首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Movement patterns of some coral reef fishes change with natural cycles (e.g., tidal, lunar and seasonal), resulting in short-term shifts in fish assemblages. We reviewed the literature on temporal changes in coral reef fish assemblages derived from underwater visual census (UVC) and found that movement was rarely considered in experimental design and analysis or as cause of change in interpretation of the results. Studies of vagile species, large individuals, species forming transient spawning aggregations and studies of fishes in contiguous habitats are most likely to be affected by such movements. Ignoring predictable patterns of movement associated with such natural cycles in survey design and analysis increases “unexplained” variation, making it more difficult to detect longer-term changes in fish assemblages and reducing the effectiveness of UVC as a monitoring tool.  相似文献   

2.
Reef fish assemblages are exposed to a wide range of anthropogenic threats as well as chronic natural disturbances. In upwelling regions, for example, there is a seasonal influx of cool nutrient-rich waters that may shape the structure and composition of reef fish assemblages. Given that climate change may disrupt the natural oceanographic processes by altering the frequency and strength of natural disturbances, understanding how fish assemblages respond to upwelling events is essential to effectively manage reef ecosystems under changing ocean conditions. This study used the baited remote underwater video stations (BRUVS) and the traditional underwater visual census (UVC) to investigate the spatiotemporal patterns of reef fish assemblages in an upwelling region in the North Pacific of Costa Rica. A total of 183 reef fish species from 60 families were recorded, of which 166 species were detected using BRUVS and 122 using UVC. Only 66% of all species were detected using both methods. This study showed that the upwelling had an important role in shaping reef fish assemblages in this region, but there was also a significant interaction between upwelling and location. In addition, other drivers such as habitat complexity and habitat composition had an effect on reef fish abundances and species. To authors’ knowledge, this is the first study in the Eastern Tropical Pacific that combines BRUVS and UVC to monitor reef fish assemblages in an upwelling region, which provides more detailed information to assess the state of reef ecosystems in response to multiple threats and changing ocean conditions.  相似文献   

3.
A 9-year study of the structure of assemblages of fish on 20 coral patch reefs, based on 20 non-manipulative censuses, revealed a total of 141 species from 34 families, although 40 species accounted for over 95% of sightings of fish. The average patch reef was 8.5 m2 in surface area, and supported 125 fish of 20 species at a census. All reefs showed at least a two-fold variation among censuses in total numbers of fish present, and 12 showed ten-fold variations. There was also substantial variation in the composition and relative abundances of species present on each patch reef, such that censuses of a single patch reef were on average about 50% different from each other in percent similarity of species composition (Czekanowski's index). Species differed substantially in the degree to which their numbers varied from census to census, and in the degree to which their dispersion among patch reefs was modified from census to census. We characterize the 40 most common species with respect to these attributes. The variations in assemblage structure cannot be attributed to responses of fish to a changing physical structure of patch reefs, nor to the comings and goings of numerous rare species. Our results support and extend earlier reports on this study, which have stressed the lack of persistant structure for assemblages on these patch reefs. While reef fishes clearly have microhabitat preferences which are expressed at settlement, the variations in microhabitat offered by the patch reefs are insufficient to segregate many species of fish by patch reef. Instead, at the scale of single patch reefs, and, to a degree, at the larger scale of the 20 patch reefs, most of the 141 species of fish are distributed without regard to differences in habitat structure among reefs, and patterns of distribution change over time. Implications for general understanding of assemblage dynamics for fish over more extensive patches of reef habitat are considered.  相似文献   

4.
A massive Porites microatoll generally has three types of microhabitat at the top, side, and base of the microatoll. The purpose of the present study was to analyze microhabitat associations of reef fish on microatolls to determine whether habitat characteristics play an important role in the structuring of reef fish assemblages in a patchy habitat. We also investigated temporal stability of reef fish assemblage structures over a period of 17 months to determine whether fish assemblage structures vary in a random manner. The results of correspondence analysis indicated species-specific habitat associations for pomacentrids (five species) and labrids (seven species). The degree of temporal stability of fish assemblage structures, calculated by Piankas index, was relatively high in a large-sized microatoll (0.503–0.831: 3.6m in diameter), in which microhabitat associations of fishes were clearly observed. The present study suggests that a microhabitat association is one of the important factors responsible for organization of reef fish assemblages in a microatoll.  相似文献   

