首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cold acclimation requires substantial alteration in membrane property. In contrast to well-documented fatty acid unsaturation during cold acclimation, changes in phospholipid biosynthesis during cold acclimation are less understood. Here, we isolated and characterized two aminoalcoholphosphotransferase (AAPT) cDNAs, TaAAPT1 and TaAAPT2, from wheat. AAPTs utilize diacylglycerols and CDP-choline/ethanolamine as substrates and catalyze the final step of the CDP-choline/ethanolamine pathway for phosphatidylcholine (PC)/phosphatidylethanolamine (PE) synthesis, respectively. Functionality of TaAAPT1 and TaAAPT2 was demonstrated by heterologous expression in a yeast cpt1Δ ept1Δ double mutant that lacks both AAPT activities. Detailed characterization of AAPT activities from the transformed mutant cells indicated that TaAAPT1 is an ECPT-type enzyme with higher ethanolamine phosphotransferase (EPT) activity than choline phosphotransferase (CPT) activity, while TaAAPT2 is a CEPT-type with the opposite substrate preference. Transient expression of GFP-fused TaAAPT1 and TaAAPT2 proteins in wheat and onion cells indicated they are localized to both the endoplasmic reticulum and Golgi apparatus, suggesting that the final synthesis of PE and PC via the CDP-choline/ethanolamine pathway occurs in these organella. Quantitative PCR analyses revealed that TaAAPT1 expression is strongly induced by cold, while TaAAPT2 was constitutively expressed at lower levels. Measurement of phospholipid content in wheat leaves indicated that PE is more prominently increased in response to cold than PC and accordingly PE/PC ratio increased from 0.385 to 0.530 during 14 days of cold acclimation. Together, these data suggested that an increase in the PE/PC ratio during cold acclimation is regulated at the final step of the biosynthetic pathway.  相似文献   

2.
The time-course of acclimation (0-5h) of the red alga Porphyridium purpureum with respect to total proteins, phycoerythrin (PE) and phycobilisomes (PBS) has been studied at different N availability and different light regimes. After a high N input, acclimation takes place in two phases. The first one, which is photoindependent is characterized by simultaneous increase of proteins and PE. At low N input, this first phase is not detected. In the second phase the PE content increases only under low light together with an increase of the PBS size, followed probably by an increase in the number of PBS. The effectiveness of the energy transfer increases under these conditions. A rapid decrease in the PBS size correlated with a decrease of the energy transfer is observed at high irradiance. Free PE plays an important role in the organization-disorganization of the PBS at low N concentration (inverse correlation between free PE and PE attached to PBS). Free PE is not accumulated in the cell after a high N input at high irradiance. Independently of photoacclimation, two species of PBS appear with different PE content and different capacities to aggregate with other compounds. A clear correlation appears between the level of coupling of the PBS and the fluorescence ‘in vivo’ of the whole cells. The comparison between dissociated and undissociated PBS as well as between PBS obtained after the different acclimation processes allows the determination of the presence of two linker polypeptides probably associated with B-PE (37 and 32–5 kDa) and two associated with PC and APC (27 and 25 kDa). That suggests that acclimation of PBS requires a parallel stoichiometric response of biliproteins and the linker polypeptides involved in the efficiency of the energy transfer.  相似文献   

3.
Summary The phospholipid composition of gill tissue was determined in rainbow trout (Salmo gairdneri) undergoing thermal acclimation between 5°C and 20°C for a period of up to 28 days. Proportions of phosphatidylethanolamine (PE) and cardiolipin (CL) increased during cold acclimation and decreased during warm acclimation; proportions of phosphatidylcholine (PC) changed in the opposite direction (i.e., decreased during cold acclimation). In contrast, levels of phosphatidylserine,-inositol, and sphingomyelin did not vary significantly. Thermal modulation of headgroup composition occurred rapidly as reflected by changes in the ratio of PC-to-PE, which rose significantly from 2.40±0.09 to 2.92±0.09 within 72 h of transfer from 5 to 20°C; adaptation to 5°C was equally rapid. Proportions of PE changed more rapidly than those of PC during cold adaptation, whereas the opposite was true during warm acclimation. Both the time course and the direction of the observed changes in phospholipid composition suggest that such adjustments may contribute to the homeoviscous regulation of membrane properties, particularly during the initial stages of thermal adaptation.  相似文献   

