首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular biology of the CRH receptors-- in the mood   总被引:5,自引:0,他引:5  
Dysfunctioning of corticotropin-releasing hormone (CRH) and its receptors (CRH(1) and CRH(2)) has been linked to the development of stress-related disorders, such as mood and eating disorders. The molecular characterization of CRH(1) and CRH(2) receptors and their splice variants has generated detailed information on their pharmacology, tissue distribution and physiology. While mammalian CRH(1) receptors nonselectively bind CRH analogs, the ligand specificity of CRH(2) is narrower. CRH(1) receptors are predominantly expressed in the brain and pituitary, whereas CRH(2) receptor expression is limited to particular brain areas and to some peripheral organs. Molecular approaches to block CRH(1) receptor expression in the brain argue in favor of its involvement in the regulation of some aspects of the stress response. The CRH(2alpha) receptor may be more important for motivational types of behavior essential for survival, such as feeding and defense.(1)  相似文献   

2.
3.
The purpose of this study was to investigate the effect of corticotropin-releasing hormone (CRH) on the expression of the prostaglandin (PG) E(2) EP1 receptor subtype and PGE(2) production in amnion WISH cells (AWC). AWC cultures were incubated with CRH. Culture fluid was collected for PGE(2) measurement, and the cells were collected and analyzed for EP1 protein and mRNA. Immunohistochemical localization of the EP1 receptor was also performed. Incubation of AWC with CRH resulted in a dose-dependent increase (r = 0.97) in the level of EP1 receptor protein (P < 0.001). Coincubation of AWC with CRH and indomethacin resulted in the decreased production of PGE(2) while having no effect on EP1 receptor expression. A significant but not dose-dependent increase in EP1 mRNA expression was also observed (P < 0.01). Immunohistochemical evaluation verified cell membrane localization of the receptor in both stimulated and unstimulated cells and confirmed the increased expression of EP1 receptor in response to CRH. Incubation of AWC with CRH also resulted in increased culture fluid PGE(2) levels (P < 0.01). These results suggest that the role CRH plays in the initiation of labor may also involve the promotion of elevated PGE(2) levels and increased expression of the EP1 receptor in amnion.  相似文献   

4.
Mitsuma T  Matsumoto Y  Tomita Y 《Life sciences》2001,69(17):1991-1998
Corticotropin releasing hormone (CRH) is a potent mediator of stress responses and stress-induced disorders. Consistent with the broad range of roles proposed for CRH, high-affinity binding sites have been found in various peripheral sites. Recently two types of CRH specific receptor have been identified. Expression of CRH receptor 1 (CRH-R1) gene has been detected in human keratinocyte, but the effects of CRH to keratinocytes are still unknown. We tested whether CRH induced keratinocyte proliferation via interaction with CRH R1. Expression of CRH-R1 mRNA in the human keratinocyte and HSC-2, keratinocyte cell line, was analyzed by RT-PCR. The human keratinocyte and HSC-2 were recognized to have CRH-R1 expression ability. CRH signal is transduced into a cAMP-activated metabolic pathway via interaction with CRH-R1. Radioimmunoassay indicated that CRH binds to CRH receptor in HSC-2 cell when activating the metabolic pathway. Using thymidine incorporation assay, CRH had proliferative effect to HSC-2. This study suggests that CRH induces the proliferation of keratinocytes via interation with CRH receptors.  相似文献   

