首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In all larval stages of Carcinus maenas L. oxygen consumption was measured at three temperatures (12,18,25 °C). Values increased during development and were in the range of 0.037 ± 0.01 (zoea-1, 12°C, x? ± 95% CL) to 0.734 ± 0.047 μl O2 · h?1 · ind?1 (megalopa, 25 °C). Growing larvae showed temperature dependent trends in weight specific respiration rates (referred to dry wt; DW), with values between ≈2.4 and 9.4 μl O2· h?1·mg DW?1. Increase in oxygen consumption of megalops did not differ much at temperatures between 18 and 25 °C. This points to an exceptional physiological position of this stage. Fed zoea-1 of C. maenas (18 °C) revealed growth rates in terms of 40% DW, 20% carbon (C), 30% nitrogen (N) and 65% hydrogen (H). At the same time larvae gained individual energy by 13% (J · ind?1), while weight specific energy dropped by ≈ 19% (J · mg DW?1) during the first day and remained constant until the moult. Starved zoea-1 of C. maenas (18 ° C) gained ≈ 20 % in DW through the first day, probably caused by inorganic salts which enter the organism after the moult of the prezoea. DW dropped to ≈ 25 % of initial value, when starvation continued. Single components decreased by ≈50% (C), 54% (N), 57% (J · ind?1). Weight specific energy (J · mg DW?1) decreased by 40% during the first 4 days of starvation, remaining constant thereafter. Individual respiration rate (R) dropped by 61 %, weight specific respiration rate (QO2) by 55 %. Individual energy loss in starved zoea-1 was 0.077 J over a period of 11 days. In this period ≈ 9.3 μl O2·ind?1 were consumed. Thus effective oxygen capacity was lower than in growing larvae. It dropped to 5.3 J·mlO2?1 after 4 days and remained constant if starvation continued, i.e. 65 % of possible energy loss occurred during the first 4 days. Decrease in requirement for oxygen and its effective capacity were both recognized as independent components of survival during starvation. Partitioning of energy through individual larval development of C. maenas was investigated for all five larval stages. The cumulative budget could be calculated: consumption (C) = 28.23 J, growth (G) = 0.92 J, exoskeleton (Ex) = 0.20 J, metabolism (M) = 5.30 J, egestion and excretion (E) = 21.82 J. Mean gross and net growth efficiency were, K1 = 3.3% and K2 = 14.8%, respectively.  相似文献   

2.
The thermoregulation behavior of Lucilia sericata larvae (Diptera: Calliphoridae), a necrophagous species that feeds on vertebrate cadavers, was investigated. These larvae require high heat incomes to develop, and can elevate temperatures by forming large aggregates. We hypothesized that L. sericata larvae should continue to feed at temperatures up to 38 °C, which can be reached inside larval masses. Thermal regulation behavior such as movement between a hot food spot and colder areas was also postulated. The hypotheses were tested by tracking for 1 h the activity of single, starved third instar larvae in a Petri dish containing 1 food spot (FS) that was heated to a constant temperature of 25 °C, 34 °C or 38 °C with an ambient temperature of 25 °C. The influence of previous conspecific activity in the food on larval behavior was also tested. The crops of larvae were dissected to monitor food content in the digestive systems. Based on relative crop measurements, larvae fed at all food temperatures, but temperature strongly affected larval behavior and kinematics. The total time spent by larvae in FS and the duration of each stay decreased at high FS temperature. Previous activity of conspecifics in the food slightly increased the time spent by larvae in FS and also decreased the average distance to FS. Therefore, necrophagous L. sericata larvae likely thermoregulate during normal feeding activities by adjusting to local fluctuations in temperature, particularly inside maggot masses. By maintaining a steady internal body temperature, larvae likely reduce their development time.  相似文献   