4.
During acclimation to drought stress, the lipid composition of oat root cell membranes is altered. The level of phosphatidylethanolamine (PE), a non-bilayer forming lipid, is increased relative to the bilayer-forming lipid phosphatidylcholine (PC). These changes are believed to increase stress tolerance by increasing the flexibility of the membranes. To elucidate if de novo lipid synthesis is involved in altering membrane lipid composition, oat plants, acclimated or non-acclimated, were incubated in vivo with radioactively labelled lipid precursors. The labelling pattern indicated that de novo synthesis, at least partly, is causing the alterations. In plants, phospholipids can be synthesized by the Kennedy pathway, with addition of activated head groups to diacylglycerol (DAG) or, alternatively, via the CDP-DAG pathway, where phospahtidylserine (PS) is decarboxylated to form PE. To reveal the importance of the respective pathways during acclimation, we studied the effect of a decarboxylase inhibitor and the relative incorporation of [(3)H]-serine and [(14)C]-ethanolamine in vivo. Activities of CTP:ethanolaminephosphate cytidyltransferase (EC 2.7.7.14), phosphatidylserine decarboxylase (EC 4.1.1.65) and phosphatidylserine synthase; CDP-DAG:L-serine o-phosphatidyltransferase (EC 2.7.8.8) were measured and additionally, the presence of a PS decarboxylase (PSD1) in oat was confirmed by immunoblotting. The results suggest that PE synthesis via the Kennedy pathway is downregulated during acclimation and that synthesis by PS decarboxylation, via the CDP-DAG pathway, is increased, mainly through an increased activity of PS synthase.  相似文献   

5.
Gas exchange, fluorescence, western blot and chemical composition analyses were combined to assess if three functional groups (forbs, grasses and evergreen trees/shrubs) differed in acclimation of leaf respiration (R) and photosynthesis (A) to a range of growth temperatures (7, 14, 21 and 28 degrees C). When measured at a common temperature, acclimation was greater for R than for A and differed between leaves experiencing a 10-d change in growth temperature (PE) and leaves newly developed at each temperature (ND). As a result, the R : A ratio was temperature dependent, increasing in cold-acclimated plants. The balance was largely restored in ND leaves. Acclimation responses were similar among functional groups. Across the functional groups, cold acclimation was associated with increases in nonstructural carbohydrates and nitrogen. Cold acclimation of R was associated with an increase in abundance of alternative and/or cytochrome oxidases in a species-dependent manner. Cold acclimation of A was consistent with an initial decrease and subsequent recovery of thylakoid membrane proteins and increased abundance of proteins involved in the Calvin cycle. Overall, the results point to striking similarities in the extent and the biochemical underpinning of acclimation of R and A among contrasting functional groups differing in overall rates of metabolism, chemical composition and leaf structure.  相似文献   

6.
The different types of phospholipids extracted from gill mitochondria of crab Carcinus maenas have been analysed and it was found that a significant increase of the phosphatidylethanolamine (PE) content and a concomitant decrease of the phosphatidylcholine (PC) amount are present in animals living in low temperatures. The incorporation of [3H]ethanolamine in total phospholipids, PE and PC, was demonstrated in gill mitochondria and a thermal alteration of the in vivo exchange of PE between mitochondria and 10,000 g supernatant is suggested by the kinetics of the incorporation. It is suggested that the conversion of PE to PC by N-methylation is very low in crab gills. There is a marked action of acclimation temperature on the gills-hemolymph exchange of PC and PE. It is postulated that the changes reported at the level of the PE → PC conversion by N-methylation and in phospholipid exchange between hemolymph and gills could be implicated in adapting the organism to seasonal fluctuations of environmental temperatures.  相似文献   