5.
CRH exerts its actions via activation of specific G protein-coupled receptors, which exist in two types, CRH-R1 and CRH-R2, and arise from different genes with multiple spliced variants. RT-PCR amplification of CRH receptor sequences from human myometrium and fetal membranes yielded cDNAs that encode a novel CRH-R type 1 spliced variant. This variant (CRH-R1d) is present in the human pregnant myometrium at term only, which suggests a physiologically important role at the end of human pregnancy and labor. The amino acid sequence of CRH-R1d is identical to the CRH-R1alpha receptor except that it contains an exon deletion resulting in the absence of 14 amino acids in the predicted seventh transmembrane domain. Binding studies in HEK-293 cells stably expressing the CRH-R1d or CRH-R1alpha receptors revealed that the deletion does not change the binding characteristics of the variant receptor. In contrast, studies on the G protein activation demonstrated that CRH-R1d is not well coupled to the four subtypes of G proteins (G(s), G(i), G(o), G(q)) that CRH-R1alpha can activate. These data suggest that although the deleted segment is not important for CRH binding, it plays a crucial role in CRH receptor signal transduction. Second messenger studies of the variant receptor showed that CRH and CRH-like peptides can stimulate the adenylate cyclase system, with reduced sensitivity and potency by 10-fold compared with the CRH-R1alpha. Furthermore, CRH failed to stimulate inositol trisphosphate production. Coexpression studies between the CRH-R1d or CRH-R1alpha showed that this receptor does not play a role as a dominant negative receptor for CRH.  相似文献   

6.
7.
The role of CRH in behavioral responses to stress   总被引:7,自引:0,他引:7  
Smagin GN  Heinrichs SC  Dunn AJ 《Peptides》2001,22(5):713-724
Corticotropin-releasing hormone (CRH) and urocortin in the central nervous system affect behavior and can enhance behavioral responses to stressors. The action of CRH-related peptides is mediated through multiple receptors that differ markedly in their pharmacological profiles and anatomical distribution. Comparative pharmacology of CRH receptor agonists suggests that CRH, urocortin, sauvagine and urotensin consistently mimic, and CRH receptor antagonists consistently lessen, functional consequences of stressor exposure. Recently, important advances have been made in understanding the CRH system and its role in behavioral responses to stress by the development of specific CRH receptor antagonists, application of antisense oligonucleotides and development of transgenic mice lacking peptides and functional receptors. This review summarizes recent findings with respect to components of the CRH system and their role in stress-induced behavioral responses.  相似文献   

8.
Mapping of the leptin binding sites and design of a leptin antagonist   总被引:3,自引:0,他引:3  
The leptin/leptin receptor system shows strong similarities to the long-chain cytokine interleukin-6 (IL-6) and granulocyte colony-stimulating factor cytokine/receptor systems. The IL-6 family cytokines interact with their receptors through three different binding sites I-III. The leptin structure was superposed on the crystal structures of several long-chain cytokines, and a series of leptin mutants was generated focusing on binding sites I-III. The effect of the mutations on leptin receptor (LR) signaling and on binding to the membrane proximal cytokine receptor homology domain (CRH2) of the LR was determined. Mutations in binding site I at the C terminus of helix D show a modest effect on signaling and do not affect binding to CRH2. Binding site II is composed of residues at the surface of helices A and C. Mutations in this site impair binding to CRH2 but have only limited effect on signaling. Site III mutations around the N terminus of helix D impair receptor activation without affecting binding to CRH2. We identified an S120A/T121A mutant in binding site III, which lacks any signaling capacity, but which still binds to CRH2 with wild type affinity. This leptin mutant behaves as a potent leptin antagonist both in vitro and in vivo.  相似文献   

9.
Recent experimental findings involve corticotropin-releasing hormone (CRH) in the cellular response to noxious stimuli and possibly apoptosis. The aim of the present work was to examine the effect of CRH on apoptosis and the Fas/Fas ligand system in an in vitro model, the PC12 rat pheochromocytoma cell line, which is widely used in the study of apoptosis and at the same time expresses the CRH/CRH receptor system. We have found the following. CRH induced Fas ligand production and apoptosis. These effects were mediated by the CRH type 1 receptor because its antagonist antalarmin blocked CRH-induced apoptosis and Fas ligand expression. CRH activated p38 mitogen-activated protein kinase, which was found to be essential for CRH-induced apoptosis and Fas ligand production. CRH also promoted a rapid and transient activation of ERK1/2, which, however, was not necessary for either CRH-induced apoptosis or Fas ligand production. Thus, CRH promotes PC12 apoptosis via the CRH type 1 receptor, which induces Fas ligand production via activation of p38.  相似文献   