3.
Improved methods for experimental rearing ofPagurus bernhardus andCarcinus maenas larvae are presented. Isolated maintenance was found essential for reliable statistical evaluation of results obtained from stages older than zoea-1. Only by isolated rearing is it possible to calculate mean values ±95% confidence intervals of stage duration. Mean values (without confidence intervals) can only be given for group-reared larvae if mortality is zero. Compared to group rearing, isolated rearing led to better survival, shorter periods of development and stimulated growth. Due to different swimming behaviorP. bernhardus zoeae needed larger water volumes thanCarcinus maenas larvae.P. bernhardus zoeae were reared with best results when isolated in Petri dishes (ca. 50 ml). They fed on newly hatched brine shrimp nauplii (Artemia spp.).P. bernhardus megalopa did not require any gastropod shell or substratum; it developed best in glass vials without any food.C. maenas larvae could be reared most sucessfully in glass vials (ca 20 ml) under a simulated day-night regime (LD 16:8); constant darkness had a detrimental effect on development, leading to prolonged stage-duration times.C. maenas larvae were fed a mixture of newly hatched brine shrimp naupli and rotifers (Brachionus plicatilis).  相似文献   

4.
Newly hatched stage I–II nauplii of Balanus improvisus (Darwin) were “totally starved” (until death) or “partially starved” for the first 48 h and 96 h of their development. Daily mortality and molting were monitored throughout larval development in both starved and fed control groups. Fed control animals exhibited a largely synchronous molting pattern with instars of equal duration. Total starvation suppressed molting beyond stage II; 50% mortality occurred in ≈4 days at both 15 and 21 °C, while longest survival time was 7 days at 15 °C and 6 days at 21 °C. At 15 °C, partially starved nauplii retained the ability to complete naupliar development but at a slower overall rate and with increased mortality relative to controls. These effects were more pronounced in the 96-h group. Increased mortality of stage VI nauplii was evident in both partially starved groups (7.1% for 48 h, 18.8% for 96 h) relative to unstarved controls (3.1%). Stage II nauplii exhibited little resistance to starvation and survival potential may have decreased as soon as 24 h.  相似文献   

5.
At a larval body weight of 15–16 mg, young 3rd-instar Calliphora vicina larvae pass from the obligatory feeding phase, when starvation results in cessation of growth or development, to the facultative feeding phase when starvation leads to subsequent pupariation. During normal larval development the transition from obligatory to facultative feeding phase appears to be independent of 20-hydroxyecdysone but absence (or insufficiency) of the hormone is the likely reason why starved larvae in the obligatory feeding phase fail to pupariate. 20-Hydroxy-ecdysone induces termination of feeding by normal, facultative phase larvae and is the probable signal for larval commitment to pupariation.  相似文献   

6.
The effects of starvation on larval growth, survival, and metamorphosis of Manila clam Ruditapes philippinarum at the temperature of 19.6–21.6 °C, the salinity of 34‰ and pH of 8.0 were investigated from May 18 to July 18, 2006. In this study, the early, middle and late umbo-veliger larvae with the shell lengths of 100, 140, and 190 μm were subject to temporary food deprivation for up to 4.5, 20, and 25d at 0.5, 4, 5d intervals, followed by refeeding for the remaining of a 24, 20, 25d period, respectively. The results suggested that the larvae should have shown considerable tolerance to starvation due to their endogenous and exterior nutrition material, for larvae and time to the point-of-no-return (PNR: the threshold point during starvation after which larvae could no longer metamorphose even if food is provided) were calculated to be 4.25, 17.54, and 22.17d. As the starvation period prolonged, the mean shell length of larvae starved got close to constants at 1.5, 4, and 15d after starvation, which were different for larvae at different stages when starvation began, survival of larvae decreased, and was lower in treatments starved earlier in development than those starved later, for the early, middle and late umbo-veliger larvae, after 4.5, 20 and 25d of starvation period, few larvaes were alive. After starvation period, the alive larvaes were able to metamorphose and had a capability of compensatory growth when refeeding was given. Starvation not only affected metamorphosis rate, but also caused the delay in the time to metamorphosis and the decrease in the metamorphosed sizes. For example, for the continuously-fed larvae, duration to metamorphosis was 20.7d, for larvae with a size of 100-μm starved for up to 4d, larvae with a size of 140-μm starved for up to 16d, larvae with a size of 190-μm starved for up to 20d, duration to metamorphosis were 29.7, 31.7, and 37.7d, the delay in duration to metamorphosis were 9, 11, and 17d, respectively. Furthermore, importance of nutrition material for maintaining larval survival during starvation and the compensatory growth on larvae at the same feeding time were discussed.  相似文献   

