首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most devastating plant bacterial disease worldwide. Different bacterial blight resistance (R) genes confer race-specific resistance to different strains of Xoo. We fine mapped a fully recessive gene, xa24, for bacterial blight resistance to a 71-kb DNA fragment in the long arm of rice chromosome 2 using polymerase chain reaction-based molecular markers. The xa24 gene confers disease resistance at the seedling and adult stages. It mediates resistance to at least the Philippine Xoo races 4, 6 and 10 and Chinese Xoo strains Zhe173, JL691 and KS-1-21. Sequence analysis of the DNA fragment harboring the dominant (susceptible) allele of xa24 suggests that this gene should encode a novel protein that is not homologous to any known R proteins. These results will greatly facilitate the isolation and characterization of xa24. The markers will be convenient tools for marker-assisted selection of xa24 in breeding programs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Finding novel sources of resistance (R) to rice blast disease should facilitate breeding for improved resistance. The objectives of the present study were to evaluate reactions to blast and identify in a space-induced mutant an R gene to a representative isolate of rice blast pathogen. The mutant H4, its parent and twelve monogenic lines were evaluated for their responses to 35 isolates collected from Guangdong Province, China. H4 was found to be resistant to more isolates than its parent and the twelve monogenic lines, suggesting newly acquired resistance may be a function of one or more R genes. A representative isolate GD0193 was used to identify and map the R gene from H4. Genetic analysis revealed that resistance to the isolate GD0193 was controlled by a single dominant gene, designated Pi46(t). Linkage analysis using susceptible F2 individuals showed that Pi46(t) was mapped between the markers RM224 and RM27360 within 1.04 and 1.2 cM on the long arm of chromosome 11. Subsequently, Pi46(t) was delimited to an interval of approximately 183.7 kb flanked by the markers K67 and T94. These results provide essential information for the cloning of the Pi46(t) gene and will facilitate marker-assisted selection in rice breeding.  相似文献   

3.
4.
The blast resistance gene Pik-p, mapping to the Pik locus on the long arm of rice chromosome 11, was isolated by map-based in silico cloning. Four NBS-LRR genes are present in the target region of cv. Nipponbare, and a presence/absence analysis in the Pik-p carrier cv. K60 excluded two of these as candidates for Pik-p. The other two candidates (KP3 and KP4) were expressed in cv. K60. A loss-of-function experiment by RNAi showed that both KP3 and KP4 are required for Pik-p function, while a gain-of-function experiment by complementation test revealed that neither KP3 nor KP4 on their own can impart resistance, but that resistance was expressed when both were introduced simultaneously. Both Pikp-1 (KP3) and Pikp-2 (KP4) encode coiled-coil NBS-LRR proteins and share, respectively, 95 and 99% peptide identity with the two alleles, Pikm1-TS and Pikm2-TS. The Pikp-1 and Pikp-2 sequences share only limited homology. Their sequence allowed Pik-p to be distinguished from Pik, Pik-s, Pik-m and Pik-h. Both Pikp-1 and Pikp-2 were constitutively expressed in cv. K60 and only marginally induced by blast infection.  相似文献   