10.
11.
以胎盘组织提取的mRNA为模板,RTPCR扩增人粒细胞集落刺激因子(G-CSF)受体膜外区CRH的cDNA片段,克隆于供体质粒pFASTBAC1,与杆状病毒表达载体Bacmid同源重组后,转染昆虫细胞SF9,获得重组杆状病毒并证明了CRH的高效表达。表达产物经G-CSF亲和层析进一步纯化,纯度可达90%以上。受体竞争性结合实验结果表明,该表达产物能特异性结合G-CSF,具有较高的亲和力(Kd=3.8nmol/L)。  相似文献   

12.
Several conditions that inhibit female sexual behavior are thought to be associated with altered corticotropin-releasing hormone (CRH) activity in the brain. The present experiments examined the hypothesis that endogenous CRH receptor signaling mediates the inhibition of estrous behavior by undernutrition and in other instances of sexual dysfunction. Intracerebroventricular (ICV) infusion of CRH or urocortin inhibited estrous behavior in ovariectomized steroid-primed hamsters. Conversely, ICV infusion of the CRH receptor antagonist astressin prevented the suppression of estrous behavior by food deprivation or by ICV administration of neuropeptide Y. Astressin treatment also induced sexual receptivity in nonresponders, animals that do not normally come into heat when treated with hormones, and this effect persisted in subsequent weekly tests in the absence of any further astressin treatment. Activation of the hypothalamo-pituitary-adrenocortical axis was neither necessary nor sufficient to inhibit estrous behavior, indicating that this phenomenon is due to other central actions of CRH receptor agonists. This is the first direct evidence that CRH receptor signaling may be a final common pathway by which undernutrition and other conditions inhibit female sexual behavior.  相似文献   

13.
14.
15.
The present study investigated whether the serotonergic system is involved in mediating the behavioral effects of corticotropin-releasing hormone (CRH) in juvenile spring chinook salmon, Oncorhynchus tshawytscha. An intracerebroventricular (ICV) injection of CRH induced hyperactivity. The effect of CRH was potentiated in a dose-dependent manner by the concurrent administration of the serotonin (5-HT) selective reuptake inhibitor fluoxetine. However, administration of fluoxetine alone had no effect on locomotor activity, suggesting that the locomotor-stimulating effect of CRH is mediated by the activation of the serotonergic system. Conversely, ICV injections of the 5-HT(1A) receptor antagonist NAN-190 attenuated the effect of CRH on locomotor activity when given in combination with CRH but had no effect when administered alone. These results provide the first evidence to support the hypothesis that the effect of CRH on locomotor activity in teleosts is mediated by activating the serotonergic system.  相似文献   

16.
The present study investigated the role of corticotropin-releasing hormone (CRH) in the lateral parabrachial nucleus (LPBN) in the behavioral control of body fluid homeostasis by determining the effect of bilateral injections of the CRH receptor antagonist, alpha-helical corticotropin-releasing factor (CRF)(9-41), and the CRH receptor agonist, CRH, on sodium chloride (salt appetite) and water (thirst) intake. Groups of adult, male Sprague-Dawley rats had stainless-steel cannulas implanted bilaterally into the LPBN and were sodium depleted or water deprived. Bilateral injections of alpha-helical CRF(9-41) into the LPBN significantly potentiated water and salt intake in the sodium-depleted rats when access to fluids was restored. Bilateral injections of alpha-helical CRF(9-41) into the LPBN (1.0 microg) also increased sodium appetite in water-deprived rats. Conversely, in sodium-depleted animals, bilateral injections of CRH inhibited sodium chloride intake. These results suggest that there is an endogenous CRH inhibitory mechanism operating in the LPBN to modulate the intake of sodium (salt appetite). This mechanism may contribute to the behavioral control of restoration of body fluid homeostasis in sodium-deficient states.  相似文献   

