首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetamide is carcinogenic in rats and mice. To clarify the mechanism of carcinogenesis by acetamide, we investigated DNA damage by and acetamide metabolite, acetohydroxamic acid (AHA), using 32P-5'-end-labeled DNA fragments. AHA treated with amidase induced DNA damage in the presence of Cu(II) and displayed a similar DNA cleavage pattern of hydroxylamine. DNA damage was inhibited by both catalase and bathocuproine, suggesting that H2O2 and Cu(I) are involved. Carboxy-PTIO, a specific scavenger of nitric oxide (NO), partially inhibited DNA damage. The amount of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) by amidase-treated AHA was similar to that by hydroxylamine. ESR spectrometry revealed that amidase-treated AHA as well as hydroxylamine generated NO in the presence of Cu(II). From these results, it has been suggested that AHA might be converted into hydroxylamine by amidase. These results suggest that metal-mediated DNA damage mediated by amidase-catalyzed hydroxylamine generation plays an important role in the carcinogenicity of acetamide.  相似文献   

2.
The present study describes the improvement of a technique, the alkaline-halo assay (AHA), for the assessment of DNA single-strand breakage at the single-cell level. AHA involves a series of sequential steps in which cells are embedded in melted agarose and spread onto microscope slides, incubated in a high-salt alkaline lysis solution, then in a hypotonic alkaline solution and, finally, stained with ethidium bromide (EB). Under these conditions, single-stranded DNA fragments diffuse radially from the nuclear cage and generate a fluorescent image that resembles a halo concentric to the nuclear remnants: the area of the halo is a direct function of the extent of DNA strand scission. These phenomena can be conveniently monitored with a fluorescence microscope and quantified by image-processing analysis. The behaviour of single-stranded DNA fragments under the conditions of the modified assay, called fast halo assay (FHA), is essentially the same as in AHA. The modifications consist in the simplification of the lysis, denaturation and staining procedures, and allow, as compared with AHA, the preparation of samples within 15 min, with a two-third reduction in total processing time, using only two reagents to promote DNA extraction and staining: NaOH and EB. A variation of the FHA operating at non-denaturing conditions to discriminate apoptotic cells from non-apoptotic cells bearing DNA single-strand breaks is also illustrated. To benchmark FHA sensitivity and reliability, the DNA single-strand breaks (SSBs) resulting either from exposure of cultured mammalian cells to different DNA-damaging agents or from secondary apoptotic DNA cleavage, have been quantified and results compared with the outcomes of reference techniques run in parallel, namely AHA, comet assay and Hoechst 33342 staining. The results indicate that FHA has the same reliability and sensitivity of the reference assays, but presents the additional advantages of being inexpensive, more rapid and strikingly simple.  相似文献   

3.
The cytotoxicity and mutagenicity of 2-amino-N6-hydroxyadenine (AHA) were measured in strains of L5178Y differing in repair capabilities and karyotype. Strain LY-R83 is monosomic for chromosome 11 and is therefore hemizygous for the tk gene, while strains LY-R16 and LY-S1 are TK+/- heterozygotes. Both strain LY-R83 and LY-R16 are sensitive to UV light and are presumed to be deficient in the excision of pyrimidine dimers as shown for the parental strain, LY-R (Hagen et al., 1988; Szumiel et al., 1988). Strain LY-S1 is sensitive to the cytotoxic effects of ionizing radiation and is presumed to be defective in the repair of radiation-induced DNA double-strand breaks, as shown for the parental strain, LY-S (Evans et al., 1987a; Wlodek and Hittelman, 1987). The sensitivities of the three strains to the cytotoxic effects of AHA were similar. After a 4-hour treatment with AHA at 37 degrees C, the D37 for all three strains was approximately 35 ng/ml. The AHA-induced mutant frequency was similar for the hemizygous TK+ strain LY-R83 and the heterozygous TK +/- strain LY-R16, but was slightly higher for strain LY-S1 than for either LY-R strain at an AHA concentration of 100 ng/ml. The proportion of AHA-induced LY-S1 TK -/- mutants forming colonies with diameters less than 0.3 mm was much lower than following treatment with X radiation (24% vs. 61% for AHA and X radiation, respectively). These results indicate that the vast majority of AHA-induced TK -/- mutants harbor single gene mutations. AHA did not result in cyanide-insensitive oxygen uptake, and treatment with this compound did not induce a significant number of DNA single-strand breaks, DNA alkali labile lesions, or DNA degradation in either strain. However, two hours after AHA removal, DNA single-strand breaks and/or alkali-labile lesions, possibly due to the occurrence of DNA repair, were apparent in the DNA of both strain LY-R16 and strain LY-S1.  相似文献   

