首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When prothalli ofAdiantum capillus-veneris L. were kept for 2 d in the dark, chloroplasts gathered along the anticlinal walls (Kagawa and Wada, 1994, J Plant Res 107: 389–398). In these dark-adapted prothallial cells, irradiation with a microbeam (10 gm in diameter) of red (R) or blue light (B) for 60 s moved the chloroplasts towards the irradiated locus during a subsequent dark period. Chloroplasts located less than 20 gm from the center of the R microbeam (18 J·m–2) moved towards the irradiated locus. The higher the fluence of the light, the greater the distance from which chloroplasts could be attracted. The B microbeam was less effective than the R microbeam. Chloroplasts started to move anytime up to 20 min after the R stimulus, but with the B microbeam the effect of the stimulus was usually apparent within 10 min after irradiation. The velocity of chloroplast migration was independent of light-fluence in both R and B and was about - 0.3 m·min–1 between 15 min and 30 min after irradiation. Whole-cell irradiation with far-red light immediately after R- and B-microbeam irradiations demonstrated that these responses were mediated by phytochrome and a blue-light-absorbing pigment, respectively. Sequential treatment with R and B microbeams, whose fluence rates were less than the threshold values when applied separately, resulted in an additive effect and induced chloroplast movement, strongly suggesting that signals from phytochrome and the blue-light-absorbing pigment could interact at some point before the induction of chloroplast movement.Abbreviations B blue light - FR far-red light - IR infrared light - R red light  相似文献   

