首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluctuations in plant and frond characteristics are described for Macrocystis pyrifera (L.) C. Agardh (Laminariales, Phaeophyta) forming a fringing zone in the Falkland Islands. Giant kelp plants were sampled along a transect in the austral autumn (May 1986) and late spring (December 1986) which, according to previous frond weight analysis, were the times when extremes in population parameters were expected. Plant density and holdfast wet weights were similar for both seasons, but plants had more fronds and the fronds weighed more in spring than in autumn. Consequently, in autumn the frond biomass (1·1 wet kg m?2) and productivity (34·1 wet g m?2 d?1) were lower than in spring, when a biomass of 5·0 wet kg m?2 and a productivity of 72·4 wet g m?2 d?1 were recorded. Production of new fronds and loss of old fronds were determined at monthly intervals between April 1986 and March 1987. New frond production rates followed fluctuations in the quantity of light and varied between 0·08 and 0·48 fronds per plant per day. Frond loss rates did not show a seasonal pattern and fluctuated between 0·05 and 0·42 fronds per plant per day. It is suggested that the Falkland Islands Macrocystis population is more stable than most other giant kelp beds at high latitudes, because of the absence of winter storms.  相似文献   

2.
Net production of theEcklonia cava community was monitored on a monthly basis for a year, and annual net production was estimated. Growth rate of blades reached a maximum of about 13 g dry wt·m?2·day?1 in spring and a minimum of about 2 g dry wt·m?2·day?1 in late summer. Annual production of blades was calculated to be 2.84 kg dry wt·m?2·year?1. If the growth of stipes is taken into account, annual net production is estimated to be about 2.9 kg dry wt·m?2·year?1. Standing crop was monitored monthly for two and a half years, and a close negative correlation was found between seasonal change in standing crop and net production. Standing crop reached a maximum of about 3 kg dry wt·m?2 in summer and a minimum of about 1 kg dry wt·m?2 in winter. Low productivity in summer at a period of maximum biomass may be explained by the dense canopy and the large area of reproductive portion occupying a blade, which diminish net assimilation.  相似文献   

3.
The paper sums up the first knowledge obtained from the study of seasonal changes in the growth and decomposition rate of underground plant biomass in a grassland community (Polygalo-Nardetum) in the highland ?eskomoravská vrchovina. The maximum increment of underground organs per day was recorded in late summer (14.04 g. m?2.d?1). The period of May to July was characterized by the highest rate of decomposition of underground parts per day (up to 27 g.m?2.d?1). The estimated annual net production of underground plant organs was 0.81 kg.m?2.  相似文献   

4.
The seasonal abundance and composition of photosynthetic picoplankton (0.2-2 μm) was compared among five oligotrophic to mesotrophic lakes in Ontario. Epilimnetic picocyanobacteria abundance followed a similar pattern in all lakes; maximum abundance (2-4 × 105 cells · ml−1) occurred in late summer following a period of rapid, often exponential increase after epilimnetic temperatures reached 20 °C. In half of the lakes picocyanobacteria abundance was significantly correlated with temperature, while in other lakes the presence of a small spring peak resulted in a poor correlation with temperature. In all lakes there was a significant correlation between epilimnetic abundance and day of the year. Correlations with water chemistry parameters (soluble reactive phosphorus, total phosphorus, particulate C: P and C: N) were generally weaker or insignificant. However, in the three lakes with the highest spring nitrate concentrations, a significant negative correlation with nitrate was observed. During summer stratification, picocyanobacteria abundance reached a maximum within the metalimnion and at or above the euphotic zone (1% of incident light) in all lakes. These peaks were not related to nutrient gradients. The average total phytoplankton biomass ranged from 0.5 g m−3 (wet weight) in the most oligotrophic lake to 1.4 g m−3 for the most mesotrophic with picoplankton biomass ranging from 0.01 g m−3 to 0.3 g m−3. Picocyanobacteria biomass comprised 1 to 9 % of total phytoplankton biomass in late summer, but in one year for one lake represented a maximum of 56%. Other photosynthetic picoplankton (unidentified eukaryotes, Chlorella spp. Nannochloris spp.), although less abundant (103 cells · ml−1) than picocyanobacteria, represented biomass equal or greater than that of the picocyanobacteria in spring and early summer. On average, half of the photosynthetic picoplankton biomass was eukaryotic in the more coloured lakes, while in the clear lakes less than 20% was eukaryotic. Among the lakes there was a significant positive correlation between the average light extinction coefficient and the proportion of eukaryotic biomass of the picoplankton. In mesotrophic Jack's Lake, the contribution of picoplankton to the maximum photosynthetic rate ranged from 10 to 47% with the highest values in the spring (47%) and late summer (33%), as a result of eukaryotic picoplankton and picocyanobacteria respectively. Picocyanobacteria cell specific growth rates were high during July (0.6-0.8 day−1) and losses were close to 80% of the growth rate. Thus, despite low biomass, photosynthetic picoplankton populations appeared to turn over rapidly and potentially contributed significantly to planktonic food webs in early spring and late summer.  相似文献   