7.
To understand the role of sea temperature on the population biology of the crown-of-thorns sea star Acanthaster planci, the thermal window for embryonic and larval development was investigated. In two experiments, the response of embryos and larvae across 12 temperatures from 19.4 to 36.5 °C was quantified as the percentage of individuals reaching cleavage stage embryos, blastula, gastrula, early-bipinnaria, late-bipinnaria larvae or abnormal. Measurements were made at 7 times up to 72 h post-fertilisation, with the morphometrics of larvae measured in the 72-h sample. Acanthaster planci developed at temperatures between 19.4 and 33.2 °C, with a thermal window for development to the late-bipinnaria stage between 25.6 and 31.6 °C. Development rate, normal development and larval size were optimal at 28.7 °C, with development rates remaining relatively constant up to 31.6 °C. Rates of abnormality increased steadily (early embryonic stages) above 28.7 °C and was 100 % at temperatures approaching 33 °C. These experiments provide a more detailed insight into the response of A. planci developmental stages to temperature. The present day distribution of the species in eastern Australia overlap with the optimal thermal window for development to the late-bipinnaria stage (≈25–32 °C), implying a role of temperature in controlling population distributions and abundances. Despite this, short- or long-term temperature increases may not be a major modulator of the crown-of-thorns recruitment success, population dynamics and distribution in the future as no significant change in development rates, larval survival and growth occurred within this thermal window. Therefore, moderate (1–2 °C) increases in sea temperatures caused by El Niño or near-future ocean warming may not drive an increase in developmental and settlement success. Indeed, without any acclimation to warmer temperatures expected under near-future warming (+2 to 4 °C), climate change could ultimately reduce larval survival due to elevated mortality above the optimal development temperature.  相似文献   

8.
Experiments have been carried out on the duration of larval development of the spider crabHyas araneus L., in relation to temperature, food quality, and individual variation. A graphical model is presented which predicts larval occurrence and settlement in the field (Helgoland waters, North Sea). Preliminary observations are reported on predator-prey interactions with larvae of the spionid polychaetePolydora ciliata. Cannibalism and necrophagy during starvation experiments with zooplankton are considered: In larvae which are not kept in individual confinement, maximum survival time doubles due to feeding on living or dead sibling larvae. Analyses are presented revealing elemental and biochemical composition of starved and fed larvae as well as energy equivalents calculated from these data. During starvation, early larvae lose carbon, nitrogen, and hydrogen. Their main metabolic substrate is protein; lipid is utilized to a much lesser extent. Exoskeleton formation is, apparently, independent of nutrition: Zoea-1 larvae starved for 8 days contain the same amount of chitin as larvae fed well over this period of time. Energy calculations suggest an extremely low respiration rate and a very effective reconstruction of body material in starved larvae.  相似文献   

9.
The activity of the lysosomal marker enzyme acid phosphatase in the larval fat body of Calliphora erythrocephala increases during development, but not at the same rate throughout the tissue. During the feeding stage, the posterior region has a higher acid phosphatase activity than the anterior region. When the larvae cease feeding on the 5th day of development, the acid phosphatase activity of the inactive anterior lobe increases rapidly in a mosaic-cell pattern. When 4-day-old feeding stage larvae are starved, this increase occurs one day earlier than normally. After the emptying of the gut, the acid phosphatase activity of all the anterior cells both in normal and in starved larvae exceeds that of those in the posterior region.Transplantation experiments indicate that the induction of acid phosphatase activity in the fat body during normal development, especially in the anterior region, is caused by a change in the internal environment when the larvae cease feeding. Both RNA and protein synthesis are involved in this induction process. Inductive factors are present in 5-day-old larvae as well as during formation of the puparium. The competence of the feeding-stage fat cells to develop high acid phosphatase activity is acquired before the actual induction takes place.  相似文献   