2.
The photoreceptors for chloroplast photorelocation movement have been known, but the signal(s) raised by photoreceptors remains unknown. To know the properties of the signal(s) for chloroplast accumulation movement, we examined the speed of signal transferred from light-irradiated area to chloroplasts in gametophytes of Adiantum capillus-veneris. When dark-adapted gametophyte cells were irradiated with a microbeam of various light intensities of red or blue light for 1 min or continuously, the chloroplasts started to move towards the irradiated area. The speed of signal transfer was calculated from the relationship between the timing of start moving and the distance of chloroplasts from the microbeam and was found to be constant at any light conditions. In prothallial cells, the speed was about 1.0 µm min−1 and in protonemal cells about 0.7 µm min−1 towards base and about 2.3 µm min−1 towards the apex. We confirmed the speed of signal transfer in Arabidopsis thaliana mesophyll cells under continuous irradiation of blue light, as was about 0.8 µm min−1. Possible candidates of the signal are discussed depending on the speed of signal transfer.Key words: Adiantum capillus-veneris, Arabidopsis thaliana, blue light, chloroplast movement, microbeam, red light, signalOrganelle movement is essential for plant growth and development and tightly regulated by environmental conditions.1 It is well known that light regulates chloroplast movement in various plant species. Chloroplast movement can be separated into three categories, (1) photoperception by photoreceptors, (2) signal transduction from photoreceptor to chloroplasts and (3) movement of chloroplasts and has been analyzed from a physiological point of view.2 We recently identified the photoreceptors in Arabidopsis thaliana, fern Adiantum capillus-veneris, and moss Physcomitrella patens. In A. thaliana, phototropin 2 (phot2) mediates the avoidance movement,3,4 whereas both phototropin 1 (phot1) and phot2 mediate the accumulation response.5 A chimeric photoreceptor neochrome 1 (neo1)6 was identified as a red/far-red and blue light receptor that mediates red as well as blue light-induced chloroplast movement in A. capillusveneris.7 Interestingly, neo1 mediated red and blue light-induced nuclear movement and negative phototropic response of A. capillus-veneris rhizoid cells.8,9 On the mechanism of chloroplast movement, we also found a novel structure of actin filaments that appeared between chloroplast and the plasma membrane at the front side of moving chloroplast.10 Recent studies using the technique of microbeam irradiation have revealed that chloroplasts do not have a polarity for light-induced accumulation movement and can move freely in any direction both in A. capillus-veneris prothallial cells and in A. thaliana mesophyll cells.11 However, the signal that may be released from photoreceptors and transferred to chloroplasts remains unknown.To understand the properties of the signal for the chloroplast accumulation response, we examined the speed of signal transfer in dark-adapted A. capillus-veneris gametophyte cells and A. thaliana mesophyll cells by partial cell irradiation with a red and/or blue microbeam of various light intensities for 1 min and the following continuous irradiation, respectively.12As shown in Figure 1, the relation between the distance of chloroplasts from the microbeam and the timing when each chloroplast started moving toward the microbeam irradiated area (shown as black dots in Fig. 1) was obtained and plotted. The lag time between the onset of microbeam irradiation and the timing of start moving of chloroplasts is the time period needed for a signal to reach each chloroplast. To obtain more accurate data many chloroplasts at various positions were used. The slope of the approximate line indicates the average speed of the signal transfer. Shown with a protonemal cell at the left side of this figure is an instance where the speed of signal transfer from basal-to-apical (acropetal) direction is obtained.Open in a separate windowFigure 1How to calculate the speed of signal transfer in the basal cell of two-celled protonema of Adiantum capillus-veneris. The relationship between the distance of chloroplast position from the edge of the microbeam to the center of each chloroplast as shown in left side of figure and the timing of chloroplast movement initiated shown as the black dots was obtained. Inclination of the approximate lines connecting dots indicates the speeds of the signal transfer.In protonemal cells, which are tip-growing linear cells, the average speed of signal transfer was about 2.3 µm min−1 from basal-to-apical (acropetal) and about 0.7 µm min−1 from apical-to-basal (basipetal) directions. These values were almost constant irrespective of light intensity, wavelength, irradiation period, and the region of the cell irradiated.12 The difference of speed between basipetal and acropetal directions may be depending on cell polarity. The signal transfer in prothallial cells of A. capillus-veneris and mesophyll cells of A. thaliana was about 1.0 µm min−1 to any direction, probably because they may not have a polarity comparing to protonemal cells or have a weak polarity if any. Thus, the speed of signal transfer must be conserved in most land plants,12 if not influenced by strong polarity.
R1W m−2R1W m−2B1W m−2R0.1W m−2R10W m−2B10W m−2
1 mincountinuouscountinuouscountinuouscountinuouscountinuous
Protonemal cell (towards apical region)2.322.372.282.412.39
Protonemal cell (towards basal region)0.580.730.800.740.86
Prothallial cell1.130.921.101.080.95
Arabidopsis thaliana0.70
Open in a separate windowThe speeds of signal transfer under different light intensities and wave length in Adiantum capillus-veneris gametophyte cells and Arabidopsis thaliana mesophyll cells are summarized. When dark-adapted cells were irradiated with various light intensities (red light: 10, 1, 0.1 W m−2) of a microbeam of red or blue light for 1 min or continuously, the chloroplasts moved towards the irradiated area. The speed of signal transfer was measured from the relationship between the timing of onset of moving and the distance of chloroplalsts from the microbeam irradiated area.Calcium ions have been proposed as one of the candidates of the signal. Calcium is reported to be necessary for chloroplast movement in some plants.13,14 Chloroplast movement under polarized light could not be induced in the existence of EGTA in protonemal cells of A. capillus-veneris, although chloroplasts show slight movement in random direction.13 In Lemna trisulca, chloroplast movement correlates with an increase of cytoplasmic calcium levels and is inhibited by antagonists of calcium homeostasis.14 The speed of intracellular transfer of calcium ions in plant cells was measured only in moss Physcomitrella patens by microinjection of a calcium indicator into protonemal cells.15 The speed of calcium waves in the cytoplasm of protonemal cell was about 3.4 µm sec−1. The speed of substance transfer as signals is not known in plant cells except for the above instance, as far as we know, but in animal cells various experimental data has been accumulated.1621The transfer speed of calcium waves visualizing cytoplasmic free calcium by microinjection of aequorin was about 8 µm sec−1 in Xenopus eggs.16 Calcium ion expands as a spherical wave and the wave speed in plane is 50 µm sec−1 in rat cardiac myocytes when measured by loading a membrane-permeable indicator of calcium into the cell. The maximum velocity was 112 µm sec−1.17 Calcium waves could also be observed in the SR-free single isolated rabbit cardiac myofibrils with a propagation velocity of 15.5 µm sec−1.18 The propagation velocity of the calcium wave was about 65–100 µm sec−1 by calciuminduced calcium release (CICR) in pig heart muscle cells.1921 Comparing these values to our data in A. capillus-veneris, the speed of signal transfer in chloroplast movement in fern gametophytes was 100–200 times slower than those measured for calcium ion transfers in animal cells, suggesting that the calcium might not be the signal involved in chloroplast movement.Intracellular transport is depended on the cytoskeleton systems in many cases. So the speed of movement of the cytoskeleton itself has been examined. When motor-proteins (such as 22s dynein, 14s dynein, kinesin) were anchored on a slide glass microtubules overlaid moved with a speed of about 4.52, 4.29, 0.422 µm sec−1, respectively. In similar ways, actin filaments placed over myosin-coated glass moved at about 5.21 µm sec-1.22 On the other hand, the motor domain of the Centromere Binding Factor (CBF) protein complex moves at 4.04 µm min−1 on microtubules.23 In A. capillus-veneris protonemal cells, the speed of cytoplasmic streaming depending on the actomyosin system was calculated from the speed of oil drop movement.24 The speed was dependent upon the position of long protonemal cells and was about 2 µm min−1 in the apical region and gradually increased to 10 µm min−1 in the basal region. In comparison to the data cited here, the speed of signal transfer involved in chloroplast accumulation was 30–120 times slower than the speed of the actomyosin system or the microtubule-kinesin/dynein system, but it is similar to the moving speed of a protein complex on a microtubule23 and oil droplets in a protonemal cell.24Polymerization rates of cytoskeletal proteins have been measured using in vitro systems. For instance, the plus end of microtubules from bovine brains grew at 1.04–1.88 µm min−1.25,26 Polymerization rate of actin filaments from rabbit muscle was about 0.13–0.49 µm min−1 and depended on the G-actin concentration.27 Live BHK21 fibroblasts, mouse melanoma cells and Dictyostelium amoebae expressing GFP-actin fusion proteins move on glass by using three-dimensional F-actin bands. These structures propagate throughout the cytoplasm at rates ranging between 2–5 µm min−1 in each cell type and produce lamellipodia or pseudopodia at the cell boundary.28 The extending speed of these cytoskeletons is roughly equal to the speed of signal transfer for the chloroplast accumulation response. We therefore aim to measure the speed of extension of these filaments when a method of gene transformation has been established for A. capillus-veneris.  相似文献   