5.
Twenty-one monthly collections of the Antarctic limpet Nacella (Patinigera) concinna (Strebel, 1908) were obtained by divers at Signy Island, South Orkney Islands. A mean monthly population density of 123.7 ± 21.2 · m?2, mean biomass of 13.7 ± 2.7 g dry tissue wt · m?2, and annual production of 2.9 g · m?2 were recorded in the depth range 2–12 m below mean low water.Shell growth was slow with a maximum growth rate, in the first 3–5 yr of life, of 3 4 mm per year. Maturity was attained at 7–8 yr (21 mm length), and maximum size (41 mm length) at about 21 yr. Unique spawning behaviour was observed in two Austral springs, and data relating spawning to the spring increase in sea temperature were obtained.  相似文献   

6.
A population of Laminaria longicruris de la Pylaie was followed for a year at Bic Island, Quebec, Canada where nutrient levels in the seawater were elevated throughout the year. Tagged kelp were measured each month for growth and analyzed for alginic acid, laminaran, mannitol, carbon, nitrogen, and nitrate. Maximum growth (3.5 cm · d?1) was observed in June, and minimal growth (0.18 cm · d?1) from December to February, when ice cover limited light levels. No reserves of carbon or nitrate were formed. Laminaran levels remained below 2.7% dry weight while tissue nitrate did not exceed 0.75 μmol · g?1 dry weight. Total carbon produced per plant was 40 g C · yr?1. Nutrient availability enables the kelp to take advantage of summer light and temperature conditions to grow rapidly.  相似文献   

7.
Biomass, akinete numbers, net photosynthesis, and respiration of Pithophora oedogonia were monitored over two growing seasons in shallow Surrey Lake, Indiana. Low rates of photosynthesis occurred from late fall to early spring and increased to maximum levels in late spring to summer (29–39 mgO2·g?1 dry wt·h?1). Areal biomass increased following the rise in photosynthesis and peaked in autumn (163–206g dry wt·m?2). Photosynthetic rates were directly correlated with temperature, nitrogen, and phosphorus over the entire annual cycle and during the growing season. Differences in photosynthetic activity and biomass between the two growing seasons (1980 and 1981) were apparently related to higher, early spring temperatures and higher levels of NO3-N and PO4-P in 1981. Laboratory investigations of temperature and light effects on Pithophora photosynthesis and respiration indicated that these processes were severely inhibited below 15°C. The highest Pmax value occurred at 35°C (0.602 μmol O2·mg?1 chl a·min?1). Rates of dark respiration did not increase above 25°C thus contributing to a favorable balance of photosynthetic production to respiratory utilization at high temperatures. Light was most efficiently utilized at 15°C as indicated by minimum values of Ik(47 μE·m?2·s?1) and Ic (6 μE·m?2·s?1). Comparison of P. oedogonia and Cladophora glomerata indicated that the former was more tolerant of temperatures above 30°C. Pithophora's tolerance of high temperature and efficient use of low light intensity appear to be adaptive to conditions found within the dense, floating algal mats and the shallow littoral areas inhabited by this filamentous alga.  相似文献   

8.
Growth and sexual reproduction of the marine littoral diatom Cocconeis scutellum Ehrenb. var. ornata Grun. were investigated at 30 different combinations of temperature (5, 10, 14, 18, 22° C), irradiance (20, 60, 100 μE·m?2·s?1) and daylength (14:10 and 10:14 h LD cycle). Growth occurred at all combinations. The optimal growth was observed at 14–18° C, long daylength and highest-to-moderate irradiance, and at 18° C, short daylength and highest irradiance. Sexual reproduction on the other hand occurred between 5 and 18° C, and the optimal condition was 10–14° C and short daylength. Annual cyclic, and sesonal changes in the distribution of cell size (valve length) were observed in a field population. These changes were characterized by an annual minimum in mean cell size in autumn, an annual maximum in winter, a slight decrease from the mean in spring–middle summer, a rapid decrease from the mean in late summer–early autumn, and appearance of bimodal distribution of cell size in winter. These changes were caused by sexual reproduction in autumn, rapid growth in late summer–early autumn and slow growth in other seasons, and poor viability of small cells near the lower end of the size range.  相似文献   