5.
6.
Plant disease resistant (R) genes are frequently clustered in the genome. The diversity of members in a complex R-gene family may provide variation in resistance specificity. Rice Xa3/Xa26, conferring resistance to Xanthomonas oryzae pv. oryzae (Xoo) encodes a leucine-rich repeat (LRR) receptor kinase-type protein and belongs to a multigene family, consisting of Xa3/Xa26, MRKa, MRKc and MRKd in rice cultivar Minghui 63. MRKa and MRKc are intact genes, while MRKd is a pseudogene. Complementary analyses showed that MRKa and MRKc could not mediate resistance to Xoo when regulated by their native promoters, but MRKa not MRKc conferred partial resistance to Xoo when regulated by a strong constitutive promoter. Plants carrying truncated XA3/XA26, which lacked the kinase domain, were compromised in their resistance to Xoo. However, the kinase domain of MRKa could partially restore the function of the truncated XA3/XA26 in resistance. MRKa and MRKc showed similar expression pattern as Xa3/Xa26, which expressed only in the vascular systems of different tissues. The expressional characteristic of MRKa and MRKc perfectly fits the function of genes conferring resistance to Xoo, a vascular pathogen. These results suggest that although MRKa and MRKc cannot mediate bacterial blight resistance nowadays, they may be once effective genes for Xoo resistance. Their expressional characteristic and sequence similarity to Xa3/Xa26 will provide templates for generating novel recognition specificity to face the evolution of Xoo. In addition, both LRR and kinase domains encoded by Xa3/Xa26 and MRKa are the functional determinants and MRKa-mediated resistance is dosage-dependent. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
8.
The major quantitative trait locus qBR9.1 confers broad-spectrum resistance to rice blast, and was mapped to a ~69.1 kb region on chromosome 9 that was inherited from resistant variety Sanhuangzhan No 2 (SHZ-2). Within this region, only one predicted disease resistance gene with nucleotide binding site and leucine-rich repeat (NBS-LRR) domains was found. Specific markers corresponding to this gene cosegregated with blast resistance in F2 and F3 populations derived from crosses of susceptible variety Texianzhan 13 (TXZ-13) to SHZ-2 and the resistant backcross line BC-10. We tentatively designate the gene as Pi56(t). Sequence analysis revealed that Pi56(t) encodes an NBS-LRR protein composed of 743 amino acids. Pi56(t) was highly induced by blast infection in resistant lines SHZ-2 and BC-10. The corresponding allele of Pi56(t) in the susceptible line TXZ-13 encodes a protein with an NBS domain but without LRR domain, and it was not induced by Magnaporthe oryzae infection. Three new cosegregating gene-specific markers, CRG4-1, CRG4-2 and CRG4-3, were developed. In addition, we evaluated polymorphism of the gene-based markers among popular varieties from national breeding programs in Asia and Africa. The presence of the CRG4-2 SHZ-2 allele cosegregated with a blast-resistant phenotype in two BC2F1 families of SHZ-2 crossed to recurrent parents IR64-Sub1 and Swarna-Sub1. CRG4-1 and CRG4-3 showed clear polymorphism among 19 varieties, suggesting that they can be used in marker-assisted breeding to combine Pi56(t) with other target genes in breeding lines.  相似文献   

9.
Bacterial blight (BB) of rice, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most devastating bacterial disease in rice. A virulence-attenuated mutant strain HNU89K9 of X. oryzae pv. oryzae (KACC10331), with a transposon insertion in the pilQ gene was used for this study. The pilQ was involved in the gene cluster pilMNOPQ of the Xoo genome. Growth rate of the pilQ mutant was similar to that of wild-type. At level of amino acids, PilQ of Xoo showed that a high sequence identities more than 94% and 70% to Xanthomonas species and to Xyllela fastidiosa, respectively but a low sequence homology less than 30% to other bacterial species. The twitching motility forming a marginal fringe on PSA media was observed on colony of the wild-type strain KACC10331, but not in mutant HNU89K9. Wild-type Xoo cells formed a biofilm on the surface of the PVC plastic test tube, while the mutant strain HNU89K9 did not form a biofilm. The results suggest that the pilQ gene of X. oryzae pv. oryzae plays a critical role in pathogenicity, twitching motility, and biofilm formation.  相似文献   

10.
Rice blast disease is a major constraint for rice breeding. Nevertheless, the genetic basis of resistance remains poorly understood for most rice varieties, and new resistance genes remain to be identified. We identified the resistance gene corresponding to the cloned avirulence gene ACE1 using pairs of isogenic strains of Magnaporthe grisea differing only by their ACE1 allele. This resistance gene was mapped on the short arm of rice chromosome 8 using progenies from the crosses IR64 (resistant) × Azucena (susceptible) and Azucena × Bala (resistant). The isogenic strains also permitted the detection of this resistance gene in several rice varieties, including the differential isogenic line C101LAC. Allelism tests permitted us to distinguish this gene from two other resistance genes [Pi11 and Pi-29(t)] that are present on the short arm of chromosome 8. Segregation analysis in F2 populations was in agreement with the existence of a single dominant gene, designated as Pi33. Finally, Pi33 was finely mapped between two molecular markers of the rice genetic map that are separated by a distance of 1.6 cM. Detection of Pi33 in different semi-dwarf indica varieties indicated that this gene could originate from either one or a few varieties.Communicated by D.J. Mackill  相似文献   