3.
Intracellular chloroplast photorelocation in the moss Physcomitrella patens is mediated by phytochrome as well as by a blue-light receptor   总被引:3,自引:0,他引:3  
Kadota A  Sato Y  Wada M 《Planta》2000,210(6):932-937
 The light-induced intracellular relocation of chloroplasts was examined in red-light-grown protonemal cells of the moss Physcomitrella patens. When irradiated with polarized red or blue light, chloroplast distribution in the cell depended upon the direction of the electrical vector (E-vector) in both light qualities. When the E-vector was parallel to the cross-wall (i.e. perpendicular to the protonemal axis), chloroplasts accumulated along the cross-wall; however, no accumulation along the cross-wall was observed when the E-vector was perpendicular to it (i.e. parallel to the protonemal axis). When a part of the cell was irradiated with a microbeam of red or blue light, chloroplasts accumulated at or avoided the illumination point depending on the fluence rate used. Red light of 0.1–18 W m−2 and blue light of 0.01–85.5 W m−2 induced an accumulation response (low-fluence-rate response; LFR), while an avoidance response (high-fluence-rate response; HFR) was induced by red light of 60 W m−2 or higher and by blue light of 285 W m−2. The red-light-induced LFR and HFR were nullified by a simultaneous background irradiation of far-red light, whereas the blue-light-induced LFR and HFR were not affected at all by this treatment. These results show, for the first time, that dichroic phytochrome, as well as the dichroic blue-light receptor, is involved in the chloroplast relocation movement in these bryophyte cells. Further, the phytochrome-mediated responses but not the blue-light responses were revealed to be lost when red-light-grown cells were cultured under white light for 2 d. Received: 7 September 1999 / Accepted: 15 October 1999  相似文献   

