首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Bacillus amyloliquefaciens strain LP03 isolated from soil, produced an antagonistic compound that strongly inhibited the growth of plant-pathogenic fungi and a lipopeptide biosurfactant. Also, isolated strain LP03 had a marked crude oil-emulsifying activity as it developed a clear zone around the colony after incubation for 24 h at 37°C. LP03 was identified as Bacillus amyloliquefaciens by analysis of partial 16 S rRNA gene and partial gyrA gene sequence. The lipopeptide was purified by acid precipitation of cell-free culture broth, extraction of the precipitates with methanol, silica gel column chromatography, and reverse-phase, high-pressure liquid chromatography. The purified biosurfactant was analyzed biochemical structure by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) and electrospray ionization mass spectrometry/mass spectrometry (ESI-MS/MS). The masses of the two peaks were observed by HPLC chromatography. Their masses were determined to be 1,044 and 1,058 m/z with MALDI-TOF mass spectrometry. As constituents of the peptide and lipophilic part of the m/z 1,022.6, seven amino acids (Glu-Leu-Met-Leu-Pro-Leu-Leu) and β-hydroxy-C13 fatty acid were determined by ESI-MS/MS. The lipopeptide of 1,022.6 Da differed from surfactins in the substitution of leucine, valine and aspartic acid in positions 3, 4, and 5 by methionine, leucine, and proline, respectively. Novel lipopeptide was designated as bamylocin A.  相似文献   

2.
Aims: A Bacillus amyloliquefaciens strain, surviving epiphytically on the surface of fruit, was isolated while searching for naturally occurring biological control agents. This bacterial strain was characterized for its antifungal activity against seven selected fungal postharvest pathogens of citrus. Methods and Results: To understand the antifungal activity, seven postharvest fungal pathogens were screened for growth inhibition by B. amyloliquefaciens strain. Assays using B. amyloliquefaciens lipopeptide extracts showed a strong inhibitive activity. The inhibitory effect was observed in abnormal conidial germination and germ tube development when conidia were treated with different lipopeptide extract concentrations. Further analysis using PCR and chromatography confirmed the presence of fengycin, iturin and surfactine, of which iturin A showed the strongest and most common inhibitory effect. The results are supported by site‐directed mutagenesis analysis, targeted to suppress the biosynthesis of iturin A production. Fruit trials confirmed disease development inhibition when the antagonist was applied 1 day prior to or 1 day after fungal application. Conclusions: We conclude that the iturin family of lipopeptides are vital in the antagonism of B. amyloliquefaciens against the seven citrus postharvest pathogenic fungi tested. Significance and Impact of the Study: We elucidated the principal mechanism used by Bamyloliquefaciens PPCB004 to suppress postharvest disease development on stored fruits.  相似文献   

3.
Raw glycerol is a byproduct of biodiesel production that currently has low to negative value for biodiesel producers. One option for increasing the value of raw glycerol is to use it as a feedstock for microbial production. Bacillus subtilis LSFM 05 was used for the production of fengycin in a mineral medium containing raw glycerol as the sole carbon source. Fengycin was isolated by acid precipitation at pH 2 and purified by silica gel column chromatography and characterized using electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) with collision-induced dissociation (CID). The mass spectrum revealed the presence of the ions of m/z 1,435.7, 1,449.9, 1,463.8, 1,477.8, 1,491.8 and 1,505.8, which were further fragmented by ESI-MS/MS. The CID profile showed the presence of a series of ions (m/z 1,080 and 966) and (m/z 1,108 and 994) that represented the different fengycin homologues A and B, respectively. Fengycin homologues A and B are variants that differ at position 6 of the peptide moiety, having either Ala or Val residues, respectively. Mass spectrometry analyses identified four fengycin A and three fengycin B variants with fatty acid components containing 14–17 carbons. These results demonstrate that raw glycerol can be used as feedstock to produce fengycin, and additional work should focus on the optimization of process conditions to increase productivity.  相似文献   

