首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Prion represents a unique class of pathogens devoid of nucleic acid. The deadly diseases transmitted by it between members of one species and, in certain instances, to members of other species present a public health concern. Transmissibility and the barriers to transmission between species have been suggested to arise from the degree to which a pathological protein conformation from an individual of one species can seed a pathological conformation in another species. However, this hypothesis has never been illustrated at an atomic level. Here we present three X-ray atomic structures of the same segment from human, mouse, and hamster PrP, which is critical for forming amyloid and confers species specificity in PrP seeding experiments. The structures reveal that different sequences encode different steric zippers and suggest that the degree of dissimilarity of these zipper structures gives rise to transmission barriers in prion disease, such as those that protect humans from acquiring bovine spongiform encephalopathy (BSE) and chronic wasting disease (CWD).  相似文献   

2.
Tanaka M  Chien P  Yonekura K  Weissman JS 《Cell》2005,121(1):49-62
Efficiency of interspecies prion transmission decreases as the primary structures of the infectious proteins diverge. Yet, a single prion protein can misfold into multiple infectious conformations, and such differences in "strain conformation" also alter infection specificity. Here, we explored the relationship between prion strains and species barriers by creating distinct synthetic prion forms of the yeast prion protein Sup35. We identified a strain conformation of Sup35 that allows transmission from the S. cerevisiae (Sc) Sup35 to the highly divergent C. albicans (Ca) Sup35 both in vivo and in vitro. Remarkably, cross-species transmission leads to a novel Ca strain that in turn can infect the Sc protein. Structural studies reveal strain-specific conformational differences in regions of the prion domain that are involved in intermolecular contacts. Our findings support a model whereby strain conformation is the critical determinant of cross-species prion transmission while primary structure affects transmission specificity by altering the spectrum of preferred amyloid conformations.  相似文献   

3.
Mutations in prion protein are thought to be causative of inherited prion diseases favoring the spontaneous conversion of the normal prion protein into the scrapie-like pathological prion protein. We previously reported that, by controlled thermal denaturation, human prion protein fragment 90-231 acquires neurotoxic properties when transformed in a β-rich conformation, resembling the scrapie-like conformation. In this study we generated prion protein fragment 90-231 bearing mutations identified in familial prion diseases (D202N and E200K), to analyze their role in the induction of a neurotoxic conformation. Prion protein fragment 90-231(wild type) and the D202N mutant were not toxic in native conformation but induced cell death only after thermal denaturation. Conversely, prion protein fragment 90-231(E200K) was highly toxic in its native structure, suggesting that E200K mutation per se favors the acquisition of a peptide neurotoxic conformation. To identify the structural determinants of prion protein fragment 90-231 toxicity, we show that while the wild type peptide is structured in α-helix, hPrP90-231 E200K is spontaneously refolded in a β-structured conformer characterized by increased proteinase K resistance and propensity to generate fibrils. However, the most significant difference induced by E200K mutation in prion protein fragment 90-231 structure in native conformation we observed, was an increase in the exposure of hydrophobic amino-acids on protein surface that was detected in wild type and D202N proteins only after thermal denaturation. In conclusion, we propose that increased hydrophobicity is one of the main determinants of toxicity induced by different mutations in prion protein-derived peptides.  相似文献   