4.
Chloroplasts do not have a polarity for light-induced accumulation movement     
Hidenori Tsuboi  Hiroko Yamashita  Masamitsu Wada 《Journal of plant research》2009,122(1):131-140
Chloroplast photorelocation movement in green plants is generally mediated by blue light. However, in cryptogam plants, including ferns, mosses, and algae, both red light and blue light are effective. Although the photoreceptors required for this phenomenon have been identified, the mechanisms underlying this movement response are not yet known. In order to analyze this response in more detail, chloroplast movement was induced in dark-adapted Adiantum capillus-veneris gametophyte cells by partial cell irradiation with a microbeam of red and/or blue light. In each case, chloroplasts were found to move toward the microbeam-irradiated area. A second microbeam was also applied to the cell at a separate location before the chloroplasts had reached the destination of the first microbeam. Under these conditions, chloroplasts were found to change their direction of movement without turning and move toward the second microbeam-irradiated area after a lag time of a few minutes. These findings indicate that chloroplasts can move in any direction and do not exhibit a polarity for chloroplast accumulation movement. This phenomenon was analyzed in detail in Adiantum and subsequently confirmed in Arabidopsis thaliana palisade cells. Interestingly, the lag time for direction change toward the second microbeam in Adiantum was longer in the red light than in the blue light. However, the reason for this discrepancy is not yet understood. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Temperature-dependent signal transmission in chloroplast accumulation response     
Takeshi Higa  Satoshi Hasegawa  Yoshio Hayasaki  Yutaka Kodama  Masamitsu Wada 《Journal of plant research》2017,130(4):779-789
Chloroplast photorelocation movement, well-characterized light-induced response found in various plant species from alga to higher plants, is an important phenomenon for plants to increase photosynthesis efficiency and avoid photodamage. The signal for chloroplast accumulation movement connecting the blue light receptor, phototropin, and chloroplasts remains to be identified, although the photoreceptors and the mechanism of movement via chloroplast actin filaments have now been revealed in land plants. The characteristics of the signal have been found; the speed of signal transfer is about 1 µm min?1 and that the signal for the accumulation response has a longer life and is transferred a longer distance than that of the avoidance response. Here, to collect the clues of the unknown signal substances, we studied the effect of temperature on the speed of signal transmission using the fern Adiantum capillus-veneris and found the possibility that the mechanism of signal transfer was not dependent on the simple diffusion of a substance; thus, some chemical reaction must also be involved. We also found new insights of signaling substances, such that microtubules are not involved in the signal transmission, and that the signal could even be transmitted through the narrow space between chloroplasts and the plasma membrane.  相似文献   

6.
Chloroplasts move towards the nearest anticlinal walls under dark condition     
Tsuboi H  Wada M 《Journal of plant research》2012,125(2):301-310
Chloroplasts change their intracellular positions in response to their light environment. Under darkness, chloroplasts assume special positions that are different from those under light conditions. Here, we analyzed chloroplast dark positioning using Adiantum capillus-veneris gametophyte cells. When chloroplasts were transferred into darkness, during the first 1–5 h, they moved towards the anticlinal cell walls bordering the adjacent cells rather rapidly. Then, they slowed down and accumulated at the anticlinal walls gradually over the following 24–36 h. The chloroplast movements could be roughly classified into two different categories: initial rapid straight movement and later, slow staggering movement. When the chloroplast accumulation response was induced in dark-adapted cells by partial cell irradiation with a microbeam targeted to the center of the cells, chloroplasts moved towards the beam spot from the anticlinal walls. However, when the microbeam was switched off, they moved to the nearest anticlinal walls and not to their original positions if they were not the closest, indicating that they know the direction of the nearest anticlinal wall and do not have particular areas that they migrate to during dark positioning.  相似文献   

7.
Chloroplast movements in fern leaves: correlation of movement dynamics and environmental flexibility of the species   总被引:4,自引:2,他引:2  
J Augustynowicz &  H. Gabry`s 《Plant, cell & environment》1999,22(10):1239-1248
The movements of chloroplasts in response to varying levels and wavelengths of incident light were investigated in leaves of four fern species: Adiantum capillus-veneris, Adiantum caudatum, Adiantum diaphanum and Pteris cretica. In all of the species studied blue light induced chloroplast redistribution resulting in face and profile patterns that were typical of low and high fluence rates, respectively. Fluence rate response characteristics and the kinetics of transmission changes accompanying these blue-light-induced movements were similar to those observed in the leaves of higher plants. Only in A. capillus-veneris was the distribution of chloroplasts affected by red light. The response was of the weak-light type, irrespective of the light intensity. The most effective fluence rate for red light was found to be below 7·2 μmol m–2 s–1 (1 W m–2). The effect of red light was far-red reversible, indicating phytochrome involvement. Chloroplast responses were more dynamic in A. capillus-veneris and P. cretica, the two species that exhibited higher environmental flexibility.  相似文献   