4.
The photoreactions of 9-[6-(4-azidobenzamido)hexylamino]acridine (AHA) and 9-[6-(2-diazocyclopentadienylcarbonyloxy)hexylamino]acridine (DHA) with double stranded DNA result in formation of single strand nicks and alkali labile sites (adducts) with an efficiency of 6 x 10(-3) nicks per AHA and 3 x 10(-2) nicks per DHA molecule. The alkali dependent DNA cleavage by AHA shows a pronounced A+G preference whereas that by DHA is practically sequence independent. In the presence of diacridines, however, DHA exhibits a preference for cleavage at guanosines. These DNA photocleaving reagents could be useful for DNA photofootprinting and photosequencing.  相似文献   

5.
Apolipoprotein (a) (apo(a)) is a component of the atherogenic lipoprotein, Lp(a). The efficiency with which apo(a) escapes the endoplasmic reticulum (ER) and is secreted by the liver is a major determinant of plasma Lp(a) levels. Apo(a) contains a series of domains homologous to plasminogen kringle (K) 4, each of which possesses a potential lysine-binding site. By using primary mouse hepatocytes expressing a 17K4 human apo(a) protein, we found that high concentrations (25-200 mM) of the lysine analog, 6-aminohexanoic acid (6AHA), increased apo(a) secretion 8-14-fold. This was accompanied by a decrease in apo(a) presecretory degradation. 6AHA inhibited accumulation of apo(a) in the ER induced by the proteasome inhibitor, lactacystin. Thus, 6AHA appeared to inhibit degradation by increasing apo(a) export from the ER. Significantly, 6AHA overcame the block in apo(a) secretion induced by the ER glucosidase inhibitor, castanospermine. 6AHA may therefore circumvent the requirement for calnexin and calreticulin interaction in apo(a) secretion. Sucrose gradients and a gel-based folding assay were unable to detect any influence of 6AHA on apo(a) folding. However, non-covalent or small, disulfide-dependent changes in apo(a) conformation would not be detected in these assays. Proline also increased the efficiency of apo(a) secretion. We propose that 6AHA and proline can act as chemical chaperones for apo(a).  相似文献   

6.
More than 11 different P-type H(+)-ATPases have been identified in Arabidopsis by DNA cloning. The subcellular localization for individual members of this proton pump family has not been previously determined. We show by membrane fractionation and immunocytology that a subfamily of immunologically related P-type H(+)-ATPases, including isoforms AHA2 and AHA3, are primarily localized to the plasma membrane. To verify that AHA2 and AHA3 are both targeted to the plasma membrane, we added epitope tags to their C-terminal ends and expressed them in transgenic plants. Both tagged isoforms localized to the plasma membrane, as indicated by aqueous two-phase partitioning and sucrose density gradients. In contrast, a truncated AHA2 (residues 1-193) did not, indicating that the first two transmembrane domains alone are not sufficient for plasma membrane localization. Two epitope tags were evaluated: c-myc, a short, 11-amino acid sequence, and beta-glucuronidase (GUS), a 68-kD protein. The c-myc tag is recommended for its sensitivity and specific immunodetection. GUS worked well as an epitope tag when transgenes were expressed at relatively high levels (e.g. with AHA2-GUS944); however, evidence suggests that GUS activity may be inhibited when a GUS domain is tethered to an H(+)-ATPase complex. Nevertheless, the apparent ability to localize a GUS protein to the plasma membrane indicates that a P-type H(+)-ATPase can be used as a delivery vehicle to target large, soluble proteins to the plasma membrane.  相似文献   

