanoic acid or related substrates to cultures of P. putida KT2440 is a simple and highly effective method of producing MCL-PHA. Nitrogen limitation is unnecessary.  相似文献   

10.
The effects of furfural on the growth of the lactose-utilizing yeast Candida blankii 35 were investigated using the method of continuous cultivation under conditions of carbon limitation and at dilution rates of 0.1 and 0.25 h−1. The data obtained at dilution rate 0.1 h−1 and 0.04% furfural showed a decrease in the yield of biomass by 6% and in the RNA content, but the synthesis of cell protein increased with 11.6% compared to the control. Treatment with 0.08% furfural induced significant changes in growth and biosynthesizing ability. A strong inhibitory effect of furfural was observed: the biomass yield decreased by half at 48 h and the culture the reached the control level of protein content. The effect of 0.02% furfural at 0.25 h−1 dilution rate caused a significant reduction of biomass yield (34.4%) and the substrate utilization rate reached values higher by 52.4% at 48 h, but the protein-synthesizing ability of the cells slightly increased. The results showed that a treatment with 0.04 or 0.08% furfural caused significant disturbances of cell functions, the yields of biomass and protein drastically decreased and the culture was washed out. Data showed that the inhibitory effect of furfural on the growth and protein-synthesizing ability of Candida blankii 35 depends on the inhibitor concentration as well as the dilution rate. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Aquatic carnivorous plants usually grow in shallow dystrophic waters poor in inorganic N and P. Utricularia australis was chosen as a model plant for its prolific distribution and great ecological plasticity. The photosynthetic CO2 compensation point and factors associated with investment in carnivory and capture of prey were measured in 17 U. australis micropopulations in Třeboň basin, Czech Republic, together with water chemistry factors at these sites differing greatly in their trophic level, water hardness, and prey availability. Apical shoot growth rate was estimated at some oligotrophic sites. The micropopulations differed greatly in the proportion of traps with animal prey (2.7–70%, mean 26%), trap proportion to total biomass (1.4–42%, mean 26%), mean trap biomass (0.7–63 μg trap−1, mean 19 μg), and maximum trap size (1–3 mm, mean 2.0 mm). CO2 compensation points ranged from 0.7 to 6.1 μM (mean 2.6 μM). A weak HCO3 use (compensation point 0.51 mM) was found in plants growing in alkaline water. Trap biomass proportion did not correlate significantly with prey capture and CO2 compensation points with ambient [CO2]. A very rapid apical growth (2.5–4.2 new nodes day−1) occurred in sand pits. Thus, HCO3 use in U. australis can be induced by growing at very high pH. CO2 compensation points resembled those known in other aquatic non-carnivorous plants. They did not reflect carnivory. In spite of very rapid apical shoot growth, the relative growth rate of U. australis can be zero in oligotrophic habitats without prey.  相似文献   

12.
Methanotrophs expressing soluble methane monooxygenase (sMMO) may find use in a variety of industrial applications. However, sMMO expression is strongly inhibited by copper, and the growth rate may be limited by the aqueous solubility of methane. In this study, addition of allylthiourea decreased intracellular copper in Methylosinus trichosporium OB3b, allowing sMMO production at Cu/biomass ratios normally not permitting sMMO synthesis. The presence of about 1.5 μmoles intracellular Cu g−1 dry biomass resulted in sMMO activity of about 250 μmoles 1-napthol formed per hour gram dry biomass whether this intracellular Cu concentration was achieved by Cu limitation or by allylthiourea addition. No loss of sMMO activity occurred when the growth substrate was switched from methane to methanol when allylthiourea had been added to growth medium containing copper. Addition of copper to medium that was almost copper-free increased the yield of dry biomass from methanol from 0.20 to 0.36 g g−1, demonstrating that some copper was necessary for good growth. This study demonstrated a method by which sMMO can be produced by M. trichosporium OB3b while growing on methanol in copper-containing medium.  相似文献   

13.
Fed-batch fermentation of a methanol utilization plus (Mut+) Pichia pastoris strain typically has a growth phase followed by a production phase (induction phase). In the growth phase glycerol is usually used as carbon for cell growth while in the production phase methanol serves as both inducer and carbon source for recombinant protein expression. Some researchers employed a mixed glycerol-methanol feeding strategy during the induction phase to improve production, but growth kinetics on glycerol and methanol and the interaction between them were not reported. The objective of this paper is to optimize the mixed feeding strategy based on growth kinetic studies using a Mut+ Pichia strain, which expresses the heavy-chain fragment C of botulinum neurotoxin serotype C [BoNT/C(Hc)] intracellularly, as a model system. Growth models on glycerol and methanol that describe the relationship between specific growth rate (μ) and specific glycerol/methanol consumption rate (ν gly, ν MeOH) were established. A mixed feeding strategy with desired μ gly/μ MeOH =1, 2, 3, 4 (desired μ MeOH set at 0.015 h−1) was employed to study growth interactions and their effect on production. The results show that the optimal desired μ gly/μ MeOH is around 2 for obtaining the highest BoNT/C(Hc) protein content in cells: about 3 mg/g wet cells. Electronic Publication  相似文献   