11.
Genome sequence analysis of Xanthomonas oryzae pv. oryzae has revealed a cluster of 12 ORFs that are closely related to the gum gene cluster of Xanthomonas campestris pv. campestris. The gum gene cluster of X. oryzae encodes proteins involved in xanthan production; however, there is little experimental evidence supporting this. In this study, biochemical analyses of xanthan produced by a defined set of X. oryzae gum mutant strains allowed us to preliminarily assign functions to most of the gum gene products: biosynthesis of the pentasaccharide repeating unit for GumD, GumM, GumH, GumK, and GumI, xanthan polymerization and transport for GumB, GumC, GumE, and GumJ, and modification of the pentasaccharide repeating unit for GumF, GumG, and GumL. In addition, we found that the exopolysaccharides are essential but not specific for the virulence of X. oryzae. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Sang-Yoon Kim and Jeong-Gu Kim contributed equally to this work.  相似文献   

12.

Background  

Bacterial leaf blight causes significant yield losses in rice crops throughout Asia and Africa. Although both the Asian and African strains of the pathogen, Xanthomonas oryzae pv. oryzae (Xoo), induce similar symptoms, they are nevertheless genetically different, with the African strains being more closely related to the Asian X. oryzae pv. oryzicola (Xoc).  相似文献   

13.
Powdery mildew is an important foliar disease in wheat, especially in areas with a cool or maritime climate. A dominant powdery mildew resistance gene transferred to the hexaploid germplasm line NC99BGTAG11 from T. timopheevii subsp. armeniacum was mapped distally on the long arm of chromosome 7A. Differential reactions were observed between the resistance gene in NC99BGTAG11 and the alleles of the Pm1 locus that is also located on chromosome arm 7AL. Observed segregation in F2:3 lines from the cross NC99BGTAG11 × Axminster (Pm1a) demonstrate that germplasm line NC99BGTAG11 carries a novel powdery mildew resistance gene, which is now designated as Pm37. This new gene is highly effective against all powdery mildew isolates tested so far. Analyses of the population with molecular markers indicate that Pm37 is located 16 cM proximal to the Pm1 complex. Simple sequence repeat (SSR) markers Xgwm332 and Xwmc790 were located 0.5 cM proximal and distal, respectively, to Pm37. In order to identify new markers in the region, wheat expressed sequence tags (ESTs) located in the distal 10% of 7AL that were orthologous to sequences from chromosome 6 of rice were targeted. The two new EST-derived STS markers were located distal to Pm37 and one marker was closely linked to the Pm1a region. These new markers can be used in marker-assisted selection schemes to develop wheat cultivars with pyramids of powdery mildew resistance genes, including combinations of Pm37 in coupling linkage with alleles of the Pm1 locus.  相似文献   

14.
The rice gene, Xa21, confers resistance to diverse races of Xanthomonas oryzae pv. oryzae (Xoo) and encodes a receptor-like kinase with leucine-rich repeats in the extra-cellular domain. To identify genes essential for the function of the Xa21 gene, 4,500 IRBB21 (Xa21 isogenic line in IR24 background) mutants, induced by diepoxybutane and fast neutrons, were screened against Philippine race six (PR6) Xoo for a change from resistance to susceptibility. From two greenhouse screens, 23 mutants were identified that had changed from resistant to fully (6) or partially (17) susceptible to PR6. All fully susceptible mutants carried rearrangements at the Xa21 locus as detected by PCR and Southern hybridization. For the partially susceptible mutants, no changes were detected at the Xa21 locus based on Southern and PCR analyses. However, two of these mutants were confirmed via genetic analysis to have mutations at the Xa21 locus. Partially susceptible mutants exhibited variation in level of susceptibility to different Xoo strains, suggesting that they may carry different mutations required for the Xa21-mediated resistance. The mutants identified in this study provide useful materials for dissecting the Xa21-mediated resistance pathway in rice.Communicated by D.J. Mackill  相似文献   