7.
Analysis of 2-amino-N6-hydroxyadenine-induced mutagenesis in phage M13mp2   总被引:1,自引:0,他引:1  
The mechanism of mutagenesis induced by 2-amino-N6-hydroxyadenine (AHA) and its deoxyriboside (AHAdR) was studied by determining the nucleotide sequences of phage M13mp2 mutant DNA samples. Mutations in the lac promoter-lacZ alpha region of the phage were induced by addition of this agent to culture media in which the phage was growing inside the host bacteria. The spectrum of spontaneous mutation was also investigated. The induced sequence changes were mostly base transitions (80% with AHA and 90% with AHAdR). A few single-base deletions and additions were detected, but they were ascribable to spontaneous mutations. These results are consistent with the incorporation type mechanism proposed by Janion (this issue). In the Ames Salmonella assay, both AHA and AHAdR showed strong mutagenicity in strain TA100 but no activity in TA98.  相似文献   

8.
The mutagenicity of the base analogue, 2-amino-N6-hydroxyadenine (AHA), was tested in Salmonella typhimurium TA100 and TA98 and in Chinese hamster lung (CHL) cells. AHA showed very potent mutagenicity in TA100 without S9 mix, inducing 25,000 revertants/micrograms. The mutagenicity increased about 2-fold upon addition of S9 mix containing 10 microliters S9. AHA was found to be one of the strongest mutagens for TA100. Addition of S9 mix containing 100 microliters S9 induced no significant increase of revertants with AHA at amounts up to 50 ng per plate. AHA was also mutagenic for the frameshift mutant, TA98, without S9 mix, the mutagenicity for TA98 being about 1/1000 of that for TA100. When the mutagenicity of AHA was tested in CHL cells, with diphtheria toxin resistance (DTr) as a selective marker in the absence of S9 mix with a 3-h treatment of cells, DTr mutants increased dose-dependently at concentrations of 2.5-15 micrograms/ml. When cells were incubated with AHA for 24 h, a 200-fold increase in the number of DTr mutants was observed; the mutagenicity was 500-fold higher than that of ethyl methanesulfonate. This marked increase of mutagenicity by prolonged incubation may indicate that AHA induces mutations mainly after incorporation into DNA. The addition of a small amount of S9 increased the mutagenicity obtained with a 3-h treatment 2-fold, but a larger amount of S9 decreased the mutagenicity as was found with S. typhimurium TA100.  相似文献   

9.
苋菜凝集素基因的克隆及在转基因烟草中抗蚜性研究   总被引:27,自引:0,他引:27  
通过PCR从苋属植物千穗谷(Amaranthus hypochondriacus)的总DNA中扩增出苋菜凝集素(AHA)的核基因片段。序列分析结果表明该基因为2453bp,含有-1538bp的内含子和两个分别为212bp和703bp的外显子。采取反向PCR的方法获得仅含该基因的编码区克隆。以此为基础与二元表达载体pBin438构建含内含子与不含内含子AHA基因的植物表达载体pBAHAg和pBAHAc并通过土壤农杆菌介导转了化烟草,转化再生植株的PCR和Southern blot分析表明,AHA基因已整合到烟草的染色体中,有单贝和多拷贝的整合。用与AHA蛋白高度同源的ACA蛋白的抗血清进行了免疫斑点(Immunodot blot)检测,结果初步表明转基因烟草有AHA蛋白的表达,虫试结果表明转pBAHAg和pBAHAc烟草对蚜虫的平均抑制率分别达57.2%和48.8%,有的高达90%以上,含内含子和不含内含子的AHA基因在转基因植株中的抗蚜性不同。  相似文献   