14.
The development of microalgal biofilms has received very limited study despite its relevance in the design of photobioreactors where film growth may be advantageous for biomass separation or disadvantageous in fouling surfaces. Here, the effects of species selection, species control, and substrate properties on biofilms of Scenedesmus obliquus and Chlorella vulgaris were investigated. Experiments were conducted in batch culture and in continuous culture modes in a flow cell. Cell growth was monitored using confocal laser scanning microscopy and gravimetrically. Species selection and species control had significant effects on biofilm development. On non-sterile wastewater, C. vulgaris shifted from primarily planktonic (23.7% attachment) to primarily sessile (79.8% attachment) growth. The biofilms that developed in non-sterile conditions were thicker (52 ± 19 μm) than those grown in sterile conditions (7 ± 6 μm). By contrast, S. obliquus attained similar thicknesses (54 ± 31 and 53 ± 38 μm) in both sterile and non-sterile conditions. Neither species was able to dominate a non-sterile biofilm. The effect of substrate surface properties was minimal. Both species grew films of similar thickness (∼30 μm for S. obliquus, <10 μm for C. vulgaris) on materials ranging from hydrophilic (glass) to hydrophobic (polytetrafluoroethylene). Surface roughness created by micropatterning the surface with 10 μm grooves did not translate into long-term increases in biofilm thickness. The results indicate that species selection and control are more important than surface properties in the development of microalgal biofilms.  相似文献   

15.
Recent technological advances have led to the discovery that free-living, planktonic protozoa are ubiquitous in nature and appear to be important components of pelagic food webs (e.g., fluorescent straining, flow cytometry). Despite this, limited information exists tying their seasonality to rate processes that drive succession patterns. The abundance, and seasonal growth and grazing loss of an entire protozoan assemblage were evaluated in Lake Michigan. The protozoan assemblage was species-rich (100 taxa) and abundant throughout the year in Lake Michigan. Nano-sized protozoa (Hnano and Pnano, <20 μm in size) ranged in abundance from 102 to 103 cells ml−1, while micro-protozoa (Hmicro and Pmico, >20 and <200 μm in size) ranged in abundance from 4 to 17 cells ml−1. The biomass of Hnano and Hmicro by itself represented more than 70–80% of crustacean zooplankton biomass, while Pnano and Pmicro constituted nearly 50% of phytoplankton biomass. Protozoa exhibited growth rates comparable to other components of the plankton in Lake Michigan, and some populations grew at rates similar to maximum rates determined in the laboratory (rates of 1–2 day−1). Overall, it appears that macro-zooplankton predation is a major loss factor counter-balancing growth with only small differences between the two rate processes (<0.1 day−1). Discrepancies between growth and grazing loss in the spring were likely attributed to sedimentation losses for larger species of tintinnids and dinoflagellates (Codonella, Tintinnidium, and Gymnodinium) that can account for their occurrence in the deep chlorophyll layer. In the summer, carnivory among similar sized species (Chromulina and small ciliates) may be additional loss factors impinging on the protozoan assemblage.  相似文献   

16.
The role of glutathione (GSH) in the adaptation of wild type Arabidopsis thaliana plants to Cd stress was investigated. The nutrient solution (control or containing 50 or 100 μM Cd) was supplemented with buthionine sulfoximine (BSO; 50, 100, 500 μM, to decrease the GSH content in plants) or GSH (50, 100, 500 μM, to increase its content in plants) in order to find how GSH content could regulate Cd stress responses. BSO application did not influence plant biomass, while exogenous GSH (especially 500 μM) reduced root biomass. BSO (500μM) in combination with Cd (100 μM) increased Cd toxicity on root growth (by over 50 %), most probably due to reduced GSH content and phytochelatin (PC) accumulation (by over 96 %). On the other hand, combination of exogenous GSH (500 μM) with Cd (100 μM) was also more toxic to plants than Cd alone despite a significant increase in GSH and PC accumulation (up to 2.7 fold in the roots). This fact could indicate that the natural content of endogenous GSH in wild type A. thaliana plants is sufficient for Cd-tolerance. A decrease in this GSH content led to decreased Cd-tolerance of the plants but an increase in GSH content did not enhance Cd-tolerance, and it showed even toxic effect on the plants.  相似文献   