4.
AIMS: To isolate an antagonist for use in the biological control of phytopathogenic fungi including Colletotrichum gloeosporioides, then to purify and characterize the biocontrol agent produced by the antagonist. METHODS AND RESULTS: Bacteria that exhibited antifungal activity against the causative agent pepper anthracnose were isolated from soil, with Bacillus thuringiensis CMB26 showing the strongest activity. A lipopeptide produced by B. thuringiensis CMB26 was precipitated by adjusting the pH 2 with 3 n HCl and extracted using chloroform/methanol (2:1, v/v) and reversed-phase HPLC. The molecular weight was estimated as 1447 Da by MALDI-TOF mass spectrometry. Scanning electron and optical microscopies showed that the lipopeptide has activity against Escherichia coli O157:ac88, larvae of the cabbage white butterfly (Pieris rapae crucivora) and phytopathogenic fungi. The lipopeptide had cyclic structure and the amino acid composition was L-Glu, D-Orn, L-Tyr, D-allo-Thr, D-Ala, D-Val, L-Pro, and L-Ile in a molar ratio of 3:1:2:1:1:2:1:1. The purified lipopeptide showed the same amino acid composition as fengycin, but differed slightly in fatty acid composition, in which the double bond was at carbons 13-14 (m/z 303, 316) and there was no methyl group. CONCLUSION: A lipopeptide was purified and characterized from B. thuringiensis CMB26 and found to be similar to the lipopeptide fengycin. This lipopeptide can function as a biocontrol agent, and exhibits fungicidal, bactericidal, and insecticidal activity. SIGNIFICANCE AND IMPACT OF THE STUDY: Compared with surfactin and iturin, the lipopeptide from B. thuringiensis CMB26 showed stronger antifungal activity against phytopathogenic fungi. This lipopeptide is a candidate for the biocontrol of pathogens in agriculture.  相似文献   

5.

Aims

To identify and screen dominant Bacillus spp. strains isolated from Bikalga, fermented seeds of Hibiscus sabdariffa for their antimicrobial activities in brain heart infusion (BHI) medium and in a H. sabdariffa seed‐based medium. Further, to characterize the antimicrobial substances produced.

Methods and Results

The strains were identified by gyrB gene sequencing and phenotypic tests as B. amyloliquefaciens ssp. plantarum. Their antimicrobial activity was determined by the agar spot and well assay, being inhibitory to a wide range of Gram‐positive and Gram‐negative pathogenic bacteria and fungi. Antimicrobial activity against Bacillus cereus was produced in H. sabdariffa seed‐based medium. PCR results revealed that the isolates have potential for the lipopeptides iturin, fengycin, surfactin, the polyketides difficidin, macrolactin, bacillaene and the dipeptide bacilysin production. Ultra‐high‐performance liquid chromatography‐time of flight mass spectrometry analysis of antimicrobial substance produced in BHI broth allowed identification of iturin, fengycin and surfactin.

Conclusions

The Bacillus amyloliquefaciens ssp. plantarum exhibited broad‐spectrum antifungal and antibacterial properties. They produced several lipopeptide antibiotics and showed good potential for biological control of Bikalga.

Significance and Impact of the Study

Pathogenic bacteria often occur in spontaneous food fermentations. This is the first report to identify indigenous B. amyloliquefaciens ssp. plantarum strains as potential protective starter cultures for safeguarding Bikalga.  相似文献   

6.
Bacillus subtilis strain IB exhibiting inhibitory activity against the Fusarium head blight disease fungus Fusarium graminearum was isolated and identified. The major inhibitory compound was purified from the culture broth through anion exchange, hydrophobic interaction, and reverse phase high-performance liquid chromatography (RP-HPLC) steps. It was a 1,463-Da lipopeptide and had an amino acid composition consisting of Ala, Glx, Ile, Orn, Pro, Thr, and Tyr at a molar ratio of 1:3:1:1:1:1:2. Electrospray ionization mass spectrometry/mass spectrometry (ESI MS/MS) analyses of the natural and the ring-opened peptides showed the antagonist was fengycin, a kind of macrolactone molecule with antifungal activity produced by several Bacillus strains. Fluorescence microscopic analysis indicated this peptide permeabilized and disrupted F. graminearum hyphae.  相似文献   