15.
16.
To evaluate the KRAS, BRAF, EGFR, and HER2 gene status in colorectal cancer by novel techniques and evaluate whether anti-HER2 therapies could be offered in the treatment of these patients. There are conflicting data on the prevalence of BRAF mutations and EGFR and HER2 gene amplification in colorectal KRAS wild type patients. In our study we tried to evaluate these expressions and their relationship to future treatment assays. Clinical–pathological data and paraffin-embedded specimens were collected from 186 patients who underwent colorectal resections at General Yagüe Hospital in Burgos, Spain. KRAS and BRAF status was analyzed by real-time PCR in all patients. EGFR and HER2/NEU gene amplification was detected using fluorescent in situ hybridisation technique (FISH) in 38 KRAS and BRAF wild type patients. KRAS mutations were present in 48% of the colorectal cancer patients. BRAF mutations were present in 6.25% of the KRAS wild type patients. EGFR and HER2 gene amplification was observed in 5.3% and 26.3%, respectively, of KRAS and BRAF wild type colorectal cancer patients. HER2, but not EGFR gene amplification, was frequently observed in KRAS and BRAF wild type colorectal cancer patients. These data indicate that HER2 amplification could be one of the genes to be considered in the therapeutic management of colorectal cancer.  相似文献   

17.
Hou M  Xu W  Bai H  Liu Y  Li L  Liu L  Liu B  Liu G 《Plant cell reports》2012,31(5):895-904
Pathogenesis-related (PR) proteins play an important role in the disease resistance response. To better understand the function of rice PR proteins, we examined the expressions of ten PR proteins in rice leaves at different developmental stages with or without the interaction between rice and Xanthomonas oryzae pv. oryzae (Xoo). The results showed that most of the PR proteins were expressed in rice leaves in normal growth conditions, suggesting that they play a role in rice growth. Six out of ten PR proteins (PR1, PR2, PR3, PR4b, PR8, and PR-pha) showed enhanced expression in Xa21-mediated resistance responses at late stages after inoculation with Xoo. The remaining four PR proteins (PR5, PR6, PR15, and PR16) did not show changes in expression in the resistance response. The expressions of PR proteins in the resistance reaction were further compared with those in the susceptible reaction and a mock treatment. Interestingly, several of the PR proteins were expressed at the highest levels in the susceptible reaction and at the lowest levels in the mock treatment. Among the other four PR proteins, PR5 and PR16 showed changes in the abundance only in the susceptible response, while PR6 and PR15 showed no detectable difference in expression. These data provide fundamental knowledge about the expression of PR proteins in the interaction between rice and Xoo.  相似文献   

18.

Background

Magnaporthe oryzae, the causal agent of blast disease of rice, is the most destructive disease of rice worldwide. The genome of this fungal pathogen has been sequenced and an automated annotation has recently been updated to Version 6 http://www.broad.mit.edu/annotation/genome/magnaporthe_grisea/MultiDownloads.html. However, a comprehensive manual curation remains to be performed. Gene Ontology (GO) annotation is a valuable means of assigning functional information using standardized vocabulary. We report an overview of the GO annotation for Version 5 of M. oryzae genome assembly.

Methods

A similarity-based (i.e., computational) GO annotation with manual review was conducted, which was then integrated with a literature-based GO annotation with computational assistance. For similarity-based GO annotation a stringent reciprocal best hits method was used to identify similarity between predicted proteins of M. oryzae and GO proteins from multiple organisms with published associations to GO terms. Significant alignment pairs were manually reviewed. Functional assignments were further cross-validated with manually reviewed data, conserved domains, or data determined by wet lab experiments. Additionally, biological appropriateness of the functional assignments was manually checked.