17.
In this study we manipulated both nitrogen and phosphorus concentrations in stream mesocosms to develop quantitative relationships between periphytic algal growth rates and peak biomass with inorganic N and P concentrations. Stream water from Harts Run, a 2nd order stream in a pristine catchment, was constantly added to 36 stream-side stream mesocosms in low volumes and then recirculated to reduce nutrient concentrations. Clay tiles were colonized with periphyton in the mesocosms. Nutrients were added to create P and N concentrations ranging from less than Harts Run concentrations to 128 μg SRP l−1 and 1024 μg NO3-N l−1. Algae and water were sampled every 3 days during colonization until periphyton communities reached peak biomass and then sloughed. Nutrient depletion was substantial in the mesocosms. Algae accumulated in all streams, even streams in which no nutrients were added. Nutrient limitation of algal growth and peak biomass accrual was observed in both low P and low N conditions. The Monod model best explained relationships between P and N concentrations and algal growth and peak biomass. Algal growth was 90% of maximum rates or higher in nutrient concentrations 16 μg SRP l−1 and 86 μg DIN l−1. These saturating concentrations for growth rates were 3–5 times lower than concentrations needed to produce maximum biomass. Modified Monod models using both DIN and SRP were developed to explain algal growth rates and peak biomass, which respectively explained 44 and 70% of the variance in algal response.  相似文献   

18.
Ruta graveolens in vitro cultures are a potential source of secondary metabolites (furanocoumarins) of significant medical interest. Experiments led in our laboratory showed that micropropagated shoots were richer in furanocoumarins than any other plant material. In order to optimize the molecule production by such cultivation systems, several factors related to the culture medium were studied. Effects of medium composition on biomass growth and furanocoumarin content were analysed and optimal conditions were determined for phosphate (300 mg l−1 of NaH2PO4), nitrate (2527 mg l−1 of KNO3), carbon source (10 g l−1 of sucrose) and phytohormones (2,4-dichlorophenoxyacetic acid (2,4-D) 50 μM and benzylaminopurine (BAP) 50 μM). Ruta shoot growth and furanocoumarin production were compared for optimized and standard culture conditions. Specific medium gave better results in terms of growth (tD equal to 6.9 days against 8.6 for standard conditions) but no significant differences appeared concerning metabolite concentrations. However, the present study opens the way to scale-up studies with bioreactor cultivation systems. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
 Phytoplankton biomass, community structure and productivity of the Great Astrolabe lagoon and surrounding ocean were studied using measurements of chlorophyll concentration and carbon uptake. The contribution of picophytoplankton to biomass, productivity and community structure was estimated by size fractionation, 14C-incubation and flow cytometry analysis. Picoplankton red fluorescence was demonstrated to be a proxy for chlorophyll <3 μm. Consequently, the percentage contribution to chl a<3 μm from each picoplankton group could be calculated using regression estimated values of ψ i (fg chl a per unit of red fluorescence). In the lagoon, average chlorophyll concentration was 0.8 mg m-3 with 45% of phytoplankton <3 μm. Primary production reached 1.3 g C m-2 day-1 with 53% due to phytoplankton <3 μm. Synechococcus was the most abundant group at all stations, followed by Prochlorococcus and picoeukaryotes. At all stations, Prochlorococcus represented less than 4% of the chl a <3 μm, Synechococcus between 85 and 95%, and Picoeukaryotes between 5 and 10%. In the upper 40 m of surrounding oceanic waters, phytoplankton biomass was dominated by the >3 μm size fraction. In deeper water, the <1 μm size fraction dominated. Prochlorococcus was the most abundant picoplankton group and their contributions to the chlorophyll a<3 μm were close to that of the picoeukaryotes (50% each). Accepted: 27 May 1999  相似文献   

20.
The objective of this work was to determine the influence of total dissolved solids/salinity (TDS mgL-1) on growth and biomass specific rates of nodularin (hepatotoxin) production by Nodularia spumigena 001E isolated from Lake Alexandrina, South Australia. Maximum biomass yield (dry matter, chlorophyll a and particulate organic carbon/POC) at 80 μmol photon m-2 s-1 was recorded at 3300 mg TDS L-1 and decreased at salinities above or below this value (p < 0.05). The maximum biomass yield (dry matter and chlorophyll a) at 30 μmol m-2 s-1 occurred at a higher salinity of 9900 mg TDS L-1. Cultures grown at 80 μmol m-2 s-1, at a TDS> 6600 mg L-1, had significantly (p < 0.05) lower nodularin content (ml-1 medium) than cultures grown at the same salinities at 30 μmolm-2 s-1. The maximum total toxin concentration (mL-1 medium) occurred at 9900 and 3300 mg TDS L-1 at 30 μmol m-2 s-1and 80 μmol m-2 s-1 respectively. Toxin per unit biomass, expressed as dry matter, chlorophyll a and POC was similar for cultures grown at 30 μmol m-2 s-1 or 80 μmol m-2s-1 at salinities < 6600 mg TDS L-1. At salinities > 9900 mg TDS L-1 the toxin content per unit biomass decreased at both irradiances, however, cultures grown at 30 μmol m-2s-1 had a higher toxin content than those grown at 80 μmol m-2 s-1. The results indicate that not only do changes in irradiance and salinity directly influence growth and toxin production but that changes in irradiance affected the influence of salinity. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号