9.
Tropical kelp populations are rare and anomalous relicts of shallow‐water populations that existed during glacial periods of cooler oceanographic climate. The endemic Brazilian tropical kelp, Laminaria abyssalis Joly and Oliveira Filho, occurred at depths below 40 m. The seasonal variations in biological aspects of L. abyssalis sporophyte populations and local variations in seawater nutrients and temperature were evaluated. A population was sampled four times between the austral spring of 2005 to winter 2006. Seasonal variations in the population structure and in the tissue content of nitrogen (N), carbohydrate and pigments were observed. Higher density (6.3 individuals m?2), biomass (7.3 kg m?2) and blade area (13 221 cm2) were observed in summer, while the highest percentage of tissue total N (1.6%), carbohydrates (32.9%) and photosynthetic pigments (chlorophyll a = 1.9% and chlorophyll c = 0.4%) were observed in spring. The highest surface area of fertile tissue in L. abyssalis sporophytes (2.36%) was recorded in winter, indicating winter as the season when more investments are made in reproduction. The highest concentrations of total N (6.3 μM) and phosphate (0.6 μM) in seawater were observed in spring and summer, respectively. Seawater temperatures lower than 20°C, which are characteristic of upwelling waters, occurred every month and were most frequent in spring and summer. We show that L. abyssalis invests more in growth in spring and summer and reaches the greatest thallus size and population density in summer. The lower abundance during winter may be related to the lower frequency of temperatures below 20°C and the local seasonal storms that cause turnover of rhodoliths, the main substrate for L. abyssalis.  相似文献   

10.
The biomass, productivity (14C), and photosynthetic response to light and temperature of eelgrass, Zostera marina L. and its epiphytes was measured in a shallow estuarine system near Beaufort, North Carolina, during 1974. The maximum of the biomass (above-ground) was measured in March; this was followed by a general decline throughout the rest of the year. The average biomass was 105.0 g dry wt m?2; 80.3 g dry wt m?2 was eelgrass and 24.7 g dry wt m?2 was epiphytes. The productivity of eelgrass averaged 0.88 mg C g?1 h?1 which was similar to that of the epiphytes, 0.65 mg C g?1 h?1. Eelgrass and epiphyte productivity was low during the spring and early summer, gave a maximum during late summer and fall, and declined during the winter; this progression was probably due to environmental factors associated with tidal heights. On an areal basis, the average annual productivity was 0.9 g C m?2 day?1 for eelgrass and 0.2 g C m?2 day?1 for the epiphytes. Rates of photosynthesis of both eelgrass and epiphytes increased with increasing temperature to an asymptotic value at which the system was light saturated. Both eelgrass and epiphytes had a temperature optimum of < 29 °C. A negative response to higher temperatures was also reflected in biomass measurements which showed the destruction of eelgrass with increasing summer temperatures. The data suggest that the primary productivity cycles of macrophytes and epiphytes are closely interrelated.  相似文献   

11.
Twenty-one monthly collections of the Antarctic prosobranch gastropod Laevilacunaria antarctica Martens 1885 were obtained by divers at Signy Island, South Orkney Islands. Animals were contagiously distributed in the depth range 2–12 m below mean low water, with a mean monthly density of 199.0 ± 207.3 (S.D.) m?2. Size frequency distribution was analysed, and at least three year classes identified. There was a prolonged annual recruitment from mid winter to mid summer, and juveniles dominated the population numerically for ten months of the year. Growth was seasonal, with a high rate during the Austral spring and summer, and a reduced rate during winter. A mean biomass of 356.3 mg dry tissue wt · m?2 and a total annual production of 812.2 mg · m?2 were estimated for the second year of study, and a production to biomass ratio of 2.28 obtained.  相似文献   