10.
The plasma membrane H+-ATPases in Arabidopsis thaliana represent the largest family of cation translocating P-type ATPases identified in plants or animals. We report here seven new isoforms, which were identified by polymerase chain reaction (PCR) amplification of genomic DNA. Amplifications were performed with degenerate primers corresponding to two short conserved sequence motifs (“CSDK” and “GDGV”) found in most P-type ATPases. A comparison was made of three CSDK-side primers, which were used either as totally degenerate mixtures or rendered less degenerate by substitution with deoxyinosine or fluorodeoxyuridine. Amplified genomic fragments were cloned, partially sequenced and shown to correspond to Arabidopsis genes by Southern blot analysis with gene-specific probes. One newly identified isoform, AHA10, was isolated as a cosmid clone and sequenced. The 5′ and 3′ ends of the gene were determined by comparison with the AHA10 cDNA sequence. AHA10 is the most divergent isoform characterized in the Arabidopsis family. AHA10 appears to be expressed primarily in developing seeds, as indicated by Northern blot analysis of AHA10 mRNA and by the analysis of transgenic plants expressing a β-glucuronidase (GUS) reporter gene fused to an AHA10 promoter. Our results indicate that one function of this unusually large H+-ATPase gene family is to allow for expression of different isoforms in different cell types.  相似文献   

11.
E E Henderson  B Strauss 《Cell》1975,5(4):381-387
Long term human lymphoblastoid lines differ in their ability to grow in medium containing bromodeoxyuridine (BrdU) and to incorporate analog into their DNA. Eight Burkitt's lymphoma cell lines divided at least twice in BrdU-containing medium and made DNA in which over 90% of the thymidine residues were substituted with analog in both strands. Three infectious mononucleosis-derived lines and 24 lines transformed in vitro were inhibited by BrdU after one cell division and made only hybrid DNA in which one strand was substituted with analog. One out of eight normal individuals from whom long term lines were prepared gave cell lines which divided at least twice in BrdU and gave DNA in which both strands were substituted with analog. It would appear that intrinsic cellular factors regulate the response to BrdU and that Burkitt's tumor lines are characterized by their ability to make stable doubly substituted DNA containing a high proportion of halogenated analog.  相似文献   

12.
2-Amino-N6-hydroxyadenine (AHA) is a remarkably efficient and specific inducer of point mutations in Neurospora, with few or no larger scale events being detected (de Serres et al., 1985). In the present studies, AHA is shown to be a potent point mutagen at the tk +/-, hprt+ and Na+/K+ ATPase loci in L5178Y/tk (+/-)-3.7.2C mouse lymphoma cells. Both large and small colony tk-/- mutants were analyzed at the molecular level and a preliminary assessment was made of small colony mutant karyotypes (230 bands/haploid metaphase cell; large colony mutants typically have normal karyotypes and were not analyzed). AHA induced greatly delayed (7-9 cell doublings) cytotoxicity, suggestive of a mutational mechanism (e.g., base-pair substitution) requiring DNA replication prior to its phenotypic expression. Approximately one-third of the tk -/- mutants formed small colonies, a phenotype which is typically associated with alterations to chromosome 11b, the site of the functional tkb allele in the parental cells. However, banded karyotypes have provided convincing evidence for alterations chromosome 11b in only 2 of the 7 small colony mutants analyzed. Southern blot analysis showed that 78% (21/27) of these small colony mutants have retained the Nco-1 6.3-kb band, which is diagnostic of the tkb allele. This makes AHA unique among the mutagens examined so far in inducing small colony mutants without inducing large losses of tkb DNA. Although a dose-dependent increase in the proportion of small colony mutants was noted, no significant dose-dependent differences were seen at the molecular level in the relatively few mutants analyzed. The majority of AHA-induced tk -/- mutants formed large colonies. Southern blot analysis showed that 86% (25/29) of these had retained the Nco-1 6.3-kb band which is diagnostic of the tkb allele. It is concluded that AHA induces primarily micromutations (less than 100 base pairs), probably through a base-pair substitution mechanism, at the tk, hprt and Na+/K+ ATPase loci in this system, with some larger scale damage (kilobases of DNA at the molecular level; chromosome 11b damage at the cytogenetic level) also occurring.  相似文献   