4.
Chronic wasting disease (CWD), a transmissible prion disease that affects elk and deer, poses new challenges to animal and human health. Although the transmission of CWD to humans has not been proven, it remains a possibility. If this were to occur, it is important to know whether the "acquired" human prion disease would show a phenotype including the scrapie prion protein (PrP(Sc)) features that differ from those associated with human sporadic prion disease. In this study, we have compared the pathological profiles and PrP(Sc) characteristics in brains of CWD-affected elk and deer with those in subjects with sporadic Creutzfeldt-Jakob disease (CJD), as well as CJD-affected subjects who might have been exposed to CWD, using histopathology, immunohistochemistry, immunoblotting, conformation stability assay, and N-terminal protein sequencing. Spongiform changes and intense PrP(Sc) staining were present in several brain regions of CWD-affected animals. Immunoblotting revealed three proteinase K (PK)-resistant bands in CWD, representing different glycoforms of PrP(Sc). The unglycosylated PK-resistant PrP(Sc) of CWD migrated at 21 kDa with an electrophoretic mobility similar to that of type 1 human PrP(Sc) present in sporadic CJD affecting subjects homozygous for methionine at codon 129 (sCJDMM1). N-terminal sequencing showed that the PK cleavage site of PrP(Sc) in CWD occurred at residues 82 and 78, similar to that of PrP(Sc) in sCJDMM1. Conformation stability assay also showed no significant difference between elk CWD PrP(Sc) and the PrP(Sc) species associated with sCJDMM1. However, there was a major difference in glycoform ratio of PrP(Sc) between CWD and sCJDMM1 affecting both subjects potentially exposed to CWD and non-exposed subjects. Moreover, PrP(Sc) of CWD exhibited a distinct constellation of glycoforms distinguishable from that of sCJDMM1 in two-dimensional immunoblots. These findings underline the importance of detailed PrP(Sc) characterization in trying to detect novel forms of acquired prion disease.  相似文献   

5.
6.
Molecular advances in understanding inherited prion diseases   总被引:1,自引:0,他引:1  
The prion diseases are neurodegenerative disorders that have attracted great interest because of the possible link between bovine spongiform encephalopathy (BSE) and variant Creutzfeldt-Jakob disease (CTD) in humans. Possible transmission of these diseases has been linked to a single protein termed the prion protein. This protein is an abnormal isoform of a normal synaptic glycoprotein. The majority of prion diseases does not appear to be caused by transmission of an infectious agent but occur spontaneously with no known cause. The strongest supporting evidence that the prion protein is the causative agent in prion disease comes from specific inheritable forms of prion disease which are linked to single point mutations in the prion protein gene. Paradoxically, these point mutations, although autosomal dominant with 100% penetrance do not lead to disease until late in life. Molecular techniques are now being used extensively to determine how these point-mutations alter the prion protein’s normal structure and activity. This review deals with the latest insights into how inherited mutations in the prion protein gene lead to neurodegenerative disease.  相似文献   

7.
Prion diseases such as bovine spongiform encephalopathy in cattle and Creutzfeldt–Jakob disease in humans are associated with the misfolding and accumulation of an abnormal conformation of the host-encoded prion protein (PrP). Despite intensive research efforts conducted on PrP, the toxic agent involved in neurodegeneration is as yet unidentified. Several potential candidates have been proposed, each of which may be relevant to subsets of the broad array of prion diseases. In this study, we review current knowledge on neurotoxic PrP species, including the importance of a central hydrophobic domain for mediating neurotoxicty.  相似文献   

8.
The prion protein (PrP) is a Cu(2+) binding cell surface glycoprotein that can misfold into a beta-sheet-rich conformation to cause prion diseases. The majority of copper binding studies have concentrated on the octarepeat region of PrP. However, using a range of spectroscopic techniques, we show that copper binds preferentially to an unstructured region of PrP between residues 90 and 115, outside of the octarepeat domain. Comparison of recombinant PrP with PrP-(91-115) indicates that this prion fragment is a good model for Cu(2+) binding to the full-length protein. In contrast to previous reports we show that Cu(2+) binds to this region of PrP with a nanomolar dissociation constant. NMR and EPR spectroscopy indicate a square-planar or square-pyramidal Cu(2+) coordination utilizing histidine residues. Studies with PrP analogues show that the high affinity site requires both His(96) and His(111) as Cu(2+) ligands, rather than a complex centered on His(96) as has been previously suggested. Our circular dichroism studies indicate a loss of irregular structure on copper coordination with an increase in beta-sheet conformation. It has been shown that this unstructured region, between residues 90 and 120, is vital for prion propagation and different strains of prion disease have been linked with copper binding. The role of Cu(2+) in prion misfolding and disease must now be re-evaluated in the light of these findings.  相似文献   