5.
Anthropogenic habitats are increasingly prevalent in coastal marine environments. Previous research on sessile epifauna suggests that artificial habitats act as a refuge for nonindigenous species, which results in highly homogenous communities across locations. However, vertebrate assemblages that live in association with artificial habitats are poorly understood. Here, we quantify the biodiversity of small, cryptic (henceforth “cryptobenthic”) fishes from marine dock pilings across six locations over 35° of latitude from Maine to Panama. We also compare assemblages from dock pilings to natural habitats in the two southernmost locations (Panama and Belize). Our results suggest that the biodiversity patterns of cryptobenthic fishes from dock pilings follow a Latitudinal Diversity Gradient (LDG), with average local and regional diversity declining sharply with increasing latitude. Furthermore, a strong correlation between community composition and spatial distance suggests distinct regional assemblages of cryptobenthic fishes. Cryptobenthic fish assemblages from dock pilings in Belize and Panama were less diverse and had lower densities than nearby reef habitats. However, dock pilings harbored almost exclusively native species, including two species of conservation concern absent from nearby natural habitats. Our results suggest that, in contrast to sessile epifaunal assemblages on artificial substrates, artificial marine habitats can harbor diverse, regionally characteristic assemblages of vertebrates that follow macroecological patterns that are well documented for natural habitats. We therefore posit that, although dock pilings cannot function as a replacement for natural habitats, dock pilings may provide cost‐effective means to preserve native vertebrate biodiversity, and provide a habitat that can be relatively easily monitored to track the status and trends of fish biodiversity in highly urbanized coastal marine environments.  相似文献   

6.
Derelict ships are commonly deployed as artificial reefs in the United States, mainly for recreational fishers and divers. Despite their popularity, few studies have rigorously examined fish assemblages on these structures and compared them to natural reefs. Six vessel-reefs off the coast of southeast Florida were censused quarterly (two ships per month) to characterize their associated fish assemblages. SCUBA divers used a non-destructive point-count method to visually assess the fish assemblages over 13- and 12-month intervals (March 2000 to March 2001 and March 2002 to February 2003). During the same intervals, fish assemblages at neighboring natural reefs were also censused. A total of 114,252 fishes of 177 species was counted on natural and vessel-reefs combined. Mean fish abundance and biomass were significantly greater on vessel-reefs in comparison to surrounding natural reef areas. Haemulidae was the most abundant family on vessel-reefs, where it represented 46% of total fish abundance. The most abundant family on natural reefs was Labridae, where it accounted for 24% of total fish abundance. Mean species richness was significantly greater on vessel-reefs than neighboring natural reefs and also differed among vessel-reefs. Both mean fish abundance and mean species richness were not significantly different between natural reefs neighboring vessel-reefs and natural reefs with no artificial structures nearby. This suggests the vessel-reefs are not, in general, attracting fish away from neighboring natural reefs in our area. Additionally, economically important fish species seem to prefer vessel-reefs, as there was a greater abundance of these species on vessel-reefs than surrounding natural reef areas. Fish assemblage structure on natural versus artificial reefs exhibited a low similarity (25.8%). Although no one species was responsible for more than 6% of the total dissimilarity, fish assemblage trophic structure differed strikingly between the two reef types. Planktivores dominated on vessel-reefs, accounting for 54% of the total abundance. Conversely, planktivores only made up 27% of total abundance on natural reefs. The results of this study indicate vessel-reef fish assemblages are unique and that these fishes may be utilizing food resources and habitat characteristics not accessible from or found at natural reefs in our area. Production may also be occurring at vessel-reefs as the attraction of fish species from nearby natural reefs seems to be minimal. Electronic supplementary material Supplementary material is available for this article at and accessible for authorised users  相似文献   

7.
Corals create complex reef structures that provide both habitat and food for many fish species. Because of numerous natural and anthropogenic threats, many coral reefs are currently being degraded, endangering the fish assemblages they support. Coral reef restoration, an active ecological management tool, may help reverse some of the current trends in reef degradation through the transplantation of stony corals. Although restoration techniques have been extensively reviewed in relation to coral survival, our understanding of the effects of adding live coral cover and complexity on fishes is in its infancy with a lack of scientifically validated research. This study reviews the limited data on reef restoration and fish assemblages, and complements this with the more extensive understanding of complex interactions between natural reefs and fishes and how this might inform restoration efforts. It also discusses which key fish species or functional groups may promote, facilitate or inhibit restoration efforts and, in turn, how restoration efforts can be optimised to enhance coral fish assemblages. By highlighting critical knowledge gaps in relation to fishes and restoration interactions, the study aims to stimulate research into the role of reef fishes in restoration projects. A greater understanding of the functional roles of reef fishes would also help inform whether restoration projects can return fish assemblages to their natural compositions or whether alternative species compositions develop, and over what timeframe. Although alleviation of local and global reef stressors remains a priority, reef restoration is an important tool; an increased understanding of the interactions between replanted corals and the fishes they support is critical for ensuring its success for people and nature.  相似文献   