10.
Natural reproduction of pallid sturgeon Scaphirhynchus albus has been limited for decades and a recruitment bottleneck is hypothesized to occur during the larval stage of development. In this study, we evaluated the effects of water velocity and temperature on the swimming activity, energy use, settling behaviour and mortality of endogenously feeding larvae. The swimming activity of drifting sturgeon larvae (i.e., fish exhibiting negative rheotaxis) increased at low water velocity. In subsequent experiments, we observed greater energy depletion and resultant mortality of larvae in no-flow environments (0 cm s−1) compared to tanks with water velocity ranging from 3.5 to 8.3 cm s−1. The growth rate of drifting larvae was positively related to water temperature (18.7–23.3°C), but reduced growth rate at low water temperature (18.7°C) resulted in protracted development that extended average drift duration by ~4 days compared to larvae reared at 23.3°C. This study provides evidence that cooler summer water temperatures, characteristic of present-day conditions in the upper Missouri River, can reduce larval development and extend both the drift duration and distance requirements of S. albus. Moreover, if dispersed into low velocity environments, such as in reservoir headwaters, larvae may experience increased mortality owing to a mismatch between early life stage drift requirements and habitat conditions in the river. Manipulation of water releases to increase seasonal water temperature below dams may aid survival of S. albus larvae by shortening the time and distance spent drifting.  相似文献   

11.
Ye L  Yang S Y  Zhu X M  Liu M  Lin J Y  Wu K C 《农业工程》2011,31(5):241-245
To understand the physiological and ecological responses of marine fishes to the change of water temperature, newly-hatched larvae of Yellowtail clownfish Amphiprion clarkii were reared in captivity at water temperatures of 23, 26 and 29 °C till they completed the metamorphosis to juvenile phase, and larval survival, development, growth and feeding were evaluated during the experimental period. The results showed that water temperature influenced the physiological performance of larvae of A. clarkii significantly. The survival and growth rates of larvae of A. clarkii increased significantly with the increase of water temperature from 23 to 29 °C (P < 0.05). Water temperature also influenced larval development of A. clarkii significantly and larvae reared at 23 °C took longer time for post-larval development and metamorphosis compared to 26 and 29 °C (P < 0.05). Total length and body weight for post-larval development and metamorphosis decreased with the increase of water temperature from 23 to 29 °C (P < 0.05). Q10 in developmental rate was higher than in daily growth rate at the same rearing temperature, indicating that at water temperature had greater influence on larval development than on growth. Water temperature also influenced larval feeding of A. clarkii significantly with feed ration (FR) and feed conversion efficiency (FCE) increased with the increase of water temperature from 23 to 29 °C (P < 0.05). There was a positive correlation between FR and specific growth rate (SGR) (P < 0.05) but not between FCE and SGR (P > 0.05), indicating that FR influenced growth rate significantly in larvae of A. clarkii. This study demonstrated that the physiological responses of larvae of A. clarkii to the change of water temperature and confirmed that water temperature influenced larval survival, development, growth and feeding significantly. This study suggests that the decline of larval survival and growth rates, extension of pelagic larval duration and reduction of larval feeding at lower temperature have ecological impacts on larval dispersal and metamorphosis, juvenile settlement and population replenishment in A. clarkii in the wild.  相似文献   

12.
Eggs and larvae of the carangid fish, Caranx mate (Cuv. & Valenc.), were incubated at various temperature (17.2 to 33.1 °C) and salinity (10 to 42 ‰) combinations in five experiments. The following rates were directly proportional to temperature: embryonic development, yolk absorption, eye and jaw development, and increase in length. Unfed C. mate larvae attained a maximum size at 25 °C and 20 ‰ Eyes and jaws of larvae were functional by the end of the yolk sac stage at all temperature and salinity levels tested.Hatching success and larval survival at the end of the yolk sac stage were generally greater than 50 % between 22° and 32°C. Hatching success and larval survival at the end of the yolk sac stage were reduced at salinity extremes, especially in low temperature-low salinity and high temperature-high salinity combinations. The frequency of morphological abnormalities was also high at extreme temperatures and salinities.The incipient upper thermal TLm for unfed C. mate larvae acclimated to 23.8°C increased from 31.5°C for newly hatched larvae, to 34.2°C for 72 h larvae, but decreased to 32.0°C for starving larvae after the exhaustion of the yolk supply.  相似文献   