8.
Chloroplasts can move in any direction to avoid strong light     
Tsuboi  Hidenori  Wada  Masamitsu 《Journal of plant research》2011,124(1):201-210
Chloroplasts migrate in response to different light intensities. Under weak light, chloroplasts gather at an illuminated area to maximize light absorption and photosynthesis rates (the accumulation response). In contrast, chloroplasts escape from strong light to avoid photodamage (the avoidance response). Photoreceptors involved in these phenomena have been identified in Arabidopsis thaliana and Adiantum capillus-veneris. Chloroplast behavior has been studied in detail during the accumulation response, but not for the avoidance response. Hence, we analyzed the chloroplast avoidance response in detail using dark-adapted Adiantum capillus-veneris gametophyte cells and partial cell irradiation with a microbeam of blue light. Chloroplasts escaped from an irradiated spot. Both duration of this response and the distance of the migrated chloroplasts were proportional to the total fluence irradiated. The speed of movement during the avoidance response was dependent on the fluence rate, but the speed of the accumulation response towards the microbeam from cell periphery was constant irrespective of fluence rate. When a chloroplast was only partially irradiated with a strong microbeam, it moved away towards the non-irradiated region within a few minutes. During this avoidance response two additional microbeam irradiations were applied to different locus of the same chloroplast. Under these conditions the chloroplast changed the moving direction after a lag time of a few minutes without rolling. Taken together, these findings indicate that chloroplasts can move in any direction and never have an intrinsic polarity. Similar phenomenon was observed in chloroplasts of Arabidopsis thaliana palisade cells.  相似文献   

9.
Influence of culture vessel characteristics and agitation rate on gaseous exchange,hydrodynamic stress,and growth of embryogenic cork oak (<Emphasis Type="BoldItalic">Quercus suber</Emphasis> L.) cultures     
Jesús Adolfo Jiménez  Nieves Alonso-Blázquez  Dolores López-Vela  Cristina Celestino  Mariano Toribio  Jesus Alegre 《In vitro cellular & developmental biology. Plant》2011,47(5):578-588
Somatic embryogenesis can be induced in the leaves of cork oak (Quercus suber L.) trees. The use of this propagation system in multivarietal forestry requires the mass production of cloned plants at low cost. Investigations were made into the influence of three types of Erlenmeyer flask and three orbiting speeds (60, 110, and 160 rpm) on oxygen transfer rate (KL a), the shear force index (SFI), biomass production, and the proliferation of embryogenic clumps (EMCs) in cultures during the proliferation phase. KL a varied between 0.11 and 1.47 h−1 without biomass production being limited by oxygen availability. The EMCs grew even in hypoxic conditions, although the suppression of gaseous exchange strongly reduced biomass production. Cultures with different levels of hydrodynamic stress and SFI values (1.4·10−3–8.8·10−3 cm min−1) were obtained. Proliferation rates of EMCs increased with agitation rate and the SFI. The largest number of EMCs was obtained in baffled flasks agitated at 160 rpm (KL a of 1.47 h−1, and SFI of 8.8·10−3 cm min−1) with mild hydrodynamic stress enhancing growth. Biomass production increased with agitation and hydrodynamic stress, but only when the SFI value was below 5·10−3 cm min−1. The greatest biomass production was obtained in smooth 100 ml flasks agitated at 160 rpm. The differentiation of embryos was favoured by the lowest KL a (0.11 h−1) and SFI (1.40·103 cm min−1) values, achieved using these flasks when agitated at 60 rpm.  相似文献   

10.
Effect of intense interval workouts on running economy using three recovery durations     
Gerald S. Zavorsky  David L. Montgomery  David J. Pearsall 《European journal of applied physiology and occupational physiology》1998,77(3):224-230
The purposes of this study were to determine whether running economy (RE) is adversely affected following intense interval bouts of 10 × 400-m running, and whether there is an interaction effect between RE and recovery duration during the workouts. Twelve highly trained male endurance athletes [maximal oxygen consumption; O2 max =72.5 (4.3) ml·kg−1·min−1; mean (SD)] performed three interval running workouts of 10 × 400 m with a minimum of 4 days between runs. Recovery duration between the repetitions was randomly assigned at 60, 120 or 180 s. The velocity for each 400-m run was determined from a treadmill O2 max test. The average running velocity was 357.9 (9.0) m · min−1. Following the workout, the rating of perceived exertion (RPE) increased significantly (P < 0.01) as recovery duration between the 400-m repetitions decreased (14.4, 16.1, and 17.7 at 180s, 120s, and 60 s recovery, respectively). Prior to and following each workout, RE was measured at speeds of 200 and 268 m · min−1. Changes in RE from pre- to post-workout, as well as heart rate (HR) and respiratory exchange ratio (R) were similar for the three recovery conditions. When averaged across conditions, oxygen consumption (O2) increased significantly (P < 0.01) from pre- to post-test (from 38.5 to 40.5 ml · kg−1 · min−1 at 200 m · min−1, and from 53.1 to 54.5 ml · kg−1 · min−1 at 268 m · min−1, respectively). HR increased (from 124 to 138, and from 151 to 157 beats · min−1 respectively) and R decreased (from 0.90 to 0.78, and from 0.93 to 0.89, respectively) at 200 and 268 m · min−1, respectively (P < 0.01). This study showed that RE can be perturbed after a high-intensity interval workout and that the changes in O2, HR and R were independent of the recovery duration between the repetitions. Accepted: 23 June 1997  相似文献   