13.
We have used 16 human × mouse somatic cell hybrids containing a variable number of human chromosomes to demonstrate that the human α-globin gene is on chromosome 16. Globin gene sequences were detected by annealing purified human α-globin complementary DNA to DNA extracted from hybrid cells. Human and mouse chromosomes were distinguished by Hoechst fluorescent centromeric banding, and the individual human chromosomes were identified in the same spreads by Giemsa trypsin banding. Isozyme markers for 17 different human chromosomes were also tested in the 16 clones which have been characterized. The absence of chromosomal translocation in all hybrid clones strongly positive for the α-globin gene was established by differential staining of mouse and human chromosomes with Giemsa 11 staining. The presence of human chromosomes in hybrid cell clones which were devoid of human α-globin genes served to exclude all human chromosomes except 6, 9, 14 and 16. Among the clones negative for human α-globin sequences, one contained chromosome 2 (JFA 14a 5), three contained chromosome 4 (AHA 16E, AHA 3D and WAV R4D) and two contained chromosome 5 (AHA 16E and JFA14a 13 5) in >10% of metaphase spreads. These data excluded human chromosomes 2, 4 and 5 which had been suggested by other investigators to contain human globin genes. Only chromosome 16 was present in each one of the three hybrid cell clones found to be strongly positive for the human α-globin gene. Two clones (WAIV A and WAV) positive for the human α-globin gene and chromosome 16 were counter-selected in medium which kills cells retaining chromosome 16. In each case, the resulting hybrid populations lacked both human chromosome 16 and the α-globin gene. These studies establish the localization of the human α-globin gene to chromosome 16 and represent the first assignment of a nonexpressed unique gene by direct detection of its DNA sequences in somatic cell hybrids.  相似文献   

14.
The azide functional group has assumed a prominent role in chemical biology efforts in recent years. Azides may be readily introduced into proteins upon replacement of methionine residues with the non-canonical amino acid azidohomoalanine (AHA). This protocol describes a synthetic route to AHA based on the copper-catalyzed conversion of amines to azides. An alternate protocol for the preparation of AHA is presented in a companion paper. The synthesis and purification of AHA via the route described herein can be completed in 3-4 days.  相似文献   

15.
3 purine analogs were tested for their mutagenic activities in the ad-3 forward-mutation test in heterokaryon 12 (H-12) of Neurospora crassa. In growing cultures of H-12, the N-hydroxylaminopurines 2-amino-6-N-hydroxylaminopurine (AHA) and 6-N-hydroxylaminopurine (HAP) are potent and strong mutagens, respectively, whereas 2-aminopurine (AP) is a weak mutagen. AHA and HAP are about equally mutagenic at low doses, but AHA is more mutagenic than HAP at high doses. Despite their potent mutagenicity in growing cultures, AHA and HAP are not mutagenic in nongrowing conidia under the conditions of our experiments. AHA is the most potent mutagen tested in the ad-3 forward-mutation test in N. crassa. At the highest dose tested (30 micrograms/ml), it gave an ad-3 mutant frequency of 0.7 X 10(-2), about a 12,000-fold increase over the average spontaneous ad-3 mutant frequency. The potent mutagenicity of AHA may make it (and possibly HAP) especially useful for obtaining specific-locus mutations in other organisms.  相似文献   

16.
The genetic activity of 2-amino-N6-hydroxyadenine or 2-amino-N-hydroxylaminopurine (AHA) and N6-hydroxyadenine or 6-N-hydroxylaminopurine (HAP) was studied in S. typhimurium, E. coli and Saccharomyces cerevisiae strains. AHA was a more potent mutagen for bacteria and a less potent mutagen for yeast than HAP. The mutagenic activity of analogs was not influenced by excision, mutagenic or double-strand DNA repair mutations. On the other hand, the uvrBdel mutation has a drastic effect on the mutagenicity and toxicity of both analogs in the Salmonella strains studied. HAP was a very potent mutagen in yeast with a low capability of inducing mitotic recombination contrary to common mutagens, possessed unique intergenic specificity and was able to induce mutations in diploids at rather high frequency.  相似文献   