9.
Prion diseases and Alzheimer’s disease (AD) are characterized by protein misfolding, and can lead to dementia. However, prion diseases are infectious and transmissible, while AD is not. The similarities and differences between these diseases have led researchers to perform comparative studies. In the last 2 decades, progress has been made in immunotherapy using anti-prion protein and anti-β-amyloid antibodies. In this study, we review new ideas and strategies for therapeutic antibodies targeting prion diseases and AD through conformation dependence.  相似文献   

10.
The problem of amyloidoses is pressing and have recently attracted special attention throughout the world because of epidemics of prion diseases such as mad cow disease and human Creutzfeldt-Jacob disease. These diseases result from the conversion of a native protein or peptide into a highly stable pathological form. Molecules having a pathological conformation aggregate to form amyloid fibrils, capable of unlimited growth. It is important to study the molecular mechanisms of prion diseases and to identify the protein regions responsible for their development. The review considers theoretical and experimental works focusing on the formation of amyloid fibrils.  相似文献   

11.
Prions are infectious proteins and over the past few decades, some prions have become renowned for their causative role in several neurodegenerative diseases in animals and humans. Since their discovery, the mechanisms and mode of transmission and molecular structure of prions have begun to be established. There is, however, still much to be elucidated about prion diseases, including the development of potential therapeutic strategies for treatment. The significance of prion disease is discussed here, including the categories of human and animal prion diseases, disease transmission, disease progression and the development of symptoms and potential future strategies for treatment. Furthermore, the structure and function of the normal cellular prion protein (PrPC) and its importance in not only in prion disease development, but also in diseases such as cancer and Alzheimer's disease will also be discussed.  相似文献   

12.
The critical step in the pathogenesis of transmissible spongiform encephalopathies (prion diseases) is the conversion of a cellular prion protein (PrP(c)) into a protease-resistant, beta-sheet rich form (PrP(Sc)). Although the disease transmission normally requires direct interaction between exogenous PrP(Sc) and endogenous PrP(C), the pathogenic process in hereditary prion diseases appears to develop spontaneously (i.e. not requiring infection with exogenous PrP(Sc)). To gain insight into the molecular basis of hereditary spongiform encephalopathies, we have characterized the biophysical properties of the recombinant human prion protein variant containing the mutation (Phe(198) --> Ser) associated with familial Gerstmann-Straussler-Scheinker disease. Compared with the wild-type protein, the F198S variant shows a dramatically increased propensity to self-associate into beta-sheet-rich oligomers. In a guanidine HCl-containing buffer, the transition of the F198S variant from a normal alpha-helical conformation into an oligomeric beta-sheet structure is about 50 times faster than that of the wild-type protein. Importantly, in contrast to the wild-type PrP, the mutant protein undergoes a spontaneous conversion to oligomeric beta-sheet structure even in the absence of guanidine HCl or any other denaturants. In addition to beta-sheet structure, the oligomeric form of the protein is characterized by partial resistance to proteinase K digestion, affinity for amyloid-specific dye, thioflavine T, and fibrillar morphology. The increased propensity of the F198S variant to undergo a conversion to a PrP(Sc)-like form correlates with a markedly decreased thermodynamic stability of the native alpha-helical conformer of the mutant protein. This correlation supports the notion that partially unfolded intermediates may be involved in conformational conversion of the prion protein.  相似文献   

13.
Chronic wasting disease (CWD) is an emerging prion disease of free-ranging and captive cervids in North America. In this study we established a rodent model for CWD in Syrian golden hamsters that resemble key features of the disease in cervids including cachexia and infection of cardiac muscle. Following one to three serial passages of CWD from white-tailed deer into transgenic mice expressing the hamster prion protein gene, CWD was subsequently passaged into Syrian golden hamsters. In one passage line there were preclinical changes in locomotor activity and a loss of body mass prior to onset of subtle neurological symptoms around 340 days. The clinical symptoms included a prominent wasting disease, similar to cachexia, with a prolonged duration. Other features of CWD in hamsters that were similar to cervid CWD included the brain distribution of the disease-specific isoform of the prion protein, PrP(Sc), prion infection of the central and peripheral neuroendocrine system, and PrP(Sc) deposition in cardiac muscle. There was also prominent PrP(Sc) deposition in the nasal mucosa on the edge of the olfactory sensory epithelium with the lumen of the nasal airway that could have implications for CWD shedding into nasal secretions and disease transmission. Since the mechanism of wasting disease in prion diseases is unknown this hamster CWD model could provide a means to investigate the physiological basis of cachexia, which we propose is due to a prion-induced endocrinopathy. This prion disease phenotype has not been described in hamsters and we designate it as the 'wasting' or WST strain of hamster CWD.  相似文献   