7.
The purpose of this study was to assess whether a lymphocyte heat shock response and altered heat tolerance to ex vivo heat shock is evident during acclimation. We aimed to use flow cytometry to assess the CD3+CD4+ T lymphocyte cell subset. We further aimed to induce acclimation using moderately stressful daily exercise-heat exposures to achieve acclimation. Eleven healthy males underwent 11 days of heat acclimation. Subjects walked for 90 min (50 ± 8% VO2max) on a treadmill (3.5 mph, 5% grade), in an environmental chamber (33°C, 30–50% relative humidity). Rectal temperature (°C), heart rate (in beats per minute), rating of perceived exertion , thermal ratings, hydration state, and sweat rate were measured during exercise and recovery. On days 1, 4, 7, 10, and 11, peripheral blood mononuclear cells were isolated from pre- and post-exercise blood samples. Intracellular and surface HSP70 (SPA-820PE, Stressgen, Assay Designs), and annexin V (ab14085, Abcam Inc.), as a marker of early apoptosis, were measured on CD3+ and CD4+ (sc-70624, sc-70670, Santa Cruz Biotechnology) gated lymphocytes. On day 10, subjects experienced 28 h of sleep loss. Heat acclimation was verified with decreased post-exercise rectal temperature, heart rate, and increased sweat rate on day 11, versus day 1. Heat acclimation was achieved in the absence of significant changes in intracellular HSP70 mean fluorescence intensity and percent of HSP70+ lymphocytes during acclimation. Furthermore, there was no increased cellular heat tolerance during secondary ex vivo heat shock of the lymphocytes acquired from subjects during acclimation. There was no effect of a mild sleep loss on any variable. We conclude that our protocol successfully induced physiological acclimation without induction of cellular heat shock responses in lymphocytes and that added mild sleep loss is not sufficient to induce a heat shock response.  相似文献   

8.
Summary Rainbow trout (Salmo gairdneri) acclimated to 5°C or 20°C were administered 2-3H-glycerol and 1-14C-acetate (63 Ci of each isotope/100 g body weight) via intraperitoneal injection, and subsequently maintained at their respective acclimation temperatures. Total lipid extracts (>80% phospholipid) were prepared from isolated microsomes of liver, gill and muscle tissue at various times over a three week period. Half-lives were determined independently for the fatty acyl and glycerol moieties from slopes of regression lines relating dpm/nmole phospholipidP i vs time. In liver tissue, rates of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) turnover were also determined. Membrane turnover was most rapid in liver followed by gill and muscle. In liver, membrane fatty acids turned over more rapidly in warm-(t 1/2=3.4 days) than in cold-(t 1/2=6.8 days) acclimated fish, whereas in gill, rates of fatty acid turnover, did not differ significantly between acclimation groups. In contrast, rates of glycerol turnover were independent of acclimation temperature in liver, but faster (t 1/2=6.7 days) in warm- than cold- (t 1/2=15.1 days) acclimated fish in gill. In total lipid extracts, rates of fatty acid and glycerol turnover were equivalent in warm-acclimated fish, however, in cold-acclimated trout, there was a tendency for fatty acids (t 1/2=9.1 days) to turnover more rapidly than glycerol (t 1/2=15.1 days) in gill tissue, but more slowly (t 1/2=6.82 days) than glycerol (t 1/2=4.1 days) in liver. Although rates of glycerol turnover were equivalent in PC and PE of liver microsomes, the fatty acyl component turned over significantly more rapidly in PC at both acclimation temperatures. In cold-acclimated trout, rates of fatty acid and glycerol turnover were equivalent in PE, but the fatty acyl moiety of PC (t 1/2=4.7 days) turned over significantly more rapidly than glycerol (t 1/2=7.5 days). These results were interpreted as indicating that: (1) acclimation temperature independently influenced rates of fatty acid and glycerol turnover in a tissue specific manner, (2) a deacylation-reacylation pathway was activated in both liver and gill as a consequence of cold acclimation, but that liver tissue was more effective than gill in reutilizing the fatty acids released by phospholipase activity, and (3), in liver microsomes, patterns of turnover were phospholipid specific, with PC and PE differing either in the susceptibility of their acyl groups to degradation, or in their ability to reutilize fatty acids cleaved during membrane turnover at cold temperatures.  相似文献   