17.
Functional domains of the granulocyte colony-stimulating factor receptor.   总被引:40,自引:7,他引:33  
The granulocyte colony-stimulating factor (G-CSF) receptor has a composite structure consisting of an immunoglobulin(Ig)-like domain, a cytokine receptor-homologous (CRH) domain and three fibronectin type III (FNIII) domains in the extracellular region. Introduction of G-CSF receptor cDNA into IL-3-dependent murine myeloid cell line FDC-P1 and pro-B cell line BAF-B03, which normally do not respond to G-CSF, enabled them to proliferate in response to G-CSF. On the other hand, expression of the G-CSF receptor cDNA in the IL-2-dependent T cell line CTLL-2 did not enable it to grow in response to G-CSF, although G-CSF could transiently stimulate DNA synthesis. Mutational analyses of the G-CSF receptor in FDC-P1 cells indicated that the N-terminal half of the CRH domain was essential for the recognition of G-CSF, but the Ig-like, FNIII and cytoplasmic domains were not. The CRH domain and a portion of the cytoplasmic domain of about 100 amino acids in length were indispensable for transduction of the G-CSF-triggered growth signal.  相似文献   

18.
At least two hypothalamic peptides, corticotropin releasing hormone (CRH) and vasopressin (VP), are important in regulating adrenocorticotropin (ACTH) release from the anterior pituitary. Both are secreted in a pulsatile manner and stimulate ACTH secretion by interacting with G protein-coupled receptors (GPCRs), namely the type 1 CRH receptor and V1b receptor, respectively. Repeated or prolonged stimulation with either peptide can cause reduced ACTH responsiveness or desensitisation, both in vivo and in vitro. Desensitisation of perifused sheep anterior pituitary cells to VP was found to be rapid and occurred following treatment with 5 nM VP for 5 min. This is within the range of concentrations and durations of VP pulses seen in sheep portal blood during acute stress. In contrast, significant desensitisation of the ACTH response to CRH required pre-treatment for longer than 25 min with a CRH concentration of 1 nM, suggesting that endogenous pulses may not elicit desensitisation. Although rapid GPCR desensitisation involves uncoupling of receptors from their G proteins, commonly mediated by receptor phosphorylation, and internalisation of receptors, desensitisation of neither the CRH nor VP receptor was mediated by PKA or PKC, respectively. Desensitisation of the response to VP was found to be dependent upon receptor internalisation, and resensitisation could be delayed by treatment with a protein phosphatase 2B inhibitor. The rapid kinetics of desensitisation of the ACTH response to VP suggest that this process is important in regulating the response to acute rather than chronic stress. If, as has been suggested, CRH acts in a permissive way to set corticotrope gain, desensitisation to CRH could also be important in long term regulation of ACTH secretion.  相似文献   

19.
The aim of this study was to investigate and validate the use of a dual glow-signal luciferase reporter gene assay to simultaneously evaluate drug activity at two different seven-transmembrane receptor subtypes. Stable cell lines (CHO) transfected with either human corticotrophin releasing hormone 1 (hCRH1) receptors and a firefly luciferase reporter gene or hCRH2 and a Renilla luciferase reporter gene were created to provide different luciferase readouts for CRH1 and CRH2 receptors, respectively. Cells were combined for stimulation and measurement of luciferase luminescence in a 96-well plate format assay. The nonselective CRH agonists rat/human CRH and sauvagine caused concentration-dependent increases in luminescence via activation of CRH1 (firefly luciferase; pEC50 = 8.40 +/- 0.06 and 8.39 +/- 0.08, respectively, n = 8) and CRH2 (Renilla luciferase; pEC50 = 8.89 +/- 0.14 and 8.92 +/- 0.13, respectively, n = 8) receptors. The nonselective CRH antagonist astressin blocked these agonist-induced increases in luciferase at both CRH1 and CRH2 receptors. The selective CRH1 antagonist CP154,526 blocked r/hCRH- and sauvagine-induced increases in luciferase at CRH1 receptors only. These data report the expected pharmacology for CRH1 and CRH2 receptors. This assay enabled two receptor subtypes to be studied simultaneously in the same 96-well plate and generated robust data with low variability. It has the potential advantage of significant time and cost savings, with application to both basic research and compound screening.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号