8.
The distribution and habitat associations of detrivorous blennies on a tropical coral reef were investigated at several spatial scales and compared with other fish that feed on the epilithic algal matrix to assess density and biomass contributions of small detrivorous fishes to these assemblages. At broad spatial scales total blenny abundance and biomass were highest on the tops of reefs exposed to prevailing winds. On the finer scale of microhabitat use, all species showed a preference for non-living corals, although the type of coral utilised differed between species. The high abundance of blennies on reef tops and non-living corals may be partially related to the quality and availability of detritus in these habitats. Comparisons of total blenny abundance and biomass with other territorial detrivores found that blennies accounted for approximately 60% of this functional group's density and 21% of their biomass on exposed reef tops. Overall, territorial detrivores were found to constitute approximately 37% of the density and 26% of the biomass of the detrivorous/herbivorous fish assemblage on exposed reef tops. Small detrivorous fish therefore represent a substantial proportion of fish assemblages that feed on epilithic algae and associated detritus on coral reefs.  相似文献   

9.
The increasing degradation of marine ecosystems as a result of increasing impact caused by anthropogenic pressures, urges for well-founded knowledge to develop efficient tools to appraise the quality status of fish assemblages, as required by the “Marine Strategy Framework Directive”. This study analyzed the structural and functional response of rocky fish assemblages to several pressures on the Portuguese coast, i.e. fishing, sewage discharges, port activities and thermal effluent, by selecting fish-based metrics that best distinguished disturbed from control areas. One of the novel aspects of this research is the integrated assessment made through the analysis of several metrics representing numerous attributes of fish assemblages (namely diversity, abundance, trophic structure, mobility, resilience, habitat association, nursery function), which contrasts with the most commonly used approaches that in general focus on fish species/families. PERMANOVA results showed significant differences on metrics composition for all pressures with the exception of the thermal effluent. Moreover, two major patterns of stress were identified: (1) selective pressure, which affects differentially the fish assemblages (fishing); (2) broad-range pressure, which affects the entire fish assemblage with metrics of several attributes (e.g. structure, resilience, trophic guilds, nursery function) responding to its presence (sewage discharges, port activities). Taking into account the sensitivity results (discriminant analysis and Mann–Whitney test), biological meaning and redundancy with other metrics (Spearman correlations), the following metrics were selected as the most suitable to detect changes on temperate reef fish assemblages: “density of generalist individuals”, “density of territorial individuals”, “density of large individuals with medium to high commercial value (>20 cm)”, “density of juveniles” and metrics relative to trophic guild (except zooplanktivores). Since metrics grouped species that have some degree of functional overlap, the present approach was useful to understand human-induced changes at the assemblage level, contributing for the future use of marine fishes as biological indicators.  相似文献   

10.
If the primary goal of artificial reef construction is the creation of additional reef habitat that is comparable to adjacent natural rocky-reef, then performance should be evaluated using simultaneous comparisons with adjacent natural habitats. Using baited remote underwater video (BRUV) fish assemblages on purpose-built estuarine artificial reefs and adjacent natural rocky-reef and sand-flat were assessed 18 months post-deployment in three south-east Australian estuaries. Fish abundance, species richness and diversity were found to be greater on the artificial reefs than on either naturally occurring reef or sand-flat in all estuaries. Comparisons within each estuary identified significant differences in the species composition between the artificial and natural rocky-reefs. The artificial reef assemblage was dominated by sparid species including Acanthopagrus australis and Rhabdosargus sarba. The preference for a range of habitats by theses sparid species is evident by their detection on sand-flat, natural rocky reef and artificial reef habitats. The fish assemblage identified on the artificial reefs remained distinct from the adjacent rocky-reef, comprising a range of species drawn from naturally occurring rocky-reef and sand-flat. In addition, some mid-water schooling species including Trachurus novaezelandiae and Pseudocaranx georgianus were only identified on the artificial reef community; presumably as result of the reef''s isolated location in open-water. We concluded that estuarine artificial reef assemblages are likely to differ significantly from adjacent rocky-reef, potentially as a result of physical factors such as reef isolation, coupled with species specific behavioural traits such as the ability of some species to traverse large sand flats in order to locate reef structure, and feeding preferences. Artificial reefs should not be viewed as direct surrogates for natural reef. The assemblages are likely to remain distinct from naturally occurring habitat comprised of species that reside on a range of adjacent natural habitats.  相似文献   