14.
Aberrant metal binding by prion protein in human prion disease   总被引:9,自引:0,他引:9  
Human prion diseases are characterized by the conversion of the normal prion protein (PrP(C)) into a pathogenic isomer (PrP(Sc)). Distinct PrP(Sc) conformers are associated with different subtypes of prion diseases. PrP(C) binds copper and has antioxidation activity. Changes in metal-ion occupancy can lead to significant decline of the antioxidation activity and changes in conformation of the protein. We studied the trace element status of brains from patients with sporadic Creutzfeldt-Jakob disease (sCJD). We found a decrease of up to 50% of copper and an increase in manganese of approximately 10-fold in the brain tissues from sCJD subjects. We have also studied the metal occupancy of PrP in sCJD patients. We observed striking elevation of manganese and, to a lesser extent, of zinc accompanied by significant reduction of copper bound to purified PrP in all sCJD variants, determined by the PrP genotype and PrP(Sc) type, combined. Both zinc and manganese were undetectable in PrP(C) preparations from controls. Copper and manganese changes were pronounced in sCJD subjects homozygous for methionine at codon 129 and carrying PrP(Sc) type-1. Anti-oxidation activity of purified PrP was dramatically reduced by up to 85% in the sCJD variants, and correlated with increased in oxidative stress markers in sCJD brains. These results suggest that altered metal-ion occupancy of PrP plays a pivotal role in the pathogenesis of prion diseases. Since the metal changes differed in each sCJD variants, they may contribute to the diversity of PrP(Sc) and disease phenotype in sCJD. Finally, this study also presented two potential approaches in the diagnosis of CJD; the significant increase in brain manganese makes it potentially detectable by MRI, and the binding of manganese by PrP in sCJD might represent a novel diagnostic marker.  相似文献   

15.
Experimental obstacles have impeded our ability to study prion transmission within and, more particularly, between species. Here, we used cervid prion protein expressed in brain extracts of transgenic mice, referred to as Tg(CerPrP), as a substrate for in vitro generation of chronic wasting disease (CWD) prions by protein misfolding cyclic amplification (PMCA). Characterization of this infectivity in Tg(CerPrP) mice demonstrated that serial PMCA resulted in the high fidelity amplification of CWD prions with apparently unaltered properties. Using similar methods to amplify mouse RML prions and characterize the resulting novel cervid prions, we show that serial PMCA abrogated a transmission barrier that required several hundred days of adaptation and subsequent stabilization in Tg(CerPrP) mice. While both approaches produced cervid prions with characteristics distinct from CWD, the subtly different properties of the resulting individual prion isolates indicated that adaptation of mouse RML prions generated multiple strains following inter-species transmission. Our studies demonstrate that combined transgenic mouse and PMCA approaches not only expedite intra- and inter-species prion transmission, but also provide a facile means of generating and characterizing novel prion strains.  相似文献   

16.
Prion diseases are considered to be transmissible. The existence of sporadic forms of prion diseases such as scrapie implies an environmental source for the infectious agent. This would suggest that under certain conditions the prion protein, the accepted agent of transmission, can survive in the environment. We have developed a novel technique to extract the prion protein from soil matrices. Previous studies have suggested that environmental manganese is a possible risk factor for prion diseases. We have shown that exposure to manganese is a soil matrix causes a dramatic increase in prion protein survival (∼10 fold) over a two year period. We have also shown that manganese increases infectivity of mouse passaged scrapie to culture cells by 2 logs. These results clearly verify that manganese is a risk factor for both the survival of the infectious agent in the environment and its transmissibility.  相似文献   