11.
An acidic β-mannanase from <Emphasis Type="Italic">Penicillium</Emphasis> sp. C6: gene cloning and over-expression in <Emphasis Type="Italic">Pichia pastoris</Emphasis>     
Hongying Cai  Pengjun Shi  Huoqing Huang  Huiying Luo  Yingguo Bai  Peilong Yang  Kun Meng  Bin Yao 《World journal of microbiology & biotechnology》2011,27(12):2813-2819
  相似文献   

12.
Heterologous expression and characterization of a recombinant thermostable alkylsulfatase (<Emphasis Type="Italic">sdsAP</Emphasis>)     
Long M  Ruan L  Li F  Yu Z  Xu X 《Extremophiles : life under extreme conditions》2011,15(2):293-301
A novel alkylsulfatase gene, sdsAP, was cloned from a newly isolated bacterium Pseudomonas sp. S9. It encoded a protein of 675 amino acids with a calculated molecular mass of 74.9 kDa. The protein contained a typical N-terminal signal peptide of 41 amino acid residues, followed by a metallo-β-lactamase like domain at the N-terminus and a SCP-2-like domain at the C-terminus. This domain organization mode suggested that it belonged to the type III sulfatase. The mature alkylsulfatase was overexpressed in Escherichia coli. The optimal temperature and pH of the recombinant SdsAP were 70°C and 9.0, respectively. Notably, at optimal conditions, the purified recombinant SdsAP had a high specific activity of 23.25 μmol min−1 mg−1, a K m (app) of 264.3 μmol, and a V max (app) of 33.8 μmol min−1 mg−1 for SDS. Additionally, it still retained more than 90% activity after incubation at 65°C for 1 h, which was much different from other alkylsulfatases reported. The recombinant enzyme hydrolyzed the primary alkyl sulfate such as sodium octyl sulfate and sodium dodecyl sulfate (SDS). It was a Zn2+-containing and Ca2+ activated alkylsulfatase. This is the first report to explore the various characteristics of the heterologous recombinant alkylsulfatase in details. These favorable properties could make SdsAP attractive to be useful in the degradation of SDS-containing waste.  相似文献   

13.
Comparative Permeabilities of the Paracellular and Transcellular Pathways of Corneal Endothelial Layers     
Diecke FP  Cacace VI  Montalbetti N  Ma L  Kuang K  Iserovich P  Fischbarg J 《The Journal of membrane biology》2011,242(1):41-51
Layers of rabbit corneal endothelial cells were cultured on permeable inserts. We characterized the diffusional permeability of the cell layer to nonelectrolyte and charged molecules and compared the diffusional and filtration permeabilities of the paracellular and transcellular pathways. We determined the rates of diffusion of 3H- and 14C-labeled nonelectrolyte test molecules and estimated the equivalent pore radius of the tight junction. Negatively charged molecules permeate slower than neutral molecules, while positively charged molecules permeate faster. Palmitoyl-dl-carnitine, which opens tight junctions, caused an increase of permeability and equivalent pore radius. Diffusional water permeability was determined with 3H-labeled water; the permeabilities of the tight junction and lateral intercellular space were calculated using tissue geometry and the Renkin equation. The diffusional permeability (P d ) of the paracellular pathway to water is 0.57 μm s−1 and that of the transcellular path is 2.52 μm s−1. From the P d data we calculated the filtration permeabilities (P f ) for the paracellular and transcellular pathways as 41.3 and 30.2 μm s−1, respectively. In conclusion, the movement of hydrophilic molecules through tight junctions corresponds to diffusion through negatively charged pores (r = 2.1 ± 0.35 nm). The paracellular water permeability represents 58% of the filtration permeability of the layer, which points to that route as the site of sizable water transport. In addition, we calculated for NaCl a reflection coefficient of 0.16 ≤ σNaCl ≤ 0.33, which militates against osmosis through the junctions and, hence, indirectly supports the electro-osmosis hypothesis.  相似文献   