11.
Given the importance attributed to the occupation of space in benthic coral reef communities, this study asks the question: are any particular microhabitat types limiting resources for an assemblage of worm-eating gastropods on Heron reef (Great Barrier Reef). Microhabitat resource use was measured on three occasions, separated by 12 and 20-month periods. The gastropod populations were typical of those of other Indo-Pacific sites with respect to mean shell size and density. Fluctuations in species' size and density are assumed to have not significantly influenced availability of microhabitat resources. Gastropods occurred mainly in the structurally complex “refuge” microhabitats during the day and showed an increased abundance in smooth, exposed, “foraging” microhabitat nocturnally. Nassarius gaudiosus is the most extreme microhabitat specialist diurnally and the most extreme microhabitat generalist nocturnally. A similar, although less pronounced trend was exhibited by other gastropod species. Microhabitat niche overlap was high for Conus coronatus, C. miliaris, C. flavidus, Vasum turbinellus and N. gaudiosus at night and was also high during the day for all these species except N. gaudiosus, which showed little overlap with other gastropod species diurnally. Using gastropod abundance data from all samples, and independently derived microhabitat abundance data, multiple regression analysis demonstrated:
  1. A significant relationship between the abundances of N. gaudiosus, C. coronatus, and C. flavidus and the abundance of microhabitat 2 (sand under rocks=“refuge”).
  2. No positive association between gastropod abundance and the abundance of microhabitat 7a (thin layer of algal-bound sand on reef limestone).
Only N. gaudiosus is abundant in microhabitat 2. Therefore it is concluded that, with some exceptions, microhabitat abundance does not have a significant influence, directly or indirectly, on gastropod abundance. It is possible that density-independent mortality is maintaining gastropod densities below that at which competitive interactions, with respect to microhabitats, have significant effects on the gastropods' use of those resources.  相似文献   

12.
Synopsis One perspective emphasizing the importance of stochastic processes in determining coral reef fish assemblages implies that there is little organization in species richness, abundance structure, and spatial distribution. We examine the degree to which this perspective is correct by analyzing distribution of fishes on a collection of patch reefs (Discovery Bay, Jamaica). We ask the question whether these patches accumulate species and individuals in a manner consistent with stochastic expectations. To address this question we use two conceptual models, each permitting a different insight. One assumes that fish are distributed stochastically on patches while the other assumes presence of restrictions on fish distribution due to habitat structure. For each conceptual model we use two types of benchmark: we compare observed patterns to those predicted by theoretical models, and we also compare observed patterns to those obtained from a random reallocation of fish individuals to patches. We found that the conceptual model assuming stochastic processes appeared to provide weaker explanation of patterns than the conceptual model that includes restrictions due to habitat structure. Further, and more importantly, we found that (i) the community is shaped by a mixture of stochastic and non-stochastic mechanisms, and (ii) the stochastic assembly processes decrease in importance for species restricted to fewer microhabitat types and sites. Our study therefore indicates that patches do accumulate individuals and species in a manner consistent with stochastic expectations, however, this applies primarily to the habitat generalists (unrestricted species). By the same token, increased habitat specialization by some species imposes constraints on the stochastic model such that it eventually fails.  相似文献   

13.
The present study describes ontogenetic shifts in habitat use for 15 species of coral reef fish at Rangiroa Atoll, French Polynesia. The distribution of fish in different habitats at three ontogenetic stages (new settler, juvenile, and adult) was investigated in coral-dominated and algal-dominated sites at two reefs (fringing reef and inner reef of motu). Three main ontogenetic patterns in habitat use were identified: (1) species that did not change habitats between new settler and juvenile life stages (60% of species) or between juvenile and adult stages (55% of species—no ontogenetic shift); (2) species that changed habitats at different ontogenetic stages (for the transition “new settler to juvenile stage”: 15% of species; for the transition “juvenile to adult stage”: 20% of species); and (3) species that increased the number of habitats they used over ontogeny (for the transition “new settler to juvenile stage”: 25% of species; for the transition “juvenile to adult stage”: 25% of species). Moreover, the majority of studied species (53%) showed a spatial variability in their ontogenetic pattern of habitat use according to alternate reef states (coral reef vs algal reef), suggesting that reef state can influence the dynamics of habitat associations in coral reef fish.  相似文献   