7.
A strain of Bacillus amyloliquefaciens (VCRC B483) exhibiting mosquito pupicidal, keratinase and antimicrobial activities was isolated from mangrove forest ecosystem of Andaman and Nicobar Islands. Molecular characterization of the strain showed the presence of lipopeptide encoding bmyC gene. Phylogenetic tree based on protein sequence of this gene exhibited homology with mycosubtilin synthetase of Bacilus atropheus and Iturin synthetase of Bacillus subtilis and B. amyloliquefaciens. This is the first report on the evolutionary conservation of amino acids concerned with the function and structure of bmyC protein of B. amyloliquefaciens. The presence of valine at the 1197th position in our strain was found to be unique and different from the existing strains of B. subtilis and B. amyloliquefaciens. Molecular modelling studies revealed significant changes in the structure of epimerization domain of the bmyC protein with A1197V variation. Crude metabolite of this strain exhibited antifungal activity against Fusarium sp. and Carvularia sp.  相似文献   

8.
Surfactin and fengycin are lipopeptide biosurfactants produced by Bacillus subtilis. This work describes for the first time the use of bubbleless bioreactors for the production of these lipopeptides by B. subtilis ATCC 21332 with aeration by a hollow fiber membrane air–liquid contactor to prevent foam formation. Three different configurations were tested: external aeration module made from either polyethersulfone (reactor BB1) or polypropylene (reactor BB2) and a submerged module in polypropylene (reactor BB3). Bacterial growth, glucose consumption, lipopeptide production, and oxygen uptake rate were monitored during the culture in the bioreactors. For all the tested membranes, the bioreactors were of satisfactory bacterial growth and lipopeptide production. In the three configurations, surfactin production related to the culture volume was in the same range: 242, 230, and 188 mg l−1 for BB1, BB2, and BB3, respectively. Interestingly, high differences were observed for fengycin production: 47 mg l−1 for BB1, 207 mg l−1 for BB2, and 393 mg l−1 for BB3. A significant proportion of surfactin was adsorbed on the membranes and reduced the volumetric oxygen mass transfer coefficient. The degree of adsorption depended on both the material and the structure of the membrane and was higher with the submerged polypropylene membrane.  相似文献   

9.
In this paper, the sterilization of surfactin and fengycin to Bacillus cereus was observed, and the optimization of the inactivation of surfactin and fengycin to spores of B. cereus by a response surface methodology was studied. Results showed that surfactin and fengycin had high sterilization to B. cereus, whose minimal inhibitory concentration was 31.25 μM and 62.5 μM respectively. The optimization result indicated that spores of B. cereus could be inactivated by two orders of magnitude when the temperature was 20.41°C, the action time was 21.13 h, and the concentration (surfactin/fengycin molar ratio 1:1) was 54.20 μM.  相似文献   

10.
Fengycin is a biologically active lipopeptide produced by several Bacillus subtilis strains. The lipopeptide is known to develop antifungal activity against filamentous fungi and to have hemolytic activity 40-fold lower than that of surfactin, another lipopeptide produced by B. subtilis. The aim of this work is to use complementary biophysical techniques to reveal the mechanism of membrane perturbation by fengycin. These include: 1), the Langmuir trough technique in combination with Brewster angle microscopy to study the lipopeptide penetration into monolayers; 2), ellipsometry to investigate the adsorption of fengycin onto supported lipid bilayers; 3), differential scanning calorimetry to determine the thermotropic properties of lipid bilayers in the presence of fengycin; and 4), cryogenic transmission electron microscopy, which provides information on the structural organization of the lipid/lipopeptide system. From these experiments, the mechanism of fengycin action appears to be based on a two-state transition controlled by the lipopeptide concentration. One state is the monomeric, not deeply anchored and nonperturbing lipopeptide, and the other state is a buried, aggregated form, which is responsible for membrane leakage and bioactivity. The mechanism, thus, appears to be driven mainly by the physicochemical properties of the lipopeptide, i.e., its amphiphilic character and affinity for lipid bilayers.  相似文献   