14.
Reflex bradycardia does not influence oxygen consumption during hypoxia in the European eel (Anguilla anguilla)     
Nina K. Iversen  David J. McKenzie  Hans Malte  Tobias Wang 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》2010,180(4):495-502
Most teleost fish reduce heart rate when exposed to acute hypoxia. This hypoxic bradycardia has been characterised for many fish species, but it remains uncertain whether this reflex contributes to the maintenance of oxygen uptake in hypoxia. Here we describe the effects of inhibiting the bradycardia on oxygen consumption (MO2), standard metabolic rate (SMR) and the critical oxygen partial pressure for regulation of SMR in hypoxia (Pcrit) in European eels Anguilla anguilla (mean ± SEM mass 528 ± 36 g; n = 14). Eels were instrumented with a Transonic flow probe around the ventral aorta to measure cardiac output (Q) and heart rate (f H). MO2 was then measured by intermittent closed respirometry during sequential exposure to various levels of increasing hypoxia, to determine Pcrit. Each fish was studied before and after abolition of reflex bradycardia by intraperitoneal injection of the muscarinic antagonist atropine (5 mg kg−1). In the untreated eels, f H fell from 39.0 ± 4.3 min−1 in normoxia to 14.8 ± 5.2 min−1 at the deepest level of hypoxia (2 kPa), and this was associated with a decline in Q, from 7.5 ± 0.8 mL min−1 kg−1 to 3.3 ± 0.7 mL min−1 kg−1 in normoxia versus deepest hypoxia, respectively. Atropine had no effect on SMR, which was 16.0 ± 1.8 μmol O2 kg−1 min−1 in control versus 16.8 ± 0.8 μmol O2 kg−1 min−1 following treatment with atropine. Atropine also had no significant effect on normoxic f H or Q in the eel, but completely abolished the bradycardia and associated decline in Q during progressive hypoxia. This pharmacological inhibition of the cardiac responses to hypoxia was, however, without affect on Pcrit, which was 11.7 ± 1.3 versus 12.5 ± 1.5 kPa in control versus atropinised eels, respectively. These results indicate, therefore, that reflex bradycardia does not contribute to maintenance of MO2 and regulation of SMR by the European eel in hypoxia.  相似文献   

15.
Production of <Emphasis Type="SmallCaps">l</Emphasis>-phenylalanine from glycerol by a recombinant <Emphasis Type="Italic">Escherichia coli</Emphasis>     
Methee Khamduang  Kanoktip Packdibamrung  Jarun Chutmanop  Yusuf Chisti  Penjit Srinophakun 《Journal of industrial microbiology & biotechnology》2009,36(10):1267-1274
The production of l-phenylalanine is conventionally carried out by fermentations that use glucose or sucrose as the carbon source. This work reports on the use of glycerol as an inexpensive and abundant sole carbon source for producing l-phenylalanine using the genetically modified bacterium Escherichia coli BL21(DE3). Fermentations were carried out at 37°C, pH 7.4, using a defined medium in a stirred tank bioreactor at various intensities of impeller agitation speeds (300–500 rpm corresponding to 0.97–1.62 m s−1 impeller tip speed) and aeration rates (2–8 L min−1, or 1–4 vvm). This highly aerobic fermentation required a good supply of oxygen, but intense agitation (impeller tip speed ~1.62 m s−1) reduced the biomass and l-phenylalanine productivity, possibly because of shear sensitivity of the recombinant bacterium. Production of l-phenylalanine was apparently strongly associated with growth. Under the best operating conditions (1.30 m s−1 impeller tip speed, 4 vvm aeration rate), the yield of l-phenylalanine on glycerol was 0.58 g g−1, or more than twice the best yield attainable on sucrose (0.25 g g−1). In the best case, the peak concentration of l-phenylalanine was 5.6 g L−1, or comparable to values attained in batch fermentations that use glucose or sucrose. The use of glycerol for the commercial production of l-phenylalanine with E. coli BL21(DE3) has the potential to substantially reduce the cost of production compared to sucrose- and glucose-based fermentations.  相似文献   

16.
Life-cycle of <Emphasis Type="Italic">Scinaia interrupta</Emphasis> (Nemaliales,Rhodophyta)     
Karla?León-CisnerosEmail author  Eunice?M.?Nogueira  Rafael?Riosmena-Rodríguez  Ana?Isabel?Neto 《Journal of applied phycology》2011,23(3):467-473
The life-cycle of Scinaia interrupta (A.P. de Candolle) M. J. Wynne was investigated in vitro using four irradiance regimes: 4, 8, 12 and 16 μmol photons m−2 s−1. A triphasic heteromorphic life-cycle was observed. Carpospores released by cystocarps of gametophytes collected in the field developed into filamentous tetrasporophytes, which produced tetrahedral tetrasporangia. Tetrasporangial development was accelerated under higher irradiance levels. Tetraspores germinated into filamentous protonemal gametophytes, initially identical to the tetrasporophyte. Filamentous gametophytes developed apical utricles and gave rise directly to the fleshy gametophyte. Further development of the fleshy gametophyte was not observed at the lowest irradiance regime (4 μmol photons m−2 s−1). The present study reports for the first time the influence of the irradiance regime on the initial tetrasporangial development and in the development of the fleshy gametophyte, and reinforces the importance of light intensity on Scinaia life-cycle. Production of apical utricles by the filamentous gametophyte is newly reported for the genus.  相似文献   