17.
A key event in prion diseases is the conversion of the prion protein (PrP) from its native α-helical conformation to a misfolded, β-sheet rich conformation. Thus, preventing or reversing PrP misfolding could provide a means to disrupt prion disease progression and transmission. However, determining the structure of misfolded PrP has been notoriously difficult due to its inherent heterogeneity and aggregation behavior. For these reasons, simplified peptide fragments have been used as models that recapitulate characteristics of full-length PrP, such as amyloid-like aggregation and fibril formation, and in vitro toxicity. We provide a biochemical and structural comparison of PrP(127–147) peptides from elk, bovine and hamster using electrophysiology, electron microscopy and fluorescence. Our results demonstrate that the PrP(127–147) peptides adopt distinct populations of fibril structures. In addition, the elk PrP(127–147) peptide is unique in its ability to enhance Thioflavin T fluorescence and its ability to modulate neuronal ion channel conductances.  相似文献   

18.
OBJECTIVE--To identify cases of inherited prion diseases in Britain and to assess their phenotypic features. DESIGN--Screening study of patients suspected clinically to have Creutzfeldt-Jakob disease and other neurodegenerative diseases by prion protein gene analysis. SETTING--Biochemical research department. SUBJECTS--Patients suspected to have Creutzfeldt-Jakob disease and other neurodegenerative diseases. RESULTS--Two patients with symptoms characteristic of sporadic Creutzfeldt-Jakob disease were found to have inherited prion protein disease (PrP lysine 200), with a mutation at codon 200 of the prion protein gene. Both were homozygous at codon 129 of the gene. One patient was a man aged 58 of British descent while the other was of Libyan Jewish origin. CONCLUSION--Two foci of inherited prion disease are known, among Libyan Jews and in Slovakia. A separate British focus of the disease may also exist. Heterozygosity at codon 129 may lead to reduced penetrance of the mutation.  相似文献   

19.
Prion diseases are transmissible fatal neurodegenerative disorders affecting humans and animals. A central step in disease progression is the accumulation of a misfolded form (PrP(Sc)) of the host encoded prion protein (PrP(C)) in neuronal and non-neuronal tissues. The involvement of peripheral tissues in preclinical states increases the risk of accidental transmission. On the other hand, detection of PrP(Sc) in non-neuronal easy-accessible compartments such as muscle may offer a novel diagnostic tool. Primate models have proven invaluable to investigate prion diseases. We have studied the deposition of PrP(Sc) in muscle and central nervous system of rhesus monkeys challenged with sporadic Creutzfeldt-Jakob disease (sCJD), variant CJD (vCJD) and bovine spongiform encephalopathy (BSE) in preclinical and clinical stage using biochemical and morphological methods. Here, we show the preclinical presence of PrP(Sc) in muscle and central nervous system of rhesus monkeys experimentally infected with vCJD.  相似文献   

20.
Soil may serve as an environmental reservoir for prion infectivity and contribute to the horizontal transmission of prion diseases (transmissible spongiform encephalopathies [TSEs]) of sheep, deer, and elk. TSE infectivity can persist in soil for years, and we previously demonstrated that the disease-associated form of the prion protein binds to soil particles and prions adsorbed to the common soil mineral montmorillonite (Mte) retain infectivity following intracerebral inoculation. Here, we assess the oral infectivity of Mte- and soil-bound prions. We establish that prions bound to Mte are orally bioavailable, and that, unexpectedly, binding to Mte significantly enhances disease penetrance and reduces the incubation period relative to unbound agent. Cox proportional hazards modeling revealed that across the doses of TSE agent tested, Mte increased the effective infectious titer by a factor of 680 relative to unbound agent. Oral exposure to Mte-associated prions led to TSE development in experimental animals even at doses too low to produce clinical symptoms in the absence of the mineral. We tested the oral infectivity of prions bound to three whole soils differing in texture, mineralogy, and organic carbon content and found soil-bound prions to be orally infectious. Two of the three soils increased oral transmission of disease, and the infectivity of agent bound to the third organic carbon-rich soil was equivalent to that of unbound agent. Enhanced transmissibility of soil-bound prions may explain the environmental spread of some TSEs despite the presumably low levels shed into the environment. Association of prions with inorganic microparticles represents a novel means by which their oral transmission is enhanced relative to unbound agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号