12.
Optimum light, temperature, and pH conditions for growth, photosynthetic, and respiratory activities of Peridinium cinctum fa. westii (Lemm.) Lef were investigated by using axenic clones in batch cultures. The results are discussed and compared with data from Lake Kinneret (Israel) where it produces heavy blooms in spring. Highest biomass development and growth rates occurred at ca. 23° C and ≥50 μE· m?2·s1 of fluorescent light with energy peaks at 440–575 and 665 nm. Photosynthetic oxygen release was more efficient in filtered light of blue (BG 12) and red (RG 2) than in green (VG 9) qualities. Photosynthetic oxygen production occurred at temperatures ranging from 5° to 32° C in white fluorescent light from 10 to 105 μE·m?2·s?1 with a gross maximum value of 1500 × 10?12 g·cell?1·h?1 at the highest irradiance. The average respiration amounted to ca. 12% of the gross production and reached a maximum value of ca. 270·10?12 g·cell?1·h?1 at 31° C. A comparison of photosynthetic and respiratory Q10-values showed that in the upper temperature range the increase in gross production was only a third of the corresponding increase in respiration, although the gross production was at maximum. Short intermittent periods of dark (>7 min) before high light exposures from a halogen lamp greatly increased oxygen production. Depending on the physiological status of the alga, light saturation values were reached at 500–1000 μE·m?2·s?1 of halogen light with compensation points at 20–40 μE·m?2·s?1 and Ik-values at 100–200 μE·m?2·s?1. The corresponding values in fluorescent light in which it was cultured and adapted, were 25 to 75% lower indicating the ability of the alga to efficiently utilize varying light conditions, if the adaptation time is sufficient. Carbon fixation was most efficient at ca. pH 7, but the growth rates and biomass development were highest at pH 8.3.  相似文献   

13.
Seasonal growth characteristics and biomass yield potential of 4 small-leaf, floating, aquatic macrophytes cultured in nutrient nonlimiting conditions were evaluated for central Florida’s climatic conditions. Biomass yields were found to be 10.6, 11.3, 16.1, and 32.1 t (dry wt) har?1 yr?1, respectively, for azolla (Azolla caroliniana), giant duckweed (Spirodela polyrhiza), common duckweed (Lemna minor), and salvinia (Salvinia rotundifolia). Operational plant density was in the range of 10–80 g dry wt m?2 for azolla, 10–88 g dry wt m?2 for giant duckweed, 10–120 g dry wt m?2 for common duckweed, and 35–240 g dry wt m?2 for salvinia. Specific growth rate (% increase per day) was maximum at low plant densities and decreased as the plant density increased. Results suggest that small-leaf, floating plants may not be suitable in monoculture biomass production systems because of low biomass yields, but they may be suitable for inclusion in poly culture systems with larger aquatic plants. The high N content (crude protein = 20–33%) of small-leaf,floating plants suggests the use of biomass as animal feed.  相似文献   

14.
Standing crop, density and leaf growth rate of Heterozostera tasmanica (Martens ex Aschers.) den Hartog along with light, temperature, nutrient and sediment characteristics were determined monthly for fifteen months at three study sites in Western Port and one site in Port Phillip Bay, Victoria, Australia. Erect vegetative stems of H. tasmanica were frequently branched, were present throughout the year and accounted for 25–60% of the above-sediment biomass, with the stem proportion higher during winter than summer. At three of the four sites there was a unimodal seasonal pattern in which minimum leaf standing crop (27–61 g dry wt. m?2), density (600–2000 leaf cluster m?2) and leaf productivity (0.34–0.77 g dry wt. m?2 day?1) generally occurred during winter (June–August) and maximum leaf standing crop (105–173 g dry wt. m?2), density (2700–5000 leaf cluster m?2) and leaf productivity (2.6–4.2 g dry wt. m?2 day?1) occurred during summer (December–February). A bimodal seasonal pattern with minimum standing crop and density during midsummer occurred at one site. This anomalous seasonal pattern may be due to exposure and desiccation stress during spring low tides. At the site receiving the lowest irradiance, standing crop, density and annual leaf production also were lowest, but length and width of leaves, shoot height and leaf growth rate per leaf cluster were the highest of the four study sites. On average, each leaf cluster at any one of the study sites produced 30–31 leaves per year with mean leaf turnover rates of 1.3–1.7% day?1. Annual leaf production of H. tasmanica ranged from 410 to 640 g dry wt.m?2 at the four sites.  相似文献   