13.
14.
Dalgliesh R. J. and Stewart N. P. 1982. Some effects of time, temperature and feeding on infection rates with Babesia bovis and Babesia bigemina in Boophilus microplus larvae. International Journal for Parasitology12: 323–326. Percentages of larval ticks in which Babesia bovis and B. bigemina parasites could be detected (infection rates) were determined after the larvae had been exposed to temperatures between 9°C and 27°C for periods of 1–35 days and then either fed on calves or heated at 37°C to stimulate babesial development. Infection rates with both species increased during 2–4 weeks after the larvae hatched, regardless of the temperature of exposure. Infection rates with B. bovis were higher after exposure of larvae to 14°C than to 27°C. This effect was less pronounced with B. bigemina. Infection rates were higher in fed larvae than in unfed, ‘heat stimulated’ larvae. The findings indicate that infected larval ticks become more efficient vectors of Babesia during the first 2–4 weeks after hatching and that repeated sampling of a tick population is necessary to determine valid infection rates.  相似文献   

15.
The doridacean nudibranch Doridella obscura Verrill was raised through one complete generation in laboratory culture, and spawning behavior monitored for a year at monthly intervals in Barnegat Bay, New Jersey.The nudibranch deposited egg masses throughout the year in Barnegat Bay, and the larvae remained viable at temperatures ranging from 1.5 to 28 °C. At 25 °C the eggs hatch 4 days after oviposition, and the planktotrophic veliger larvae swim and feed for 9 days before they metamorphose. Settlement occurs specifically on the bryozoan Electro crustulenta (Pallas). The spirally coiled larval shell grows rapidly until the dorsal mantle fold is retracted from the aperture 5–6 days after hatching. Although starved larvae grow only slightly and do not metamorphose, they resume normal development on introduction of suitable food. Newly metamorphosed juveniles consume algae and debris on the surface of the bryozoan until they grow large enough to attack the living zooids of E. crustulenta.The life cycle of Doridella obscura is short (26 days at 25 °C), allowing the nudibranchs to take advantage of short-lived Electra crustulenta colonies in unstable habitats in bays and estuaries.  相似文献   

16.
Environmental temperature is one of the critical factors affecting fish development. The aim of this study was to examine the impact of three different rearing temperatures (16, 19 and 22°C) throughout the endogenous feeding phase of the Siberian sturgeon Acipenser baerii. This was performed by assessing (a) larval survival and growth; (b) immunofluorescence localization and expression of genes involved in muscle development and growth – myog and Igf1; and (c) stress status through the expression of thermal stress genes – Hsp70, Hsp90α and Hsp90β – and whole body cortisol. Overall survival rate and larval weight did not differ significantly across temperatures. Larvae subjected to 22°C showed faster absorption of the yolk-sac than larvae subjected to 19 or 16°C. Both at schooling and at the end of the trial, larvae reared at 16°C showed significantly lower levels of cortisol than those reared at 19 or 22°C. IGF-1 immunopositivity was particularly evident in red muscle at schooling stage in all temperatures. The expression of all Hsps as well as the myog and Igf1 genes was statistically higher in larvae reared at 16°C but limited to the schooling stage. Cortisol levels were higher in larvae at 22°C, probably because of the higher metabolism demand rather than a stress response. The observed apparent incongruity between Hsps gene expression and cortisol levels could be due to the lack of a mature system. Further studies are necessary, especially regarding the exogenous feeding phase, in order to better understand if this species is actually sensitive to thermal stress.  相似文献   

17.
Fecundity and feeding of two introduced sibling biological control species, Galerucella calmariensis and G. pusilla (Coleoptera: Chrysomelidae) on purple loosestrife, Lythrum salicaria L. (Lythraceae) were compared at constant temperatures of 12.5, 15, 20, 25, and 27.5 °C. Larval feeding was also carried out at 30 °C, but at this temperature, larvae developed only to the L2 stage and none pupated. Thus, data for this temperature were not used in the analysis. There were significant species × temperature interactions in fecundity. Of the two species, Galerucella pusilla laid more eggs. Although egg production of both species was lowest at 12.5 °C and increased to 20 °C, at higher temperatures, the two species reacted differently. From 25 to 27.5 °C, egg production decreased for G. pusilla, but G. calmariensis fecundity peaked at 27.5 °C. Significant temperature × species × life-stage interactions were also observed in feeding. For each species, the amount of feeding varied with temperature and stage of development. Galerucella pusilla adults consumed more foliage at 15, 20, and 27.5 °C. However, at 12.5 °C G. calmariensis adults fed more than G. pusilla. G. pusilla larvae consumed an average of 25% less foliage than G. calmariensis. The lower larval consumption of G. pusilla suggests that when food is limited, G. pusilla larvae may have a higher survival rate because of its ability to complete larval development with less food and produce more progeny due to its greater fecundity. When food is not limited neither species would have a competitive advantage and both species could coexist temporally and spatially. However, since G. calmariensis larvae consumed more leaf material, the larval stage of this species would have a greater impact on purple loosestrife than G. pusilla.  相似文献   