9.
Rates of incorporation of 1-14C-oleic (18:1n9), -linoleic (18:2n6), and -linolenic (18:3n3) acids into individual phosphatides were determined in isolated hepatocytes from cold (5 degrees C)- and warm (20 degrees C)-acclimated rainbow trout, Salmo gairdneri. Fatty acid incorporation into phosphatidylcholine (PC) exceeded that into all other phospholipids, but at assay and acclimation temperatures of 5 degrees C, incorporation into phosphatidylethanolamine (PE) was generally intermediate between that of PC and the remaining phosphatides. Specific radioactivities (ratios of percentage isotope incorporation-to-mole percentage of phosphatide) were consistently less than one for both PC and PE, and greater than one for phosphatidic acid (PA), lysophosphatidylcholine (LPC), phosphatidylserine (PS), and cardiolipin (CL). For PS, specific radioactivities were greater in cold- than warm-acclimated trout, and greater at 5 degrees C than 20 degrees C. Rates of oleate incorporation were generally higher, and rates of incorporation of 18:2 and 18:3 lower in cold- than warm-acclimated trout. Most phospholipids demonstrated a clear preference for the incorporation of 18:2 when assayed at 20 degrees C; however, at 5 degrees C the incorporation of 18:2 was reduced and 18:3 was generally the preferred substrate. A reduction in assay temperature from 20 degrees C to 5 degrees C also shifted the incorporation of 18:2 away from PC into PS and PA. These data were interpreted to indicate 1) a cold-induced activation of PS metabolism, possibly resulting in elevated levels of PE; 2) lower rates of general acyl group turnover in animals acclimated to 5 degrees C than 20 degrees C; 3) a specificity to the acclimation response that favors the incorporation at cold temperatures of polyunsaturated fatty acids, but not the parent acids from which they are derived; and 4) the participation of a deacylation-reacylation cycle in the metabolism of phospholipids, particularly at cold temperatures.  相似文献   

10.
Exposure of oat seedlings to repeated moderate water deficit stress causes a drought acclimation of the seedlings. This acclimation is associated with changes in the lipid composition of the plasma membrane of root cells. Here, plasma membranes from root cells of acclimated and control plants were isolated using the two-phase partitioning method. Membrane vesicles were prepared of total lipids extracted from the plasma membranes. In a series of tests the vesicle permeability for glucose and for protons were analysed and compared with the permeability of model vesicles. Further, the importance of critical components for the permeability properties was analysed by modifying the lipid composition of the vesicles from acclimated and from control plants. The purpose was to add specific lipids to vesicles from acclimated plants to mimic the composition of the vesicles from control plants and vice versa. The plasma membrane lipid vesicles from acclimated plants had a significantly increased permeability for glucose and decreased permeability for protons as compared to control vesicles. The results point to the importance of the ratio phosphatidylcholine (PC)/phosphatidylethanolamine (PE), the levels of cerebrosides and free sterols and the possible interaction of these components for the plasma membrane as a permeability barrier.  相似文献   