15.
Annual growth and productivity of kelp in the Stefansson Sound Boulder Patch, located along the Arctic coast of Alaska, is regulated almost entirely by PAR received during the summer open‐water period. Increased water turbidity during summer, often in response to storm activity, has been linked to low levels of ambient PAR and measurable decreases in kelp elongation. However, the relationship between PAR and water transparency has not been quantified, which compromises efforts to assess the effects of changing climate and weather conditions on kelp production. During the 2001–2002 summer periods, the inherent optical properties (IOPs) of Stefansson Sound waters were measured in conjunction with total suspended sediments (TSS) concentrations, which differed significantly between the 2 years, for input into a radiative transfer equation (RTE). In both years, the highest TSS levels (24.2 and 18.5 mg · L?1 in 2001 and 2002, respectively) occurred in nearshore areas and were coincident with increased beam attenuations (13.8 and 8.3 m?1). Lower TSS concentrations and attenuations were measured offshore. Data input to the RTE provided a TSS‐concentration‐specific attenuation coefficient that was used in a productivity model to estimate annual kelp productivities throughout the Boulder Patch based on modeled irradiance and averaged site‐specific TSS concentrations. Production estimates varied across the Boulder Patch but were lower in 2001 (0.12–0.34 g C · g dwt?1 · year?1, where dwt stands for dry weight) compared to 2002 (0.24–0.80 g C · g dwt?1 · year?1). Production in both years was greater in offshore locations with lower TSS loads. Results suggest that PAR availability during the summer is heavily influenced by TSS concentrations, and that changes in storm intensity and frequency, associated with current warming trends, may have significant effects on the primary production of these unique benthic algal communities.  相似文献   

16.
Phenological and quantitative observations on Elodea nuttallii (Planch.) St. John, an exotic aquatic plant in Japan, were made in a shallow pond throughout 1979. Shoot elongation began in spring (late March) when the bottom water temperature became higher than about 10°C. Elongation ceased when the shoot apices reached the pond surface and vigorous branching then occurred. The community formed a dense canopy, with 40–65% of the shoot biomass in the topmost 30-cm water layer during the growing season. Maximum plant biomass (712 g dry wt. m?2) was attained in late July, while the peak root biomass occurred around June, coincident with peak flowering. The anchoring roots and stems eventually died, and after September, the population existed as a floating mat of non-anchored leafy short shoots and decaying old branch stems. This mat sank suddenly to the bottom in December, when water temperatures dropped below approximately 10°C, and overwintered there. The ecological significance of the perennial growth habit and the formation of a floating mat is discussed in terms of the adventive spread of this plant, and an estimation of annual net production and P/B quotient is also made.  相似文献   

17.
Vallisneria americana Michx (wild celery) was studied to determine the biomass and nutritive potential of all morphological structures. A 2.6-ha stand of uniform V. americana was sampled during the summer and autumn of 1980, and the spring and summer of 1981 in the southern portion of Navigation Pool 9 of the Upper Mississippi River.The maximum production rate of 3.2 g m?2 day?1 was coincident with rapid rosette production and flowering, and occurred mid- to late-July 1980. The maximum biomass of 217.3 g dry wt. m?2 was on 1 September 1980, when fruit development was also at a maximum. Leaves composed 60–70% of the summer biomass; winter buds constituted all of the winter biomass.Winter buds and fruits had the greatest nutritive potentials. Both organs contained relatively high dry matter concentrations and were low in ash (less than 10%) and fiber content. The potentially-digestible ash-free non-cell-wall fraction (NCF) was composed of an average of 75.7 and 82.2% of the dry weight of fruits and winter buds, respectively. In contrast, the nutritive potential of leaves, rootstocks, peduncles and stolons was reduced because of high moisture (less than 8% dry matter), ash and fiber concentrations. Staminate inflorescences and pistillate flowers were high in crude protein (averaged 21.8% and 16.1% of the dry-weight, respectively) and ash-free non-cell-wall fractions, but they accounted for only 2.7% of the plant biomass. The maximum calorific content of V. americana was approximately 3200 kJ m?2 at peak biomass on 1 September 1980.  相似文献   