11.
The physical properties and chemical structure of a new biosurfactant (licheniformin) produced by Bacillus licheniformis MS3 were investigated. The purified biosurfactant was identified as a lipopeptide with amino acid sequence of Gly, Ala, Val, Asp, Ser, Gly, Tyr and a lactone linkage between the carboxyl group of Aspargine and hydroxyl group of Tyrosine residue. The fatty acid moiety was attached to N-terminal amino acid residue through an amide bond. The purified licheniformin could lower the surface tension of water from 72 to 38 mN/m at concentrations higher than 15 μg/mL and its relative emulsion volume (EV%) was equal to 36%. It also showed stable surface activity over a wide range of temperature (45–85°C) and pH (3–11).  相似文献   

12.
The objective of the study was to identify the lipopetides associated with three Bacillus subtilis strains. The strains are antagonists of Gibberella zeae, and have been shown to be effective in reducing Fusarium head blight in wheat. The lipopeptide profile of three B. subtilis strains (AS43.3, AS43.4, and OH131.1) was determined using mass spectroscopy. Strains AS43.3 and AS43.4 produced the anti-fungal lipopeptides from the iturin and fengycin family during the stationary growth phase. All three strains produced the lipopeptide surfactin at different growth times. Strain OH131.1 only produced surfactin under these conditions. The antifungal activity of the culture supernatant and individual lipopeptides was determined by the inhibition of G. zeae. Cell-free supernatant from strains AS43.3 and AS43.4 demonstrated strong antibiosis of G. zeae, while strain OH131.1 had no antibiosis activity. These results suggest a different mechanism of antagonism for strain OH131.1, relative to AS43.3 and AS43.4.  相似文献   

13.
The environmental strain Bacillus amyloliquefaciens FZB42 promotes plant growth and suppresses plant pathogenic organisms present in the rhizosphere. We sampled sequenced the genome of FZB42 and identified 2,947 genes with >50% identity on the amino acid level to the corresponding genes of Bacillus subtilis 168. Six large gene clusters encoding nonribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) occupied 7.5% of the whole genome. Two of the PKS and one of the NRPS encoding gene clusters were unique insertions in the FZB42 genome and are not present in B. subtilis 168. Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis revealed expression of the antibiotic lipopeptide products surfactin, fengycin, and bacillomycin D. The fengycin (fen) and the surfactin (srf) operons were organized and located as in B. subtilis 168. A large 37.2-kb antibiotic DNA island containing the bmy gene cluster was attributed to the biosynthesis of bacillomycin D. The bmy island was found inserted close to the fen operon. The responsibility of the bmy, fen, and srf gene clusters for the production of the corresponding secondary metabolites was demonstrated by cassette mutagenesis, which led to the loss of the ability to produce these peptides. Although these single mutants still largely retained their ability to control fungal spread, a double mutant lacking both bacillomycin D and fengycin was heavily impaired in its ability to inhibit growth of phytopathogenic fungi, suggesting that both lipopeptides act in a synergistic manner.  相似文献   

14.
The surfactin production genetic locus (sfp) is responsible for the ability of Bacillus subtilis to produce the lipopeptide biosurfactant, surfactin. This report demonstrates the utility of using PCR of the sfp gene as a means of identifying Bacillus species that produce surfactin. We carried out a hemolysis zone assay, quantitative HPLC and NMR in parallel to ensure that the PCR provided correct results. PCR analyses were performed for the sfp gene on 15 standard strains and 20 field-collected Bacillus spp. isolates native to Taiwan. Among the 15 standard strains, surfactin was produced by seven strains of B. subtilis and two closely related species, B. amyloliquefaciens B128 and B. circulans ATCC 4513. Of the 20 field-collected Bacillus spp. isolates; 16 strains yielded surfactin- positive results with PCR and HPLC. A good correlation was observed. Within the 16 field isolates, B. amyloliquefaciens S13 (452.5 mg/L) and B. subtilis S15 (125.6 mg/L) had high productivity of surfactin. The technique is valuable for finding out potential good yields of surfactin-producing strains. The PCR method we used could also be used to find different species or genera containing homologous genes. This is the first report of the detection of surfactin production by B. amyloliquefaciens and B. circulans based on PCR screening.  相似文献   