17.
Several reports indicate that the mechanism of resistance to cisplatin is multifactorial. However, DNA damage tolerance appears to be the more significant mechanism. It is clear that resistance in general is a major clinical concern, and a number of approaches have been taken to circumvent this clinical impediment. One approach is through analog development, and we have identified 1,2-diaminocyclohexane-diacetatodichloro-platinum(IV) as an analog with activity in cisplatin resistance. The activity is greatest against ovarian tumor cell lines where the latent, non-inducible wild-type p53 function can be reactivated by the analog. This functional activation of p53 also corresponds to a reduced threshold for tolerance to DNA damage induced by the analog. Interestingly, cell lines with mutant or null p53 are cross-resistant to the analog. The data indicate that cisplatin resistance due to an increase in DNA damage tolerance can arise through a loss of p53 function, and that functional activation of latent wild-type p53 by the analog facilitates cell death and circumvents this resistance mechanism.  相似文献   

18.
Polarized growth in pollen tubes results from exocytosis at the tip and is associated with conspicuous polarization of Ca(2+), H(+), K(+), and Cl(-) -fluxes. Here, we show that cell polarity in Nicotiana tabacum pollen is associated with the exclusion of a novel pollen-specific H(+)-ATPase, Nt AHA, from the growing apex. Nt AHA colocalizes with extracellular H(+) effluxes, which revert to influxes where Nt AHA is absent. Fluorescence recovery after photobleaching analysis showed that Nt AHA moves toward the apex of growing pollen tubes, suggesting that the major mechanism of insertion is not through apical exocytosis. Nt AHA mRNA is also excluded from the tip, suggesting a mechanism of polarization acting at the level of translation. Localized applications of the cation ionophore gramicidin A had no effect where Nt AHA was present but acidified the cytosol and induced reorientation of the pollen tube where Nt AHA was absent. Transgenic pollen overexpressing Nt AHA-GFP developed abnormal callose plugs accompanied by abnormal H(+) flux profiles. Furthermore, there is no net flux of H(+) in defined patches of membrane where callose plugs are to be formed. Taken together, our results suggest that proton dynamics may underlie basic mechanisms of polarity and spatial regulation in growing pollen tubes.  相似文献   

19.
Plasma membrane H+‐ATPase pumps build up the electrochemical H+ gradients that energize most other transport processes into and out of plant cells through channel proteins and secondary active carriers. In Arabidopsis thaliana, the AUTOINHIBITED PLASMA MEMBRANE H+‐ATPases AHA1, AHA2 and AHA7 are predominant in root epidermal cells. In contrast to other H+‐ATPases, we find that AHA7 is autoinhibited by a sequence present in the extracellular loop between transmembrane segments 7 and 8. Autoinhibition of pump activity was regulated by extracellular pH, suggesting negative feedback regulation of AHA7 during establishment of an H+ gradient. Due to genetic redundancy, it has proven difficult to test the role of AHA2 and AHA7, and mutant phenotypes have previously only been observed under nutrient stress conditions. Here, we investigated root and root hair growth under normal conditions in single and double mutants of AHA2 and AHA7. We find that AHA2 drives root cell expansion during growth but that, unexpectedly, restriction of root hair elongation is dependent on AHA2 and AHA7, with each having different roles in this process.  相似文献   

20.
The [14C]-labeled monoazido analog of ethidium, 3-amino-8-azido-5-ethyl-6-phenylphenanthridinium chloride, when mixed with yeast cells and photolyzed, produced covalent adducts with both nuclear and mitochondrial DNA via the light-generated nitrene. The binding efficiency was about 12 times higher in mitochondrial than nuclear DNA. Moreover, the parent ethidium bromide at a 5-fold excess was an effective competitor for the binding of the monoazide analog with mitochondrial DNA, but not with nuclear DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号