18.
The growth of 22 strains of Azolla pinnata R. Br., 3 strains of A. filiculoides Lam. and one strain each of A. mexicana Presl and A. caroliniana Willd. was tested separately in liquid culture media kept in controlled, artificial light (30 klux) growth cabinets. Three temperature levels were used: 33°C (37/29°C day/night), 29°C (33/25°C) and 22°C (26/18°C)/ Photoperiod was 12 h a day.For most A. pinnata strains (except three) and an A. mexicana strain the maximum weekly relative growth rate was higher at 33°C than at 22°C, but not for A. filiculoides and A. caroliniana. The highest value of maximum relative growth rate corresponded to 1.9 doubling days and in most strains this occurred in the first week. As the plants grew, the growth rate slowed down more severely at higher temperatures. The maximum biomass was higher at 22°C than at 33°C in all strains. At 22°C, it took 30–50 days to attain maximum biomass and the highest value was 14 g N m?2 or 320 g dry m?2 by A. caroliniana, followed by 12 g N m?2 or 290 g dry wt. m?2 by one strain of A. filiculoides. At 29°C, the maximum biomass was attained in 20–35 days. The highest value was 6.3 g N m?2 or 154 g dry wt. m?2 by A. caroliniana. At 33°C, most A. pinnata strains gave a maximum biomass of less than 4 g N m?2 after 13–23 days, while some strains grew up to 30 days, resulting in a higher maximum biomass. The highest maximum biomass at 33°C was 5.5 g N m?2 or 140 g m?2 dry wt. by A. pinnata from Cheng Mai while the maximum biomass of A. filiculoides and A. caroliniana was much less. Azolla filiculoides requires lower temperature than other species for its growth. Azolla pinnata has the best tolerance to high temperatures among the four species. Azolla mexicana could not be discriminated from A. pinnata in its response to temperature. Azolla caroliniana may keep an intermediate position between A. filiculoides and A. pinnata in temperature response.The formation of ammonia in the medium was examined and it occurred mostly under stationary growth conditions, but, at 33°C, some strains of A. pinnata and A. mexicana released or formed ammonia at 0.3–0.8 μg N ml?1 per week during their initial exponential growth stage.  相似文献   

19.
In many temperate ecosystems, rates of atmospheric nitrogen deposition remain high over winter despite decreased agricultural activity over this season. The extent to which this nitrogen is accessible for plant growth over the following growing season may depend strongly on uptake by plants and soil microorganisms from late fall through early spring, when the majority of aboveground plant tissue has senesced. We added Ca(15NO3)2 (5 atom %15N) at a rate of 2 g m?2 of N (corresponding to 100 mg 15N m?2) to the surface of plots in a temperate old field during either late fall, winter, spring melt or early spring. We quantified the recovery of excess 15N in the soil microbial biomass and soil extracts following spring melt and in aboveground plant tissue at the peak of the plant growing season. Nitrate additions had no significant effect on total aboveground plant biomass, relative species abundance or percent tissue nitrogen. However, mean excess 15N in aboveground plant tissue varied significantly among treatments, with values of 8.1, 2.6, 0.3 and 7.3 mg m?2 for late fall, winter, spring melt and early spring addition plots, respectively. Corresponding values of excess 15N were 3.1, 1.4 and 0.2 mg m?2 in microbial biomass, and 0.17, 0.07 and 0.03 mg m?2 in soil extracts, for late fall, winter and spring melt addition plots, respectively. Overall, these results indicate that nitrogen retention from late fall through early spring may depend highly on plant uptake in this system, and that only a small fraction of the nitrogen that accumulates in the winter snow pack may be available to plants.  相似文献   

20.
Various local factors influence the decision of when to harvest grassland biomass for renewable energy including climate, plant composition, and phenological stage. However, research on biomass yield and quality related to a wide range of harvest timing from multiple environments and years is lacking. Our objective was to determine the effect of harvest timing on yield, moisture, and mineral concentration of switchgrass (Panicum virgatum L.) and native polyculture biomass. Biomass was harvested on 56 unique days ranging from late summer (2 September) to late spring (20 May) spanning 3 years (2009 to 2011) and seven sites in Minnesota, USA. Biomass yield varied considerably by location and year (range?=?0.7–11.7 Mg ha?1) and was lowest during the winter. On average, there was no difference in biomass yield harvested in early fall compared to late spring. Biomass moisture content was lowest in late spring, averaging 156 g kg?1 across all locations and years when harvested after 1 April. Biomass N concentration did not change across harvest dates; however, P and K concentrations declined dramatically from late summer to late spring. Considering the economic costs of replacing exported minerals and changes in revenues from biomass yield through time, biomass harvest should be conducted in late summer–early fall or late spring and avoided in winter. However, biomass managed for gasification should be harvested in spring to reduce concentrations of minerals that lead to slagging and fouling. Changes in biomass yield and quality through time were similar for switchgrass and native polyculture biomass. These biomass harvest recommendations are made from data spanning multiple years and locations and should be applicable to various growing conditions across the Upper Midwest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号