11.
Biomphalaria glabrata were reared in stock culture and subjected to either 7-day or 60-day acclimation periods in complex CaCO3 media with calcium values ranging from 1.5 mg/L to 75 mg/L. Following 60-day acclimation, snails from series I were each exposed to 8 miracidia of Schistosoma mansoni. Snails of series II were each exposed to a single miracidium. Snails of both experimental regimens were observed for mortality, growth, rate of infection, and number of cercariae shed. Series I snails were also monitored for fecundity during acclimation and following miracidial exposure. Calcium levels of 1.5 and 75 mg/L resulted in significant snail mortality. Shell growth and rates of infection were positively correlated with calcium maintenance level. Snails with high fecundity prior to miracidial exposure subsequently shed more cercariae. In contrast, post-exposure (PE) fecundity of snails reared in media with up to 30 mg/L Ca++ were negatively correlated with calcium level, infection rate, and number of cercariae shed. Maximal cercarial emergence occurred at 30 mg/L Ca++. These results suggest that environmental calcium affects both the distribution patterns of snail hosts of human schistosomes and the productivity of intramolluscan schistosome infection.  相似文献   

12.
13.
To predict the effects of temperature changes on plant growth and performance, it is crucial to understand the impact of thermal history on leaf morphology, anatomy and physiology. Here, we document a comprehensive range of leaf phenotypes in 25/20 °C‐grown Arabidopsis thaliana plants that were shifted to 5 °C for up to 2 months. When warm‐grown, pre‐existing (PE) leaves were exposed to cold, leaf thickness increased due to an increase in mesophyll cell size. Leaves that were entirely cold‐developed (CD) were twice as thick (eight cell layers) as their warm‐developed (WD) counterparts (six layers), and also had higher epidermal and stomatal cell densities. After 4 d of cold, PE leaves accumulated high levels of total non‐structural carbohydrates (TNC). However, glucose and starch levels declined thereafter, and after 45 d in the cold, PE leaves exhibited similar TNC to CD leaves. A similar phenomenon was observed in δ13C and a range of photosynthetic parameters. In cold‐treated PE leaves, an increase in respiration (Rdark) with cold exposure time was evident when measured at 25 °C but not 5 °C. Cold acclimation was associated with a large increase in the ratio of leaf Rdark to photosynthesis. The data highlight the importance of understanding developmental thermal history in determining individual phenotypic traits.  相似文献   

14.
Temperate and boreal tree species respond to low positive temperatures (LT) or a shortening of the photoperiod (SD) by inducing cold acclimation. One of the metabolic consequences of cold acclimation is an increase in fatty acid (FA) desaturation in membrane lipids, which allows functional membrane fluidity to be maintained at LT. The molecular mechanisms of FA desaturation were investigated in leaves of birch seedlings (Betula pendula) during cold acclimation. Four genes involved in FA biosynthesis were isolated: a 3-ketoacyl-ACP synthase II gene (BpKASII) involved in the elongation of palmitoyl-ACP to stearoyl-ACP, and three omega-3 FA desaturase genes (BpFAD3, BpFAD7, and BpFAD8) involved in the desaturation of linoleic acid (18:2) to alpha-linolenic acid (18:3). BpFAD7 was the main omega-3 FAD gene expressed in birch leaves, and it was down-regulated by LT under SD conditions. LT induced the expression of BpFAD3 and BpFAD8 and a synchronous increase in 18:3 occurred in glycerolipids. Changes in the photoperiod did not affect the LT-induced increase in 18:3 in chloroplast lipids (MGDG, DGDG, PG), but it modulated the LT response detected in extra-chloroplastic lipids (PC, PE, PI, PS). A decrease in the proportion of the 16-carbon FAs in lipids occurred at LT, possibly in relation to the regulation of BpKASII expression at LT. These results suggest that LT affects the whole FA biosynthesis pathway. They support a co-ordinated action of microsomal (BpFAD3) and chloroplast enzymes (BpFAD7, BpFAD8) in determining the level of 18:3 in extra-chloroplastic membranes, and they highlight the importance of dynamic lipid trafficking.  相似文献   