18.
Macropetasma africanus (Balss) has been successfully spawned and its larvae reared under controlled laboratory conditions. The relationship between egg number (E) and female total length (L) was E = 18.59 L2.11. An experiment was designed to test the effect of temperature on larval development, survival and growth. Temperature effected larval development time, from 13–15 days at 25°C, to 25 days at 15°C (nauplius 1 to post-larva). Mortality was low for the naupliar stages at 25, 22 and 18°C, while at 15°C only 52% of the larvae reached nauplius 6. Mortality was highest from nauplius 6 to protozoea 1 (17, 21, and 18% at 25, 22, and 18°C, respectively), but decreased considerably for all temperatures once the mysis stage was reached. Overall survival rates from nauplius 1 to post-larva decreased with decreasing temperature (65, 54, 48, and 39% at 25, 22, 18, and 15°C respectively). Temperature also significantly affected larval growth. At 25°C mean total length was significantly (P < 0.05) larger than at 15°C (protozoea 2 to post-larva), while from protozoea 3 to post-larva total length differences were significantly different (P < 0.05) between 18 and 25°C. M. africanus has a major spawning peak in summer, suggesting that there may be a selective advantage to reproducing during the warmer months.  相似文献   

19.
The relationship between rate of larval development and the potential to prolong larval life was examined for larvae of the marine prosobranch gastropod Crepidula plana Say. Larvae were maintained in clean glass dishes at constant temperatures ranging from 12–29°C and fed either Isochrysis galbana Parke (ISO) or a Tahitian strain of Isochrysis species (T-ISO). Under all conditions, larvae grew at constant rates, as determined by measurements of shell length and tissue biomass. Most larvae eventually underwent spontaneous metamorphosis. Regardless of temperature, faster growth was associated with a shorter planktonic stage prior to spontaneous metamorphosis. Within an experiment, higher temperatures generally accelerated growth rates and reduced the number of days from hatching to spontaneous metamorphosis. However, growth rates were independent of temperature for larvae fed ISO at 25 and 29°C and for larvae fed T-ISO at 20 and 25°C. Where growth rates were unaffected by temperature, time to spontaneous metamorphosis was similarly unaffected. Maximum durations of larval life at a given temperature were shorter for larvae of Crepidula plana than for those of the congener C. fornicata (L.), although both species grew at comparable rates. Interpretations of the ecological significance of these interspecific differences in delay capabilities will require additional data on adult distributions and larval dispersal patterns in the field.  相似文献   

20.
Bioassays were conducted to determine the susceptibility of egg masses of Mamestra brassicae and Spodoptera littoralis to different spore doses of Paecilomyces fumoso-roseus and Nomuraea rileyi at 20° and 25°C. P. fumoso-roseus was highly virulent against eggs, whereas N. rileyi provoked only a deferred mortality of larvae hatched from treated eggs. Nevertheless, larval mortality of S. littoralis caused by N. rileyi at 25°C was more effective after first-instar larval contamination than after egg mass treatment. The duration of the egg stage could explain differences of susceptibility between the two noctuids at 25°C. Scanning electron microscopical observations suggested two ways of contamination of newly hatched larvae. First, fungal germinations on the chorion surface suggested that newly hatched larvae might be infected by penetration of the egg integument before hatching. Second, conidia on the egg cuticle could be an entomopathogenic inoculum for newly emerging larvae which fed upon chorions. Results showed that pathogenicity of Hyphomycetes to noctuid eggs might be a promising area of investigation for biological control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号