14.
While relationships between adult fish density and structural habitat features are well established, relatively little is known about the habitat associations of juvenile reef fish. In a reserve system in Palau, we quantified microhabitat association with juvenile reef fish community structure, and determined the influence of foraging space, predator size and confamilial attraction on juvenile and adult pomacentrid abundance. Habitat structure and juvenile reef fish communities differed significantly among microhabitats with one exception: no difference was found between foliose and consolidated rubble microhabitats. Overall, pomacentrids characterised the juvenile community structure of each microhabitat. The abundance of early juvenile pomacentrids is simultaneously determined by microhabitat structure and predator size, with little evidence for settlement selection near adults. The results also suggest that the influence of habitat structure become weaker with ontogeny which in part, drives large predators to negatively influence the abundance of adult pomacentrids. The results have important implications on management, specifically in prioritizing areas for protection, and in modeling the impacts of habitat loss on reef fish communities.  相似文献   

15.
Abstract Fish ecology in urban estuaries is poorly understood. As coastal landscapes are transformed, recognizing the impact that urban structures, such as marinas, seawalls and wharfs, have on local fish populations is becoming increasingly important. The extent to which fish are able to maintain natural ecological assemblages can be measured, to a certain extent, by how closely they mimic natural habitats. In Sydney Harbour, assemblages of fish associated with artificial structures were compared with those associated with natural rocky reefs. Sampling was carried out in five locations, each with a marina, swimming enclosure and natural reef. In each location, different habitats supported different assemblages, but differences between habitats were not consistent among locations. Subsequent sampling compared artificial and natural sites in three different areas in each of three different estuaries. Results indicated that differences in fish assemblages between artificial and natural sites were greater than differences between sites within each habitat, but there were no patterns among different positions in an estuary or from estuary to estuary. This study provides initial evidence that, although artificial habitats generally support the same species as found on natural reefs, assemblages usually differed between natural and artificial habitats. In addition, without knowing if these habitats do, in fact, sustain viable populations of fish, it would be premature to label artificial structures as effective habitat for fish.  相似文献   

16.
Do the highly diverse fish faunas that associate with coral reefs have distinguishing taxonomic and ecological characteristics, as proposed by Choat and Bellwood (1991) and Bellwood (1996)? Does a 50?my old (Eocene) fossil fish fauna from Italy represent a coral-reef fish assemblage that provides unique information about the evolution of such assemblages, as claimed by Bellwood (1996)? I compared the structure of the reef fish faunas of adjacent tropical regions rich and poor in coral reefs, in both America and Polynesia, and found that they exhibit no substantive differences in relative species richness among families of typical “coral-reef” fishes. While coral-rich regions have larger reef fish faunas, a variety of factors probably contribute to such differences. Thus coral-reef fish faunas may lack a distinctive taxonomic structure. A similar comparative approach would be useful for assessing whether assemblages of fishes on coral reefs have distinctive ecological characteristics. Based on patterns of habitat use by modern tropical shorefishes, the Italian Eocene fauna includes few definite reef fishes, and may well consist primarily of non-reef fishes preserved in a non-reef habitat. Until we know more about the environment in which those fossils were preserved, that fauna can contribute little to understanding how coral reef fish assemblages have evolved.  相似文献   

17.
The presence of bluestreak cleaner wrasse, Labroides dimidiatus, on coral reefs increases total abundance and biodiversity of reef fishes. The mechanism(s) that cause such shifts in population structure are unclear, but it is possible that young fish preferentially settle into microhabitats where cleaner wrasse are present. As a first step to investigate this possibility, we conducted aquarium experiments to examine whether settlement-stage and young juveniles of ambon damselfish, Pomacentrus amboinensis, selected a microhabitat near a cleaner wrasse (adult or juvenile). Both settlement-stage (0 d post-settlement) and juvenile (~5 weeks post-settlement) fish spent a greater proportion of time in a microhabitat adjacent to L. dimidiatus than in one next to a control fish (a non-cleaner wrasse, Halichoeres melanurus) or one where no fish was present. This suggests that cleaner wrasse may serve as a positive cue during microhabitat selection. We also conducted focal observations of cleaner wrasse and counts of nearby damselfishes (1 m radius) to examine whether newly settled fish obtained direct benefits, in the form of cleaning services, from being near a cleaner wrasse. Although abundant, newly settled recruits (<20 mm total length) were rarely (2 %) observed being cleaned in 20 min observations compared with larger damselfishes (58 %). Individual damselfish that were cleaned were significantly larger than the median size of the surrounding nearby non-cleaned conspecifics; this was consistent across four species. The selection by settlement-stage fish of a microhabitat adjacent to cleaner wrasse in the laboratory, despite only being rarely cleaned in the natural environment, suggests that even rare cleaning events and/or indirect benefits may drive their settlement choices. This behaviour may also explain the decreased abundance of young fishes on reefs from which cleaner wrasse had been experimentally removed. This study reinforces the potentially important role of mutualism during the processes of settlement and recruitment of young reef fishes.  相似文献   