15.
【目的】为了分离鉴定对花生侵脉新赤壳菌果腐病病原菌Neocosmospora vasinfecta具有抑制作用的根际芽孢杆菌。【方法】利用平板稀释法从花生的根际土壤分离芽孢杆菌,再采用平板对峙法筛选出对N.vasinfecta具有抑制作用的根际芽孢杆菌,通过形态观察、生理生化特性和分子生物学相结合的多相分类方法对生防根际芽孢杆菌进行分类鉴定,检测脂肽类抗生素合成基因类型,并进行花生侵脉新赤壳菌果腐病的田间防治试验。【结果】从花生根际土壤中分离到28株芽孢杆菌,其中对花生果腐病病原菌具有明显抑制作用有8株。多相分类法结果显示2株为枯草芽孢杆菌(Bacillus subtilis),6株为解淀粉芽孢杆菌(B.amyloliquefaciens)。脂肽类抗生素合成基因检测显示,8株生防芽孢杆菌含有至少1种脂肽类抗生素,其中所有生防菌均含有丰原素B合成基因,推测这些芽孢杆菌对N.vasinfecta的抑制机制可能与脂肽类抗生素的合成相关。田间防病实验结果显示,B.amyloliquefaciens GF-3和GF-22制备的生物有机肥均能有效降低NPRP的发病指数,其防治效率分别为32.35%和79.41%,增产率分别为19.12%和25.85%。【结论】分离鉴定了2株对花生侵脉新赤壳菌果腐病具有明显防治效果的根际芽孢杆菌,这不仅为花生侵脉新赤壳菌果腐病的生防制剂研制提供了菌株,还为研究防治机理奠定了基础。  相似文献   

16.
Bacillus subtilis fmbj can produce a lipopeptide antimicrobial substance, the main components of which are surfactin and fengycin. In this paper, the sensitivity of Bacillus cereus to antimicrobial lipopeptides from B. subtilis fmbj was observed, and the effect of the microstructure of antimicrobial lipopeptide on spores of B. cereus was investigated. At the same time, the optimization of the inactivation of antimicrobial lipopeptides to spores of B. cereus by a response surface methodology was studied. Results showed that B. cereus had high sensitivity to it, whose minimal inhibitory concentration was 156.25 μg/ml. It could result in the death of spores by destroying the structure of resting spores and sprouting spores, as was observed by transmission electron microscopy. The optimization result indicated that spores of B. cereus could be inactivated by 2 orders of magnitude when the temperature was 29.6°C, the action time was 7.6 h, and the concentration was 3.46 mg·ml−1.  相似文献   

17.
A gene, mf1, encoding a novel cholinephosphotransferase in glycoglycerophospholipid (GGPL) biosynthesis of Mycoplasma fermentans PG18 was identified by genomic analysis, cloned, and expressed in Escherichia coli. The mf1 gene comprises an open reading frame of 777 bp encoding 258 amino acids. The mf1 gene product, Mf1, has 23% amino acid homology with LicD of Haemophilus influenzae but no homology with genes of other Mycoplasma species in the GenBank database. The reaction product of Mf1 using α-glucopyranosyl-1,2-dipalmitoilglycerol and cytidine 5′-diphosphocholine (CDP-choline) as substrates showed the specific protonated molecule at m/z 896, which corresponded to GGPL-I as determined by matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry (MALDI-TOF MS). Furthermore, the product ions of choline, phosphocholine, and hexose-bound phosphocholine were detected by tandem mass spectrometry (MS) analysis of protonated molecules at m/z 896. These results identified mf1 as a novel cholinephosphotransferase and showed that the phosphocholine transfer step is involved in the GGPL biosynthesis pathway of M. fermentans. This is the first report of a GGPL biosynthesis enzyme.  相似文献   