Results

In total, 6,286 proteins received GO term assignment via the homology-based annotation, including 2,870 hypothetical proteins. Literature-based experimental evidence, such as microarray, MPSS, T-DNA insertion mutation, or gene knockout mutation, resulted in 2,810 proteins being annotated with GO terms. Of these, 1,673 proteins were annotated with new terms developed for Plant-Associated Microbe Gene Ontology (PAMGO). In addition, 67 experiment-determined secreted proteins were annotated with PAMGO terms. Integration of the two data sets resulted in 7,412 proteins (57%) being annotated with 1,957 distinct and specific GO terms. Unannotated proteins were assigned to the 3 root terms. The Version 5 GO annotation is publically queryable via the GO site http://amigo.geneontology.org/cgi-bin/amigo/go.cgi. Additionally, the genome of M. oryzae is constantly being refined and updated as new information is incorporated. For the latest GO annotation of Version 6 genome, please visit our website http://scotland.fgl.ncsu.edu/smeng/GoAnnotationMagnaporthegrisea.html. The preliminary GO annotation of Version 6 genome is placed at a local MySql database that is publically queryable via a user-friendly interface Adhoc Query System.

Conclusion

Our analysis provides comprehensive and robust GO annotations of the M. oryzae genome assemblies that will be solid foundations for further functional interrogation of M. oryzae.
  相似文献   

19.
Blast, caused by the ascomycete fungus Magnaporthe oryzae, is one of the most devastating diseases of rice worldwide. The Chinese native cultivar (cv.) Q15 expresses the broad-spectrum resistance to most of the isolates collected from China. To effectively utilize the resistance, three rounds of linkage analysis were performed in an F2 population derived from a cross of Q15 and a susceptible cv. Tsuyuake, which segregated into 3:1 (resistant/susceptible) ratio. The first round of linkage analysis employing simple sequence repeat (SSR) markers was carried out in the F2 population through bulked-segregant assay. A total of 180 SSR markers selected from each chromosome equally were surveyed. The results revealed that only two polymorphic markers, RM247 and RM463, located on chromosome 12, were linked to the resistance (R) gene. To further define the chromosomal location of the R gene locus, the second round of linkage analysis was performed using additional five SSR markers, which located in the region anchored by markers RM247 and RM463. The locus was further mapped to a 0.27 cM region bounded by markers RM27933 and RM27940 in the pericentromeric region towards the short arm. For fine mapping of the R locus, seven new markers were developed in the smaller region for the third round of linkage analysis, based on the reference sequences. The R locus was further mapped to a 0.18 cM region flanked by marker clusters 39M11 and 39M22, which is closest to, but away from the Pita/Pita 2 locus by 0.09 cM. To physically map the locus, all the linked markers were landed on the respective bacterial artificial chromosome clones of the reference cv. Nipponbare. Sequence information of these clones was used to construct a physical map of the locus, in silico, by bioinformatics analysis. The locus was physically defined to an interval of ≈37 kb. To further characterize the R gene, five R genes mapped near the locus, as well as 10 main R genes those might be exploited in the resistance breeding programs, were selected for differential tests with 475 Chinese isolates. The R gene carrier Q15 conveys resistances distinct from those conditioned by the carriers of the 15 R genes. Together, this valuable R gene was, therefore, designated as Pi39(t). The sequence information of the R gene locus could be used for further marker-based selection and cloning. Xinqiong Liu and Qinzhong Yang contributed equally to this work.  相似文献   

20.
New combinations are proposed in anticipation of the Polygonaceae treatment in the forthcoming volume of Intermountain Flora: Polygonum kelloggii var. esotericum, P. kelloggii var. watsonii , Rumex densiflorus var. pycnanthus , R. salicifolius var. utahensis, and R. occidentalis var. tomentellus. Typifications are proposed to facilitate ongoing studies in Polygonaceae and to maintain current usage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号