18.
With the ongoing loss of coral cover and the associated flattening of reef architecture, understanding the links between coral habitat and reef fishes is of critical importance. Here, we investigate whether considering coral traits and functional diversity provides new insights into the relationship between structural complexity and reef fish communities, and whether coral traits and community composition can predict structural complexity. Across 157 sites in Seychelles, Maldives, the Chagos Archipelago, and Australia’s Great Barrier Reef, we find that structural complexity and reef zone are the strongest and most consistent predictors of reef fish abundance, biomass, species richness, and trophic structure. However, coral traits, diversity, and life histories provided additional predictive power for models of reef fish assemblages, and were key drivers of structural complexity. Our findings highlight that reef complexity relies on living corals—with different traits and life histories—continuing to build carbonate skeletons, and that these nuanced relationships between coral assemblages and habitat complexity can affect the structure of reef fish assemblages. Seascape-level estimates of structural complexity are rapid and cost effective with important implications for the structure and function of fish assemblages, and should be incorporated into monitoring programs.  相似文献   

19.
Reef flats, typically a low‐relief carbonate and sand habitat in shallow water leeward of the reef crest, are one of the most extensive zones on Pacific coral reefs. This shallow zone often supports an abundant and diverse fish assemblage that is exposed to more significant variations in physical factors, such as water depth and movement, temperature and ultraviolet (UV) radiation levels, than most other reef fishes. This review examines the characteristics of reef flat fish assemblages, and then investigates what is known about how they respond to their biophysical environment. Because of the challenges of living in shallow, wave‐exposed water, reef flats typically support a distinct fish assemblage compared to other reef habitats. This assemblage clearly changes across tidal cycles as some larger species migrate to deeper water at low tide and other species modify their behaviour, but quantitative data are generally lacking. At least some reef flat fish species are well‐adapted to high temperatures, low oxygen concentrations and high levels of UV radiation. These behavioural and physiological adaptations suggest that there may be differences in the demographic processes between reef flat assemblages and those in deeper water. Indeed, there is some evidence that reef flats may act as nurseries for some species, but more research is required. Further studies are also required to predict the effects of climate change, which is likely to have multifaceted impacts on reef flats by increasing temperature, water motion and sediment load. Sea‐level rise may also affect reef flat fish assemblages and food webs by increasing the amount of time that larger species are able to forage in this zone. The lack of data on reef flats is surprising given their size and relative ease of access, and a better understanding of their functional role within tropical marine seascapes is urgently required.  相似文献   

20.
Recent studies have shown that there are high degrees of spatial and temporal stability in coral reef fish assemblage structures in a continuous habitat, in contrast to results of observations in isolated habitats. In order to determine the reason for the difference in temporal stability of fish assemblage structures in a continuous habitat site and an isolated habitat site, population dynamics and spatial distributions of coral reef fishes (six species of pomacentrids and two species of apogonids) in the two habitat site were investigated over a 2-year period in an Okinawan coral reef. The population densities of pomacentrid and apogonid species increased in juvenile settlement periods at both sites, but the magnitude of seasonal fluctuation in population density was significantly greater at the isolated habitat site, indicating that the rate of juvenile settlement and mortality rate in the isolated habitat were greater than those in the continuous habitat. The magnitude of aggregation of fishes, which affects density-dependent biological interactions that modify population density such as competition and predation, was also significantly greater at the isolated habitat site, especially in the juvenile settlement season. Most of the fishes at the isolated habitat site exhibited more generalized patterns of microhabitat selection because of less coral coverage and diversity. The seasonal stability in the species composition of fishes was greater at the continuous habitat site than that at the isolated habitat. Our findings suggest that the relative importance of various ecological factors responsible for regulation of the population density of coral reef fishes (e.g., competition, predation, microhabitat selection and post-settlement movement) in a continuous habitat site and the isolated habitat site are different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号