15.
Sugar beet seedlings (Beta vulgaris L. cv. Monohill) were cultivated for 3 weeks at different root and shoot temperatures and the plasma membranes (PM) from roots were purified by aqueous two-phase partitioning and analyzed for lipid composition and ATPase activities. Lipid analyses, undertaken immediately after PM purification from the roots, showed that a low root zone temperature (10 degrees C) decreased the ratio between the major lipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE). A low temperature in the root environment increased the mol% of PE and decreased the mol% of phosphatidic acid (PA), independent on the shoot growth temperature. A low temperature also decreased the mol% of linoleic acid (18:2) and increased mol% of linolenic acid (18:3) in the analyzed lipid classes, especially in PC and PE. The ratio between acyl chain lipids and protein generally increased in PM from roots grown at 10 degrees C, compared with higher temperature. The changes in lipid composition correlated with changes in ATPase activities, detected as hydrolyses of MgATP. The kinetic parameters, K(m) and V of the PM H(+)ATPase in roots increased at a low cultivation temperature, independent on shoot temperature. Moreover, Arrhenius analyses showed that the transition temperature was independent of both root or shoot growth temperature at 10-24 degrees C, whereas the activation energy of the ATPase was dependent on the growth temperature of the root, and independent on shoot temperature. Thus, acclimation processes can take place in roots, irrespective of the shoot temperature.  相似文献   

16.
A detailed analysis of the low temperature-induced alterations of Dunaliella salina (UTEX 1644) microsomal membrane lipids was carried out. Microsomal membranes were isolated from cells grown at 30 degrees C, from cells shifted to 12 degrees C for 12 hours, and from cells acclimated to 12 degrees C. Fatty acid analyses of the major lipid classes demonstrated significant changes in the fatty acid composition of phosphatidylcholinemine (PE) and phosphatidylglycerol (PG) but not phosphatidylcholine (PC) during the initial 12 hours at low temperature. These changes did not entail enhanced desaturation of linoleic acid. Subsequent to 12 hours, the proportions of linolenic acid increased in all phospholipids.Molecular species analyses of the phospholipids demonstrated that the most immediate changes following a shift to low temperature were limited to several molecular species of PE and PG. The changes observed in PE included a decrease in C(30) species and concomitant increases in C(34) and C(36) species. Compositional changes associated with PG entailed the emergence of a new molecular species (18:1/18:1) not found at 30 degrees C. The retailoring of molecular species resulted in an increase in the number of species having two unsaturated acyl chains and did not reflect a simple enhancement of desaturase activity as suggested by the fatty acid analysis. We conclude that the initial alterations in response to low temperature stress involve discrete changes in certain molecular species. These and further alterations of molecular species following acclimation to low temperature would appear to augment increases in acyl chain desaturation as a means of modifying membrane properties in response to low temperature stress.  相似文献   

17.
Theory predicts that developmental plasticity, the capacity to change phenotypic trajectory during development, should evolve when the environment varies sufficiently among generations, owing to temporal (e.g., seasonal) variation or to migration among environments. We characterized the levels of cellular plasticity during development in populations of Drosophila melanogaster experimentally evolved for over three years in either constant or temporally variable thermal environments. We used two measures of the lipid composition of cell membranes as indices of physiological plasticity (a.k.a. acclimation): (1) change in the ratio of phosphatidylethanolamine (PE) to phosphatidylcholine (PC) and (2) change in lipid saturation (number of double bonds) in cool (16°C) relative to warm (25°C) developmental conditions. Flies evolved under variable environments had a greater capacity to acclimate the PE/PC ratio compared to flies evolved in constant environments, supporting the prediction that environments with high among-generation variance favor greater developmental plasticity. Our results are consistent with the selective advantage of a more environmentally sensitive allele that may have associated costs in constant environments.  相似文献   