17.
A novel bifunctional endo-/exo-type cellulase from an anaerobic ruminal bacterium   总被引:1,自引:0,他引:1  
Ko KC  Han Y  Choi JH  Kim GJ  Lee SG  Song JJ 《Applied microbiology and biotechnology》2011,89(5):1453-1462
An anaerobic microorganism termed AN-C16-KBRB was isolated from the bovine rumen and demonstrated cellulolytic activity on a NB agar plate containing azo-carboxymethyl cellulose. The 16S rRNA gene of the strain was 98% similar to that of Clostridiaceae bacterium SK082 (AB298754) as the highest homology. A novel celEdx16 gene encoding a bifunctional endo-/exocellulase (CelEdx16) was cloned by the shotgun method from AN-C16-KBRB, and the enzyme was characterized. The celEdx16 gene had an open reading frame of 1,104-base pairs, which encoded 367 amino acids to yield a protein of molecular mass 40.4 kDa. The amino acid sequence was 53% identical to that of an endoglucanase from Clostridium thermocellum. CelEdx16 was overexpressed in Escherichia coli and purified using Ni-NTA affinity chromatography. The specific endocellulase and exocellulase activities of CelEdx16 were 15.9 and 3.6 × 10−2 U mg−1, respectively. The Michaelis–Menten constant (K m values) and the maximal reaction velocities (V max values) of CelEdx16 were 47.1 μM and 9.6 × 10−3 μmole min−1 when endocellulase activity was measured and 106.3 μM and 2.1 × 10−5 μmole min−1 when exocellulase activity was assessed. CelEdx16 was optimally active at pH 5.0 and 40°C.  相似文献   

18.
Biochemical properties of lipoxygenase from opium poppy chloroplasts     
M. Vanko  D. Rauová  L. Bezáková  I. Holková  F. Bilka  M. Cupáková 《Biologia Plantarum》2012,56(1):105-110
Lipoxygenase (LOX) from opium poppy (Papaver somniferum L.) chloroplasts was isolated and 126.1-fold purified to electrophoretic homogeneity by combination of ion-exchange chromatography on HA-Ultragel column and affinity chromatography on a linoleyl-aminopropyl agarose column. The relative molecular mass of the LOX determined by SDS-PAGE was 92 kDa. Kinetic properties of purified LOX were determined in spectrophotometric assay by using of linoleic acid (KM = 1.78 mM and Vmax = 11.4 μmol mg−1 min−1) and linolenic acid (KM = 1.27 mM and Vmax = 10.2 μmol mg−1 min−1). The optimum pH was 6.0 for both linoleic and linolenic acid dioxygenation catalyzed by LOX. HPLC analysis of the products revealed a dual positional specificity of linoleic acid dioxygenation at pH 6.0 with ratio of 9- and 13-hydroperoxide products being about 1:1. The activity of purified LOX was stimulated by Mg2+ and Ca2+.  相似文献   

19.
Expression of pectate lyase A from <Emphasis Type="Italic">Aspergillus nidulans</Emphasis> in <Emphasis Type="Italic">Bacillus subtilis</Emphasis>     
Qingxin Zhao  Runrong Ding  Yijun Kang  Jian Chen 《World journal of microbiology & biotechnology》2008,24(11):2607-2612
  相似文献   

20.
Did RNA editing in plant organellar genomes originate under natural selection or through genetic drift?   总被引:1,自引:0,他引:1  
Richard W Jobson  Yin-Long Qiu 《Biology direct》2008,3(1):43

Background  

The C↔U substitution types of RNA editing have been observed frequently in organellar genomes of land plants. Although various attempts have been made to explain why such a seemingly inefficient genetic mechanism would have evolved, no satisfactory explanation exists in our view. In this study, we examined editing patterns in chloroplast genomes of the hornwort Anthoceros formosae and the fern Adiantum capillus-veneris and in mitochondrial genomes of the angiosperms Arabidopsis thaliana, Beta vulgaris and Oryza sativa, to gain an understanding of the question of how RNA editing originated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号