18.
A soil microorganism identified as Bacillum megaterium was found to produce several antibiotics substances after growth for 20 h at 37°C in a mineral culture medium. Analysis both by electron spray ionization (ESI) and matrix-assisted laser desorption ionization—time of flight (MALDI-TOF) mass spectrometry (MS) identified these substances as lipopeptides. Predominant peaks at m/z 1,041 and m/z 1,065 revealed ions which are compatible with surfactins and lichenysins, respectively. Two other ions m/z 1,057 and m/z 1,464 were further studied by collision-induced dissociation (CID) unveiling an iturin A at the first and fengycins A and B at the second m/z peaks. The CID spectrum of the m/z 1,464 ion also suggests the existence of fengycins A and B variants in which Ile was changed to Val in the position 10 of the peptide moiety. Raw mixtures of all these compounds were also assayed for antibiotic features. The data enlighten the unusual diversity of the lipopeptide mixture produced by a sole Bacillus species.  相似文献   

19.
 Previous studies of class I MHC molecules have shown that the owl monkey (Aotus) possesses at least two variants of the β2-microglobulin (β2m) protein. These two variants have different isoelectric points, and exhibit differential reactivity with the monoclonal antibody W6/32. We report cDNA sequences of the B2m gene, from W6/32-positive and W6/32-negative Aotus cell lines. The two β2m variants we identified exhibit a single amino acid difference at position three. An arginine residue at position 3 was correlated with W6/32 reactivity, whereas histidine was associated with non-reactivity. W6/32 reactivity was conferred to a W6/32-negative Aotus cell line when it was transfected with the B2m from the W6/32-positive cell line. Residue 3 of β2m is located at the surface of the class I molecule. It is also close to position 121 of the MHC class I heavy chain, which has previously been shown to influence W6/32 antibody binding. We conclude that W6/32 binds a compact epitope on the class I molecule that includes both residue 3 of β2m and residue 121 of the heavy chain. We examined the distribution of the two β2m motifs in a sample Aotus population using an allele-specific polymerase chain reaction assay. The pattern of β2m segregation we observed matches that which was defined previously by serology. Additionally, we identified laboratory-born hybrid animals who possess both variants of β2m. Received: 1 April 1998 / Received: 3 July 1998  相似文献   

20.
Aims: This work was conducted to identify the antifungal compounds produced by two previously isolated Bacillus sp. strains: ARP23 and MEP218. Both strains were subjected to further analysis to determine their taxonomic position and to identify the compounds responsible for their antifungal activity as well as to evaluate the efficiency of these strains to control sclerotinia stem rot in soybean. Methods and Results: The antifungal compounds were isolated by acid precipitation of cell‐free supernatants, purified by RP‐HPLC and then tested for antagonistic activity against Sclerotinia sclerotiorum. Mass spectra from RP‐HPLC eluted fractions showed the presence of surfactin C15, fengycins A (C16–C17) and B (C16) isoforms in supernatants from strain ARP23 cultures, whereas the major lipopeptide produced by strain MEP218 was iturin A C15. Alterations in mycelial morphology and sclerotial germination were observed in the presence of lipopeptides‐containing supernatants from Bacillus strains cultures. Foliar application of Bacillus amyloliquefaciens strains on soybean plants prior to S. sclerotiorum infection resulted in significant protection against sclerotinia stem rot compared with noninoculated plants or plants inoculated with a nonlipopeptide‐producing B. subtilis strain. Conclusions: Both strains, renamed as B. amyloliquefaciens ARP23 and MEP218, were able to produce antifungal compounds belonging to the cyclic lipopeptide family. Our data suggest that the foliar application of lipopeptide‐producing B. amyloliquefaciens strains could be a promising strategy for the management of sclerotinia stem rot in soybean. Significance and Impact of the Study: Sclerotinia stem rot was ranked as one of the most severe soybean disease in Argentina and worldwide. The results of this study showed the potential of B. amyloliquefaciens strains ARP23 and MEP218 to control plant diseases caused by S. sclerotiorum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号