18.
A study was conducted to determine the role of concentration of the test chemical, of a second organic compound, and of mutation in the acclimation period before the mineralization of organic compounds in sewage. The acclimation period for the mineralization in sewage of 2 micrograms of 4-nitrophenol (PNP) per liter increased from 6 to 12 days in the presence of 10 mg of 2,4-dinitrophenol per liter. The extension of the acclimation period was equivalent to the time required for mineralization of 2,4-dinitrophenol. In contrast, the time for acclimation for the degradation of 2 micrograms of PNP per liter was reduced when 10 or 100 mg of phenol per liter was added. Lower phenol levels increased the acclimation period to 8 days. The length of the acclimation period for PNP mineralization decreased as the initial concentration of PNP increased from 2 micrograms to 100 mg/liter. The acclimation period for phenol mineralization was lengthened as the phenol concentration increased from 100 to 1,400 mg/liter. The length of the acclimation period for PNP and phenol biodegradation was reproducible, but it varied among replicates for the biodegradation of other nitro-substituted compounds added to sewage or lake water, suggesting that a mutation was responsible for acclimation to these other compounds. The acclimation period may thus reflect the time required for the destruction of toxins, and it also may be affected by the concentration of the test compound or the presence of other substrates.  相似文献   

19.
A study was conducted to determine the role of concentration of the test chemical, of a second organic compound, and of mutation in the acclimation period before the mineralization of organic compounds in sewage. The acclimation period for the mineralization in sewage of 2 micrograms of 4-nitrophenol (PNP) per liter increased from 6 to 12 days in the presence of 10 mg of 2,4-dinitrophenol per liter. The extension of the acclimation period was equivalent to the time required for mineralization of 2,4-dinitrophenol. In contrast, the time for acclimation for the degradation of 2 micrograms of PNP per liter was reduced when 10 or 100 mg of phenol per liter was added. Lower phenol levels increased the acclimation period to 8 days. The length of the acclimation period for PNP mineralization decreased as the initial concentration of PNP increased from 2 micrograms to 100 mg/liter. The acclimation period for phenol mineralization was lengthened as the phenol concentration increased from 100 to 1,400 mg/liter. The length of the acclimation period for PNP and phenol biodegradation was reproducible, but it varied among replicates for the biodegradation of other nitro-substituted compounds added to sewage or lake water, suggesting that a mutation was responsible for acclimation to these other compounds. The acclimation period may thus reflect the time required for the destruction of toxins, and it also may be affected by the concentration of the test compound or the presence of other substrates.  相似文献   

20.
Chang Y  Reed BM 《Cryobiology》2000,40(4):311-322
Meristems of many pear genotypes can be successfully cryopreserved following 1 week of cold acclimation, but an equal number do not survive the process or have very little regrowth. This study compared commonly used cold acclimation protocols to determine whether the cold acclimation technique used affected the cold hardiness of shoots or the regrowth of cryopreserved meristems. In vitro-grown pear (Pyrus L.) shoots were cold acclimated for up to 16 weeks, then either the shoot tips were tested for cold hardiness or the meristems were cryopreserved by controlled freezing. Cold acclimation consisted of alternating temperatures (22 degrees C with light/-1 degrees C darkness with various photo- and thermoperiods) or a constant temperature (4 degrees C with an 8-h photoperiod or darkness). Compared with nonacclimated controls, both alternating- and constant-temperature acclimation significantly improved postcryopreservation regrowth of P. cordata Desv. and P. pashia Buch. -Ham. ex D. Don meristems. Alternating-temperature acclimation combined with either an 8-h photoperiod or darkness was significantly better than constant-temperature acclimation. Alternating-temperature shoot acclimation for 2 to 5 weeks significantly increased postcryopreservation meristem regrowth, and recovery remained high for up to 15 weeks acclimation. Postcryopreservation meristem regrowth increased with 1 to 5 weeks of constant-temperature acclimation and then declined with longer acclimation. Shoot cold hardiness varied with the acclimation procedure. The LT(50) of shoots acclimated for 10 weeks with alternating temperatures was -25 degrees C; that with constant temperature was -14.7 degrees C; and that of the nonacclimated control was -10 degrees C. Less frequent transfer of cultures also improved acclimation of shoots. Shoots grown without transfer to fresh medium for 6-12 weeks had higher postcryopreservation recovery with shorter periods of acclimation than shoots with a 3-week transfer cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号